
1 A small application for the Zauru

The Zaurus comes with some PIM tools, one of which is a small appointment manager.
The data of this manager can be synchronized with a PC: on Linux or Windows, the qtopia
desktop can be used to synchronize the contents of the Zaurus calendar with the calendar
on the PC. In an earlier issue of Toolbox, an algorithm was presented to calculate when it’s
Easter day. Below, a small program is presented which inserts easter day in the calendar of
the Zaurus (or the Qtopia desktop)

The program is developed on Linux, but could have been written on Windows just as easily.
The only thing that changes is the location of the configuration file. The datebook appli-
cation (calendar) stores its information in a file called datebook.xml. The information is
stored in XML. To add the easter days to the calendar, it is necessary to add some elements
in the XML tree. FPC is shipped with units that implement the DOM specifications of the
W3 consortium, so this can be done quite easily.

Let’s have a look at the format of the datebook data file. It looks something like this:

<?xml version="1.0"?>
<events>

<event uid="1079034434" categories="1058558753"
description="Something new" location="Here"
timezone="None" start="1078999200" end="1079002800"
type="AllDay"/>

<event uid="1079034435" categories="1058558752"
description="Meeting" location="Home"
timezone="None" start="1079002800" end="1079006400"
type="Timed"/>

</events>

The original entries have been splitted over several lines for printing purposes. As can be
seen, the format is quite simple. All datebook entries are stored in event elements below
the events element in the XML tree.

Each event has a uid attribute, which is needed for synchronization purposes. For this
article, we’ll ignore the contents of this attribute. What follows is a category attribute,
which is an encoding of the various categories that have been defined by the user. Then
follows the description attribute, which contains the text that was entered for the event.
Next are another 2 optional attributes: the location of the event and the timezone in
which the event occurs. After this, three more interesting attributes occur: the start and
end time, plus the type of event. A ’Timed’ event occurs on a specific time during the day,
the ’AllDay’ event is specific to the day.

This provides enough information to be able to insert an entry for easter day in the calendar.
All that must be done now is to read the XML file, insert one or more event elements,
and write the file again. Obviously the type of event will be ’Allday’, and the start and end
time can be calculated: it’s a Unix timestamp: the number of elapsed seconds since January
1, 1970. The start time will be set to 00:00, while the end time will be set to 23:59. As
description of the event ’Easter Day’ will be used.

The program code is really quite simple:

begin
ProcessCommandLine;
ReadXMLFile(Doc,FileName);
Try

AddEasterDays(Doc,StartYear,EndYear);

1

WriteXMLFile(Doc,FileName);
Finally

Doc.Free;
end;

end.

First, the command-line is processed. The program takes 3 command-line arguments. A
start year, optionally an end year, and a filename. If no end year is given, only the easter
day for the start year will be inserted. The program contains defaults for the location of the
location of the datebook.xml file.

Then the XML file is read. The ReadXMLFile call is part of the xmlread unit that
comes with FPC. It reads an XML file and stores the XML tree in a TDOMDocument
class instance, as described by the DOM specifications. The TDOMDocument class (and
all other DOM elements) are part of the Dom unit.

After this, the easter days are added to the DOM tree, and the file is written to disk, using
the WriteXMLFile call, which can be found in the xmlwrite unit.

The AddEasterdays call is a simple loop:

Procedure AddEasterDays(Doc : TXMLDocument;
StartYear,EndYear : Integer);

Var
N : TDomNode;
Y : Integer;
E : TDomElement;

begin
With Doc do

begin
N:=FindNode(’events’);
If (N=Nil) or (Not (N is TDomElement)) then

begin
Writeln(’Could not locate events in datebook file.’);
Halt(1);
end;

E:=TDomElement(N);
For Y:=StartYear to EndYear do

AddEasterEvent(E,Y);
end;

end;

It starts by looking for the ’events’ node in the DOM tree. The standard ’FindNode’ call
does this. If the node was found, it runs a simple loop from start till end year, and passes
the year and the event node to the AddEasterEvent call, which actually adds the entry:

Procedure AddEasterEvent(Events: TDomElement; Year: Integer);

Var
D : TDateTime;
E : TDomElement;

begin
D:=EasterDay(Year);

2

E:=Events.OwnerDocument.CreateElement(’event’);
E[’description’]:=’Easter day’;
E[’timezone’]:=’None’;
E[’start’]:=IntToStr(EpochTime(D+EncodeTime(12,0,0,0)));
E[’end’]:=IntToStr(EpochTime(D+EncodeTime(23,59,0,0)));
E[’type’]:=’AllDay’;
Events.AppendChild(E);

end;

First the exact easter day is calculated using the EasterDay function, described in an
earlier issue of Toolbox. Then a new element is created. An element cannot be created just
like that, it must be requested from the TDOMDocument class, which is available through
the OwnerDocument property of the Events instance. The attributes of an XML ele-
ment are declared as the default property of the TDomElement node, so they can be easily
set. As can be seen from the code above, setting the attributes to their desired values. The
EpochTime function calculates the Unix epoch time starting from a TDateTime date/time
indication.

That is all there is to it. All that remains to be done is to compile the program:

home: >fpc -Parm -XParm-linux- addeaster.pp

The -Parm parameter tells FPC that it should compile for the arm processor (it will choose
the correct arm cross-compiler) and the -XParm-linux- tells the compiler that the arm
cross-compilation utilities (such as the as assembler, and ld linker) are installed with the
arm-linux- prefix, i.e. they’re called arm-linux-as and arm-linux-ld.

Remains to transfer the program to the Zaurus (using ftp or scp) and run it on the Zaurus:

uname -a
Linux localhost 2.4.6-rmk1-np2-embedix #1 2002Çŕ 7ůî30Æü(šÐ) 08żþ59Êň46ÉÃ
JST armv4l unknown
./addeaster 2004 2005
cd /home/root/Applications/datebook
cat datebook.xml
<?xml version="1.0"?>
<events>

<event description="Easter day" timezone="None"
start="1081684800" end="1081688400" type="AllDay"/>

<event description="Easter day" timezone="None"
start="1111924800" end="1111928400" type="AllDay"/>

</events>

And the easter day entries should appear in the calendar of the Zaurus. There is a small
caveat: if the datebook application is still running, it must be stopped and restarted. Even if
it is not visible on the screen, it may be that it is still running in the background (the Zaurus
does this to be able to start applications faster). Use the process manager of the Zaurus to
kill it, and then simply start it.

3

	A small application for the Zauru

