
Creating a simple webserver in Lazarus

Michaël Van Canneyt

August 27, 2011

Abstract
Free Pascal - and therefor Lazarus - can compile many TCP/IP stacks: Synapse,

Indy and lnet. However, Free Pascal also ships with some simple networking compo-
nents. One of them is a simple webserver. This article shows how to use it.

1 Introduction

There are times when one needs to add a small webserver to an application. For instance,
if it is necessary to add a web-interface to configure and manage an application - this is
especially useful when writing service applications (daemons).

There are several TCP/IP networking component suites available: Indy and Synapse are the
most well-known, especially for people coming from the Delphi environment. L Net was
written especially for FPC, and uses an event-driven, non-blocking, approach. Free Pascal
includes since a long time some simple TCP/IP classes, which have been used recently to
implement a set of components that implement the server and client side for the HTTP 1.1
protocol.

Combined with the existing fcl-web components, this can be used to create a full-fledged
HTTP server with a standard installation of Free Pascal and Lazarus, which can serve files,
implement a web application or host a web service for WST (The Web Services Toolkit as
explained in the Lazarus book).

The component is kept architecturally simple, so it may not be suitable to build high-load
and scalable web servers. But for simple web services or embedded use, it is perfectly
suitable.

Basically, there are 2 components available:

TFPHTTPServer This is the component that does the actual work. It offers some proper-
ties to configure the server. The most important ones are the TCP/IP port number to
listen to (obviously named Port), and the Active property, which starts the server.
It also offers an event to actually handle requests, with the name OnRequest (what
else?). When embedding a HTTP server in an application, this is the component one
should use.

THTTPApplication This is a TCustomApplication descendant: it uses a THTTPServer
component to listen to requests, and then hands the requests over to the FCL-Web
request dispatcher mechanism. This component should be used when creating a web
service hosting application. It offers the same properties as the THTTPServer
component, to configure the behavior of the server.

In fact, the latter component is integrated in the development version of Lazarus: in the
’File - New’ dialog, one can choose ’HTTP server application’, as shown in figure 1 on
page 2. (the LazWebExtra package must be installed for this)

1



Figure 1: Lazarus support for HTTP server applications

2



2 A simple webserver

The simplest webserver can be implemented with very few lines of code:

program myserver;

uses
SysUtils, fphttpapp, fpwebfile;

Const
MyPort = 8080;
MyDocumentRoot = ’/home/michael/public_html’;
MyMiMeFile = ’/etc/mime.types’;

begin
RegisterFileLocation(’files’,MyDocumentRoot);
MimeTypesFile:=MyMimeFile;
Application.Initialize;
Application.Port:=MyPort;
Application.Title:=’My HTTP Server’;
Application.Run;

end.

In fact, this source code is not very different from what Lazarus generates if a ’HTTP Server
application’ project is started.

Note the unit fpwebfile in the uses clause. This unit contains a complete and ready-to-use
FCL-Web module (TFPCustomFileModule) that serves files. It is not necessary to
create an instance of this module explicitly. fcl-web will take care of this. All that needs to
be done, is tell fcl-web which location should be mapped to an actual directory: this is the
purpose of the first line of code:

RegisterFileLocation(’files’,MyDocumentRoot);

This tells fcl-web that a location as

http://localhost/files/myfile.html

Must be translated to a file on disk with the name

/home/michael/public_html/myfile.html

This is much like the ’Alias’ directive in the Apache webserver configuration. Obviously,
the actual directory should exist on the computer where the program is run. It is possible
to register several locations.

The second line of code tells the file serving module where the mime.types file is. This file
(installed by default on all Unix systems) is used to map file extensions to mime-types when
setting the Content-Type HTTP header. This HTTP header tells the browser what kind
of file it is getting from the server - so it can decide what to do with it. On windows, such
a file must be provided to the program. A typical Windows Apache installation contains
such a file, it can be used for the TFPCustomFileModule as well.

If the above program is started, the browser can be used to display files that are in the
registered file locations, as can be seen in figure 2 on page 4.

3



Figure 2: Testing the simple server

3 Embedding a webserver

The above example is very simple, but is also limited. Other than serve web-requests,
it cannot do anything else at all. Using the THTTPServer component, however, it is
possible to embed webserver functionality in an existing application. This is not harder
than the previous example. To show this, a GUI application can be built with a Memo
component, and 2 buttons. One button to start the server (let’s call it Bstart), one to
stop the server (call it BStop. The memo will be used to log the requests (let it be called
MLog).

The Application will simple serve files, so a TFPCustomFileModule instance is needed
to actually serve files. This instance can be created and configured in the OnCreate event
of the main form:

procedure TMainForm.FormCreate(Sender: TObject);
begin

RegisterFileLocation(’files’,’/home/michael/public_html’);
MimeTypesFile:=’/etc/mime.types’;
FHandler:=TFPCustomFileModule.CreateNew(Self);
FHandler.BaseURL:=’files/’;

end;

The first lines of this code are the same as in the first example. The last 2 lines create the
module and tell it from what location it should serve files. Note the use of the CreateNew
constructor: this prevents the Run-Time Library from trying to find a form file for the
module. Since there isn’t any, the use of Create would raise an exception.

If everything was simple, the Start button would create an instance of TFPHTTPServer
and set Active to True:

procedure TMainForm.BStartClick(Sender: TObject);
begin

4



MLog.Lines.Add(’Starting server’);
FServer:=TFPHTTPServer.Create(Self);
FServer.Port:=8080;
FServer.OnRequest:=@DoHandleRequest;
FServer.Active:=True;

end;

Unfortunately, this would freeze the application as soon as the start button was pressed: the
line

FServer.Active:=True;

does not return until the server stops. This would mean that the GUI becomes unresponsive,
which is not very desirable.

Instead, the server should run in it’s own thread, and the Start button should create such a
thread. The following thread implementation will run the HTTP server:

THTTPServerThread = Class(TThread)
Private

FServer : TFPHTTPServer;
Public

Constructor Create(APort : Word;
Const OnRequest : THTTPServerRequestHandler);

Procedure Execute; override;
Procedure DoTerminate; override;
Property Server : TFPHTTPServer Read FServer;

end;

The constructor creates the TFPHTTPServer instance and sets the Port property and
assigns the onRequest handler:

constructor THTTPServerThread.Create(APort: Word;
const OnRequest: THTTPServerRequestHandler);

begin
FServer:=TFPHTTPServer.Create(Nil);
FServer.Port:=APort;
FServer.OnRequest:=OnRequest;
Inherited Create(False);

end;

The execute methods simply sets Active, and waits till it returns. After that, it frees the
server instance.

procedure THTTPServerThread.Execute;
begin

try
FServer.Active:=True;

Finally
FreeAndNil(FServer);

end;
end;

When the thread is terminated (by an external thread), it should stop the server:

5



procedure THTTPServerThread.DoTerminate;
begin

inherited DoTerminate;
FServer.Active:=False;

end;

Using this thread, the OnClick handler of the start button is simple:

procedure TMainForm.BStartClick(Sender: TObject);
begin

MLog.Lines.Add(’Starting server’);
FServer:=THTTPServerThread.Create(8080,@DoHandleRequest);

end;

Note that it passes a form method: DoHandleRequest to handle the requests. Care must
be taken: This event handler will be called in the context of the server thread.

Likewise, the the OnClick handler of the stop button just stops the thread:

procedure TMainForm.BStopClick(Sender: TObject);
begin

MLog.Lines.Add(’Stopping server’);
FServer.Terminate;

end;

All that needs to be done is to implement the DoHandleRequest method:

procedure TMainForm.DoHandleRequest(Sender: TObject;
var ARequest: TFPHTTPConnectionRequest;
var AResponse: TFPHTTPConnectionResponse);

begin
FURL:=Arequest.URL;
FServer.Synchronize(@ShowURL);
FHandler.HandleRequest(ARequest,AResponse);

end;

The method saves the URL, and then calls ShowURL. Because the DoHandleRequest
is called by the thread, and it must update the GUI, it is necessary to protect it with
Synchronize, which will make sure that ShowURL is called in the context of the main
(GUI) thread. The ShowURL method is extremely simple:

procedure TMainForm.ShowURL;

begin
MLog.Lines.Add(’Handling request : ’+FURL);

end;

With this, the demonstration application is finished. It can now be run, and pressing the
’Start’ button will start the HTTP server. What happens if an URL is entered in the browser,
is shown in figure 3 on page 7: the page is shown in the browser, and a log entry is shown
on the form.

Note that the URL which is entered, does not contain the location ’files’ as in the first
demo. The reason is that the application does not need to decide which FCL-Web module
is needed to handle the request: all requests are handled by the file serving module. When
this module was created in the OnCreate handler of the main form, the line

6



Figure 3: The embedded server at work

FHandler.BaseURL:=’files/’;

told the module that it should look in the registered location called ’files’.

4 conclusion

In this article, the use of the standard FPC functionality for the HTTP protocol was demon-
strated: with a few lines of code, one can easily create an application that can act as a
webserver. Not all aspects of the available functionality have been covered: the client side
(getting files) has not yet been covered. Support for Web services (using WST) has also
not been treated. This will be left for a future contribution.

7


	Introduction
	A simple webserver
	Embedding a webserver
	conclusion

