
Using MS Word in a Delphi application

Michaël Van Canneyt

August 4, 2009

Abstract

Two techniques to control MS-Word from a Delphi application are discussed in this
article. As a demonstration, a small tool is developed which allows to use Word for
producing a serial-letter, or to produce tables from data in a TDataset. Based on the
techniques shown, it should be possible to create any kind of document - or indeed,
control MS-Wor - from a Delphi application.

1 Introduction

Finding a PC that does not have MS-Word installed may prove a difficult task: The word-
processor from Microsoft is ubiquitous. It therefore makes sense to use it whenever it is
necessary to create beautiful output from a program. What is more, most people doing
administrative work are probably familiar with it: For such people it will be easier to use
MS-Word as a reporting tool instead of Crystal Reports or some other reporting solutions
that come with Delphi, such as Quickreport, FastReport, Preport, Reportbuilder and many
others. For most people, typing some small letter in MS-Word with some placeholders for
names, addresses or telephone numbers and amounts will be much easier than mastering a
powerful but complex reporting tool in order to produce a simple invoice.

So, rather than relying on some reporting solution, why not use MS-Word to produce out-
put for a Delphi application ? Delphi makes it actually very easy: The language support
for Variants as references to OLE automation servers and the support for COM interfaces
make steering MS-Word (or indeed Excel or MS-Access) quite easy. In this article, both
approaches are shown.

2 Using OLE automation server classes

Controlling MS-Word is done through its COM interface: Through Delphi’s OLE mech-
anism, an OLE reference is obtained to the MS-Word application, and then the various
commands exposed by the MS-Word interface can be used to let MS-Word do virtually
anything that is needed. The same can be done with Excel and other members of the MS-
Office suite.

Delphi 5 and higher versions come with a set of components on the component palette
that make controlling an MS-Office application quite easy: TWordApplication and
TWordDocument are classes that present the complete Word interface. Technically, these
are very simple classes created by importing Microsoft’s Type Library for its MS-Office
applications: They can be generated quite easily: in the ’Project’ menu, the item ’Import
Type Library’ will present a list of type libraries installed on the PC. Selecting the correct
type library will generate some pascal units that contain the Pascal Interface declarations

1



corresponding to the COM interface defined in MS-WORD - or any other application that
has registered a type library.

The type libraries imported by the Borland developers come in various flavours: The
’word97’ unit contains the MS-Office 97 interface, the Word2000 unit contains the MS-
Office 2000 interface. On the CD, a set of units is included which present the Word-XP
interface (These are not delivered e.g. with Delphi 5)

The interface exposed by these components is called ’Word.Application’. It is documented
completely in the MS-Word help files, if the ’Visual Basic Reference Help for Word’ was
installed together with MS-Word. There, the complete set of commands, properties can be
explored and subsequently put to use in the Delphi application.

The use of the Ole automation server components is very simple: A TWordApplication
component is dropped on a form, the ’Connect’ method is called, and MS-Word will be
started - or an error is raised if MS-Word is not installed on the PC.

The TWordApplication component has a ’Documents’ property, which is a reference
to the collection of documents, opened in word. The ’Open’ call can be used to open an
existing document, or the ’New’ method can be used to start a new document. For instance,
a procedure to open a document could look as follows:

Procedure TMainForm.OpenWordDocument(FN : String);

Var
Word : TWordApplication;
D : _Document;
O : OleVariant;

begin
Word:=TWordApplication.Create(Self);
Try

Word.Connect;
Word.Visible:=True;
O:=FN;
D:=Word.Documents.Open(O,EmptyParam,EmptyParam,

EmptyParam,EmptyParam,
EmptyParam,EmptyParam,
EmptyParam,EmptyParam,
EmptyParam);

// Maybe do other things.
Finally

Word.Free;
end;

end;

As can be seen from the code above, after connecting to Word, it is not visible on the screen:
Only after setting the ’Visible’ property to True, the MS-Word window will appear on
screen.

The call to Open needs a lot of parameters: the full list is documented in Word, but the
Delphi IDE will show them when code completion features are turned on. All parameters
are declares as OleVariants passed by reference (NOT by value), i.e. declared as a ’var’
parameter. This means that a variable of type OleVariant must be passed - no automatic type
conversion will be done: That is why the filename is first stored in a OleVariant variable
(’O’), which is then used in the Open call. This is in fact an artefact of the translation into
pascal code: The parameters could have been passed as Const parameters, which would

2



have allowed to pass a variable of any compatible type, and the Delphi compiler would
have done the conversion itself. As it is done using var parameters, the options have to be
of type OleVariant.

Most of the parameters to the Open method are declared optional in MS-Word, but they
are required when using the Interface in Delphi. To indicate that a value is not passed on to
Word, the pre-defined EmptyParam variable can be used.

The return value of the Open call is a reference to a _Document interface: Its methods
can be used to fill the document with content.

The above example immediatly shows a problem with this approach: Because Delphi
knows the interface of TWordApplication (and the Documents property, it will com-
plain if the wrong kind or wrong number of parameters is passed to a call. Normally, this
is good: This way, one is sure that the call to Word is made correct.

However: The semantics of the Open call changes from version to version: The above call
is correct for Word 97, but is wrong for Word 2000, which expects not 10, but 12 arguments
in its Open call. And Word XP expects 15 arguments. Since at compile time it is not known
which version of MS-Word will be installed on the PC that will run the application, all three
possibilities must be foreseen, and the correct one must be used depending on the actual
version of Word that is installed on the PC where the code runs - with the possibility that
when a new version of word is released, the code won’t work again.

However, there is another approach, as will be shown in the next section.

3 Using (OLE)Variants

According to the documentation, a variable of type Variant can also hold a reference to
an interface. This is of little use unless the calls, exposed by the interface, can somehow be
accessed by Delphi. Delphi does this using ’late binding’: It can treat the Variant as a Class:
any code which could be interpreted as a method, it interprets as a call to a method of the
interface to which the variant refers. It does this by generating code that will dynamically
look up the method to call, and encodes the arguments in a special way, understood by the
COM system. No compile-time checking whether the arguments are valid is done.

Basically, this means that the following code is possible:

Var
Word : Variant;

begin
Word:=CreateOleObject(’Word.Application’);
Word.Documents.Open(’mydoc.doc’);

end;

Delphi will not check whether the last statement is correct. Instead, it will generate code
to get a reference to the ’Documents’ collection of the Word interface, and then it will use
this reference to generate code that will call the Open method of this collection with 1
parameter, the filename.

It is important to realize that this code is not checked at compile time in any way: the
code will compile fine. Only when the code is actually run, then an error may occur if
something was wrong. This means that errors in the code will not be detected unless the
code is actually run.

Note that the number of parameters in the above code is not correct: only one parameter is
passed. The compiler (actually, the RTL) generates the code to pass ’EmptyParam’ for all

3



missing parameters. To help the compiler encoding the parameters correctly, it is possible
to specify the parameter names:

Word.Documents.Open(FileName:=’mydoc.doc’,ReadOnly:=True);

Note that this can only be done for optional parameters.

The above technique can only be used for OLE Automation servers which expose the
IDispatch interface: this interface allows Delphi to encode the calls correctly. It has
the advantage that the code will still function when a newer version of e.g. MS-Word is
installed on the PC, since Microsoft usually maintains more or less backward-compatibility
and the parameters are encoded with their names.

While it is is of course tempting to use this powerful feature of Delphi, one must be careful
when using this. Since the code is not checked at compile-time, errors may go un-noticed
for a very long time, namely till the code is actually executed. For small projects and
interfaces, this should not be a problem. For large interfaces (such as word) with a lot of
calls and a lot of code, it may take along time before the cause of an error is spotted.

In the below code, a hybrid approach is taken: A separate class is developed with an in-
terface that suits the needs of the application, and this class will the call the methods of
an appropriate ’driver’ class, which contains compile-time checked calls to the interface of
Word: there is a driver class for each version of Word - and as an extra, there is a ’generic’
class, which will use Variants and late binding to access Word.

4 Exporting data to MS-Word

The purpose of the TWordDriver class is to open a document and fill in parameters in the
document using some pre-defined placeholders. For this, the search and replace mechanism
of MS-Word is used. After all placeholders have been replaced, the document with markers
replaced can be printed or saved (or both).

The markers are simple words, enclosed with curly brackets, as can be seen in figure 1 on
page 5 The driver will recognize the texts {Title} and {FirstName} as placeholders
which should be replaced with some value. This value can come from 2 sources:

1. A list of Name=Value pairs. A placeholder whose text matches one of the names
will be replaced with the corresponding value.

2. A TDataset descendent. A placeholder whose text matches one of the fieldnames
in the dataset will be replaced with the field value.

To create a serial letter, the dataset is scrolled through, and for each record in the dataset,
the document is loaded freshly, the placeholders are substituted with their contents, and the
document is either saved or printed at once. The saving can be done with a template: the
directory to save the resulting documents in should be specified, and a name template must
be specified. The template can also contain placeholders:

1. %N% will be replaced with the record number.

2. %D% will be replaced with the current date.

3. %FIELDNAME% will be replaced with the value of the named field.

For instance to create a serial letter to all customers, the files could be saved with a template
of

4



Figure 1: Placeholders to create a serial letter in MS Word

C:\My Documents\Offers\offer-%D%-%CustNo%.doc

This would create one document for each customer.

To make printing at a later time easier, a ’merge’ document can be made: this is simply
a document which includes (via the MS-Word INCLUDETEXT field) all generated docu-
ments. Opening this document will open all generated documents.

A second functionality is simply to generate a table with selected fields from a dataset:
This starts from a document which contains a placeholder for the table: The placeholder
will be replaced by the generated table. A list of fields (and their order) can be specified.
An example could look as in figure 2 on page 6. The programmer should indicate which
placeholder is supposed to contain the table. All other placeholders will be substituted with
their contents. Note that the other placeholders will be substituted only once, and no value
should be specified for the table placeholder.

A last functionality is to take an existing table, and fill it with data from a dataset. This is
done by taking the last row of the table, and duplicating it, replacing any placeholders that
are found: Any formatting is preserved, and the header of the table can be freely designed.
Here, the same remark applies as for the creation of a new table: Placeholders outside the
table will be replaced only once.

5 The TWordDriver class

The class which implements all this is the TWordDriver class. It contains all logic
needed to create or fill a table or create a serial letter. The actual calling of of MS-Word is
delegated to a TOLEWord class: This is an abstract class with the following interface:

TOLEWord = class(TComponent)
procedure CloseWord(QuitWord : Boolean);
procedure OpenWord(WithVisible : Boolean);
procedure OpenDocument(FN : String);

5



Figure 2: Creating a table in MS Word

Figure 3: Filling an existing table in MS Word

6



procedure SaveDocument(FN : String);
procedure CloseDocument(KeepOpen : Boolean);
procedure PrintDocument; Virtual; Abstract;
Procedure ReplaceValues(Value : TStrings);
procedure GetMergeFieldNames(List: TStrings);
Property HaveDocument : boolean;
procedure GetTableFieldNames(List : TStrings;

Dataset : TDataset);
procedure InsertTable(Dataset: TDataset; NameTag: String;

FieldList : TStrings);
procedure InsertTableFromTemplate(Dataset : TDataset);
Procedure AddMergeDoc(FN: String;AddPageBreak: Boolean);

end;

From this class, 4 descendent classes are made:

TWord97Driver = Class(TOleWord) // version 8.X
TWord2000Driver = Class(TOleWord) // version 9.X
TWordXPDriver = Class(TOleWord) // version 10.X
TGenericWordDriver = Class(TOleWord)

The first 3 directly call the appropriate interface methods. The last one uses late binding to
make the calls to Word. The actual code for these classes is the same: only the interface
they use is different. The comment tells us which version is reported by MS-Word for each
of these.

The TWordDriver class can try to decide which of these ’driver’ classes it will use by de-
termining the installed MS-Word version and creating the appropriate driver. Determining
which word version is installed is done with a late binding method:

function TWordDriver.GetWordVersion : String;

Var
M : Variant;

begin
Try
try

M:=CreateOleObject(’Word.Application’);
Result:=M.Application.Version;

Except
DriverError(SErrGettingVersion);

end;
Finally

VarClear(M);
end;

end;

This will return a string with the version of MS-Word, e.g; "8.2". Based on this, the
TWordDriver class can decide what driver class to create. The programmer (or user)
can also sexplicitly specify which version must be used.

The TWordDriver class has a lot of properties, which must be set appropriately before it
can do its work. The following properties can be set:

FileName Name of the document which will be used as the template.

7



SaveFileName Filename in which to save the generated document when a table is created
or filled. This is ignored for a serial letter.

Print Set to True if the generated document should be printed at once.

Save Set to True if the enerated document should be saved. The SaveFileName prop-
erty must also be set in that case.

KeepOpen Should MS-Word be left open (i.e. visible) on screen after the work is done.

OutputDir Folder where the saved documents must be stored.

SaveTemplate Filename template used when saving documents. Should not include a
path.

Datasource Datasource to use.

Values Extra Name=Value pairs to use when substituting placeholders with values.

WordVersion Word version to use: if set to wvDetect, the component will attempt to
detect the installed version.

OnlyCurrentRecord Only create a serial letter for the current record.

Busy Is ’True’ while the component is working.

DocumentCount Number of documents generated.

OnProgress Callback called after each document, usefull for displaying a progress bar.

DocumentMode What kind of document should be created: this can be one of dmSerialLetter,
dmNewtable or dmFillTable.

TableTag Name of the placeholder where a new table should be inserted.

ColumnList List of columns (fields) to use when creating a new table. The order in the
columnlist determines the order of the columns.

CreateMergeDocument If set to True, a merge document is created after a serial letter
was made.

MergeDocumentFileName Name of the file in which the merge document is saved.

After these properties have been set, the Execute method will start the actual work. The
execute method looks as follows:

FBusy:=True;
Try

FDocumentNames.Clear;
FDocumentCount:=0;
If Not FileExists(FFileName) then

DriverError(Format(SErrNoSuchFile,[FFileName]));
OpenWord;
Try

ResetCancel;
Case DocumentMode of

dmSerialLetter : CreateSerialDoc;
dmNewTable : CreateNewTable;
dmFillTable : FillTable;

end;

8



Finally
CloseWord(Not FKeepOpen);

end;
Finally

FBusy:=False;
end;

There is not much mysterious about this method: It checks whether the document exists,
then proceeds to start word, and finally calls the actual method which will do the work,
depending on the DocumentMode property.

Opening word happens as follows:

procedure TWordDriver.OpenWord;
begin

If FDriver=Nil then
CreateDriver;

FDriver.OpenWord(FKeepOpen);
end;

procedure TWordDriver.CreateDriver;

Var
V : TWordVersion;
RV : String;

begin
V:=FWordVersion;
If (V=wvDetect) then
begin
RV:=GetWordVersion;
If Pos(’8.’,RV)=1 then

V:=wvWord97
else if pos(’9.’,RV)=1 then

V:=wvWord2000
else if pos(’10.’,RV)=1 then

V:=wvWordxp
else // try generic driver.

V:=wvGeneric;
//DriverError(Format(SErrUnSupportedWordVersion,[RV]));

end;
Case V of

wvWord97 : FDriver:=TWord97Driver.Create(Self);
wvWord2000 : FDriver:=TWord2000Driver.Create(Self);
wvWordXP : FDriver:=TWordXPDriver.Create(Self);
wvGeneric : FDriver:=TGenericWordDriver.Create(Self);

else
DriverError(SErrNoSuchDriver);

end;
end;

Again, nothing mysterious about these 2 methods: If necessary, the word driver is created.
To create the driver the installed version is determined if needed. Depending on the speci-
fied or detected version, a driver is created which will be used in the rest of the methods.

The Create constructor and Open method of the drivers look as follows:

9



constructor TWord97Driver.Create(AOwner: TComponent);
begin

inherited;
FWord:=Word97.TWordApplication.Create(Self);
FDocument:=Word97.TWordDocument.Create(Self);

end;

procedure TWord97Driver.OpenWord(WithVisible : Boolean);
begin

FWord.Connect;
If WithVisible then

FWord.Visible:=True;
end;

Note that the unit name is specified when creating an instance of the TWordApplication
class. This is the only difference between the various driver classes.

The CreateSerialDoc method contains the code to create a serial letter. It is again a
very simple method, which is essentially a simple loop:

Procedure TWordDriver.CreateSerialDoc;
Var

I : Integer;

begin
If (Datasource=Nil) or (DataSource.Dataset=Nil) or

(FOnlyCurrentRecord) then
DoDocument(1)

else
begin
With DataSource.Dataset do

begin
First;
I:=0;
While Not EOF or FCancelled do

begin
Inc(I);
DoDocument(i);
Next;
end;

end;
If CreateMergeDocument then

CreateMergeDoc;
end;

end;

The real work of creating a new serial document is done in DoDocument:

procedure TWordDriver.DoDocument(NR : Integer);

Var
TheValues : TStringList;

begin
OpenDocument(FFileName);

10



Inc(FDocumentCount);
If (NR=1) then

GetMergeFieldNames(FDocumentParams);
Try

TheValues:=TStringList.Create;
Try

GetValues(TheValues);
GetDatasetValues(TheValues);
ReplaceValues(TheValues);
If Not FCancelled then

begin
If Print then

PrintDocument;
If Save then

SaveDocument(GetSaveFileName(Nr,TheValues));
end;

Finally
TheValues.Free;

end;
finally

CloseDocument(FKeepOpen);
end;

end;

After opening the start document, a list of placeholders is retrieved if this is the first time
the document is opened. This is done to optimize the search and replace process: Only
values that are known to exist in the document are searched and replaced for.

After that, the list of values to be used for this docyment is determined: the global values
list, and the values in the current record of the dataset. After this, the values are replaced in
the document using the ReplaceValues method. After this, depending on user settings,
the document is printed and/or saved.

The ReplaceValues does the actual work of searching placeholders and replacing them
with their contents. This work is delegated to the driver:

procedure TWordDriver.ReplaceValues(Value: TStrings);
begin

FDriver.ReplaceValues(Value);
end;

procedure TWord97Driver.ReplaceValues(Value: TStrings);

Var
I,J : Integer;
R,S : String;
D1,D2,D3 : OleVariant;

begin
I:=0;
While (Not FCancelled) and (I<Value.Count) do

begin
R:=Value[i];
J:=Pos(’=’,R);
If (J>0) then

11



begin
S:=’{’+Copy(R,1,J-1)+’}’;
System.Delete(R,1,J);
With FDocument.Content.Find do

begin
Text:=S;
ClearFormatting;
Replacement.Text:=R;
ReplaceMent.ClearFormatting;
D1:=True;
D2:=wdfindcontinue;
D3:=wdReplaceAll;
Execute(EmptyParam,EmptyParam,EmptyParam,

EmptyParam,EmptyParam,EmptyParam,
D1,D2,EMptyParam,emptyParam,D3);

end;
end;

Inc(I);
end;

end;

Again, this is a simple loop: all values are searched and replaced. The FDocument field
of the driver contains a reference to the currently open document. The Content property
of the document interface is of type ’Range’ - and a ’Range’ contains the find functionality:
the ’find’ functionality will search the Range - in this case, since the range is ’Content’, the
whole document will be searched. The Find property of the Range is again an interface,
in which several properties must be set:

Text The text to search.

Replacement The text with which to replace.

The Execute method will then do the actual search and replace. The options passed
(note that they should all be of type OleVAriant) tell MS-Word that all occurrences must
be replaced, and that it should continue searching when the end of the selection is reached.
The call to ClearFormatting tells MS-Word that it should not touch the formatting
when searching, or when replacing.

The exact semantics for the Execute call can be found in the MS-Word Visual Basic refer-
ence help. It is also used to get the list of placeholders for a document in the GetMergeFieldNames
call:

procedure TWordDriver.GetMergeFieldNames(List: TStrings);

Var
W,F : Boolean;

begin
W:=False;
F:=not HaveDocument;
If F then

begin
W:=not Assigned(FDriver);
If W then

OpenWord;

12



OpenDocument(FileName);
end;

Try
FDriver.GetMergeFieldNames(List);

finally
If F then

CloseDocument(False);
if W then

CloseWord(True);
end;

end;

Most of this procedure is code to see whether the document is loaded. The actual work is
again done by the driver class:

procedure TWord97Driver.GetMergeFieldNames(List : TStrings);

Var
R : Word97.Range;
S : String;

begin
R:=FDocument.Content;
With R.Find do

begin
Text:=’\{[!\{]@\}’;
ClearFormatting;
MatchWildcards:=True;
MatchCase:=False;
Repeat

If Execute(emptyParam,emptyParam,emptyParam,
emptyParam,emptyparam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam) then

begin
S:=R.Text;
Delete(S,1,1);
SetLength(S,Length(S)-1);
If (Pos(’ ’,S)=0) and (length(S)<32) then

List.Add(S);
end;

Until not Found;
end;

end;

Here the Find interface is used with a regular expression to find all placeholders in the doc-
ument: The MatchWildCards tells MS-Word to use regular expressions. The Found
property of the Find interface is used to determine whether a match was found or not:
When no match is found, the loop is exited.

The above code also demonstrates an important feature in the OLE interface of MS-Word:
Ranges. A Range can be any piece of text in MS-Word. In the above example, the range
R is initially defined as the whole text of the document: this defines the scope of the search
process. When a match is found, the range R is redefined as the piece of text that was
found: in the above code, it is used to save the found text in a stringlist.

13



Figure 4: The resulting serial letter

The result of all this code can be viewed in figure 4 on page 14.

The other methods, to create or fill a table, are equally simple as the code for a serial letter.
The code to create a new table looks as follows:

Procedure TWordDriver.CreateNewTable;

Var
TheValues : TStrings;

begin
If Not (Assigned(FDataSource) and

Assigned(DataSource.Dataset)) then
DriverError(SErrNoDatasetAvailableForTable);

OpenDocument(FFileName);
Try

Inc(FDocumentCount);
TheValues:=TStringList.Create;
Try

GetValues(TheValues);
ReplaceValues(TheValues);
If Not FCancelled then

InsertTable(Datasource.Dataset,
TableTag,FColumnList);

If Not FCancelled then
begin
If Print then

14



PrintDocument;
If Save then

SaveDocument(SaveFileName);
end;

finally
TheValues.Free;

end;
finally

CloseDocument(FKeepOpen);
end;

end;

The design pattern is followed again: the real work is done by the driver class:

procedure TWord97Driver.InsertTable(Dataset : TDataset;
NameTag : String;
FieldList : TStrings);

Var
R : Word97.Range;
T : Word97.Table;
TR : Word97.Row;
I : Integer;

begin
R:=FDocument.Content;
With R.Find do

begin
Text:=’{’+NameTag+’}’;
ClearFormatting;
MatchWildcards:=False;
MatchCase:=False;
If Execute(emptyParam,emptyParam,emptyParam,

emptyParam,emptyparam,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam) then

begin
R.Text:=’’;
If FieldList=Nil then

begin
FieldList:=TStringList.Create;
For I:=0 to Dataset.Fields.Count-1 do

FieldList.AddObject(Dataset.Fields[i].FieldName,
Dataset.Fields[i]);

end
else

For I:=0 to FieldList.Count-1 do
FieldList.Objects[i]:=
Dataset.Fields.FindField(Fieldlist[i]);

T:=R.Tables.Add(R,1,FieldList.Count);
TR:=T.Rows.Item(1);
For I:=0 to FieldList.Count-1 do

With TR.Cells.Item(I+1).Range do
begin

15



Bold:=1;
Text:=Tfield(FieldList.Objects[i]).DisplayName;
end;

Dataset.First;
While Not Dataset.Eof do

begin
TR:=T.Rows.Add(EmptyParam);
For I:=0 to FieldList.Count-1 do

With TR.Cells.Item(I+1).Range do
begin
Text:=Tfield(FieldList.Objects[i]).AsString;
Bold:=0;
end;

Dataset.Next;
end;

end
else

Raise EWordDriver.CreateFmt(SErrNoSuchTable,[NameTag])
end;

end;

The beginning of this method is familiar: code to look for the table placeholder. When
it is found, the actual work is done: The Range found by the Find interface is used to
contain the text of the table. First a fieldlist is created (if it wasn’t passed on by the calling
procedure), and filled with references to the field objects - for performance reasons: this
avoids excessively calling the dataset’s FieldByName method in later loops.

Then the following statement is used to create a table:

T:=R.Tables.Add(R,1,FieldList.Count);

Each range has a Tables property: This is a collection interface which represents the
tables inside the range. The Add method of this collection will create a new table inside
the range, with 1 row and as many columns as there are fields, and it spans the whole range
as per the the first argument to the call.

The result of the Add call is a Table object, stored in the T variable. The rest of the code
is then child’s play:

• The Rows collection of the table gives a reference to the first row, which is stored in
TR.

• The cells of the first row are accessible through the Cells collection. Individual
cells are accessible through the Item property.

• Each cell has again a Range property, which represents the contents of the cell:
Setting the Text property of this range fills the cell with text.

So the first thing to do is create a header row for the table. Each cell is filled with the
DisplayName of the fields in our fieldlist. The Bold attribute of the cell’s range is set
(other properties can be set).

After that, the dataset is browsed, adding a row to the tables for each row in the dataset,
and filling the columns with the field contents. The result is shown in figure 5 on page 17.

Filling an existing table is done in a similar manner:

16



Figure 5: A table as created by the code

procedure TWord97Driver.InsertTableFromTemplate(Dataset : TDataset);

Var
R : Word97.Range;
TR : Word97.Row;
T : Word97.Table;
I : Integer;
FieldList : TStrings;

begin
R:=FDocument.Content;
If R.Tables.Count>0 then

begin
FieldList:=TStringList.Create;
GetTableFieldNames(FieldList,Dataset);
T:=R.Tables.Item(1);
TR:=T.Rows.Last;
Dataset.First;
While Not Dataset.Eof do

begin
For I:=0 to FieldList.Count-1 do

With TR.Cells.Item(I+1).Range do
If Assigned(FieldList.Objects[i]) then

Text:=Tfield(FieldList.Objects[i]).AsString
else

Text:=’’;
Dataset.Next;
If Not Dataset.EOF then

TR:=T.Rows.Add(EmptyParam);
end;

end;
end;

The first thing to do is to get the list of fields that should be inserted in the table. This is
done in the GetTableFieldNames method - the interested reader can find the code on
the CD-ROM accompagnying this article. The rest of the code is a simple set of nested
loops, similar to the one in the previous method: The first loop loops through the dataset,

17



Figure 6: Table filled with data

and creates a new row as it goes along, and the second loop goes through the fields and fills
the table cells with the fields contents. The result of this code can be seen in figure 6 on
page 18

The rest of the methods of the driver are very simple indeed, and they will not be presented
here. The interested reader is referred to the code of the component in the WordDriver.pas
file. The above code was presented with the MS-Word 97 driver. The code for the other
drivers is almost exactly the same: Only the actual calls to the interfaces may be different
when the number of parameters is different.

6 An end-user export dialog

The component presented here is used in the compagny of the author to add an export-to-word
capability to all forms with datasets on them: Through a menu entry, the user activates a
wizard-like dialog which allows him to export the data of the current form to any arbitrary
prepared MS-Word document.

All the dialog does is collect values for the various properties of the TWordDriver com-
ponent, and when the user hits the ’Create’ button, the component is put to work. The
dialog even allows to edit (in a limited way) a copy of the form’s data before it is exported.
The form is called TWordExportForm, and can be used as follows:

procedure TMainForm.AExportExecute(Sender: TObject);
begin

With TWordExportForm.Create(Self) do
try

Dataset:=CDSAddress;
ShowModal;

Finally
Free;

end;
end;

All it needs is the dataset which should be exported to MS-Word. The dialog handles the
rest. Figures 7 (serial letter), 8 (create table) and 9 (fill table) show the various options
which can be set in the dialog. When Fetch missing fields button is pressed, the
document is scanned and placeholders are retrieved: The placeholders which match fields

18



Figure 7: Serial letter options

in the dataset are removed from the list, and the remaining names are placed in the ’Extra
Data’ grid: Here the user can enter extra content for the document. (In the example shown,
the text for the ’Issue’ placeholder)

The ’Naming template’ combobox can be filled with pre-defined templates, to make it
easier for the user to set a naming scheme.

In order to use this form, the RXLib suite must be installed for the grid and the filename
edit component. This suite can be obtained from Torry’s pages. Also, to be able to edit the
data in the form, MIDAS (Datasnap) support in Delphi is needed. It should not be hard,
however, to remove these two limitations from the form: The MIDAS limitation can be
removed by using a memory dataset (one is provided in RXLib), RXLib can be removed
by resorting to a regular drawgrid and a simple edit with a speedbutton to select a file.

7 Conclusion

Using the component presented here, it is not hard to export arbitrary data to MS-Word: It
is by no means a finished product, but shows that it is relatively easy to control MS-Word
from inside a Delphi application. There are some issues with Word versions, but they can
be dealt with, at the price of loosing some of the compile-time checking mechanisms of
Delphi.

The TWordDriver component can be used as is, but can easily be extended to include
more options controlling, for example, the formatting of the text. It would also be possible
to change it so the templates are not filled by a search-and-replace mechanism, but by using
existing MS-Word mechanisms such as form fields. In general, a study of the MS-Word
visual basic reference is very helpful in deciding how to control MS-Word from inside a

19



Figure 8: Create table options

Figure 9: Fill table options

20



Delphi application: There are many examples of how to use the various properties and
objects presented by the MS-Word interface. It may well be that the examples present a
way that is better suited for the application that should interface to MS-Word than the code
presented here: In that case the code is still useful in showing how one goes about when
the development tool is not Visual Basic, but Delphi.

Of course, if a client’s PC doesn’t run MS-Word, but runs e.g. OpenOffice, then the code
presented here is useless. But no fear: The same things can be done in OpenOffice as well,
as will be shown in a future contribution.

21


	Introduction
	Using OLE automation server classes
	Using (OLE)Variants
	Exporting data to MS-Word
	The TWordDriver class
	An end-user export dialog
	Conclusion

