
Lazarus for the web

Michaël Van Canneyt

February 6, 2006

Abstract

In this article, the support for web programming in Free Pascal/Lazarus is explored.
The support is divided in several parts: HTML, Templates, Sessions, HTTP, CGI. Each
of these parts is explained, as well as the way in which they cooperate.

1 Introduction

Web programming, and more specifically CGI programming can be done in many lan-
guages, and many ways. Obviously, CGI programming can be done in Pascal, but can it
also be done in a RAD way, using a GUI IDE ? An environment such as Intraweb is not
yet available for Lazarus or FPC. However, the basics to create such an environment have
been laid down, as will be shown in this article.

The things described here have been developed by members of the FPC team. There exist
other components like PSP (Pascal Server Pages) which also allow to develop CGI applica-
tions in FPC/Lazarus with little effort. However, the RAD aspect of PSP is largely lacking,
and integration with existing technologies in FCL/Lazarus is not one of the goals of PSP.
The components presented here have as an explicit design goal that they should integrate
with existing components in FPC.

The components to be presented here have been designed with extensibility in mind: they
are not supposed to be the end point of development, rather they are the building stones
with which a solid web programming environments should be built. Web programming is
a broad topic, so there are a lot of components to be covered.

The following section will attempt to explain the various building blocks and how they are
currently connected. All units are in the weblaz package, which can be simply installed in
the Lazarus IDE.

2 Functional Architecture

The building blocks for web programming are divided in several parts:

HTTP The various aspects of the HTTP protocol are put in this part: classes to represent
a HTTP request, and a corresponding HTTP response.

HTML An implementation of a HTML DOM model: this can be used to construct HTML
4.1 compliant documents. A special writer object exists to create valid HTML in a
way which hides the DOM behind it.

Sessions an abstract session definition is defined, plus the interaction with the HTTP pro-
tocol classes is defined.

1

Figure 1: Web architecture

Templates Complementary to the HTML DOM model, a template system was developed,
allowing to separate application logic from layout. A Small extension to the HTML
DOM model was implemented to be able to mix templates with the DOM objects.

HTTPModules These TDataModule descendents allow to program web applications in
the Lazarus IDE. There are 2 variants: one for HTML-only, one for more general-
purpose requests (such as sending an image or other non-html file).

TContentProducers component classes which can be used on HTTP modules to produce
valid HTML in a number of ways, from a number of sources.

CGI Is a set of units which handles all aspects of a CGI application. Basically, it sets up
the HTTP request and response objects, and makes sure the response is sent back
to the webserver. There is no offical RFC for CGI implementations, but the units
implement most of the unofficial CGI RFC, plus some apache extensions (wincgi is
also planned).

Currently not implemented are units to be able to write Apache loadable Modules, or mod-
ules for IIS. Implementation of these units is planned. Also planned is a HTTP server,
implemented in Object pascal, which could use modules to handle requests.

The architecture is depicted schematically in figure 1 on page 2. When a client requests a
URL that must be handled by the web components, the enclosing application (CGI, Apache
Module, Stand-alone server) prepares a pair of request and response instances. Then, it
determines what module should handle the request (more about this later). If need be,
an instance is created, and the request and response variables are passed to it. When the
module has handled the request, the response is sent back to the client.

The HTTPDatamodule class is central in this design: it handles the request. In fact, the
class has only one method: HandleRequest.

To handle the request, various descendents of this datamodule have been created, as well as
a number of components that make producing HTML from datasets (or just in code) eas-

2

ier, likewise auxiliary components for session management and handling HTML templates
have been provided.

3 Unit structure

The functionality outlined above is distributed along various units, each unit taking a part
of the functionality. They are outlined below:

HttpDefs This is the basic unit for HTTP management. It contains the TRequest and
TResponse classes. These contain properties for all headers defined in the HTTP
1.1 protocol, plus some auxiliary classes for cookies and uploaded files. The base
session definition is also in this unit. The response and request classes are nearly
completely self-contained, although many methods can be overridden.

HtmlDefs contains an enumerated type containing all valid HTML 4.1 tags, plus an ar-
ray describing the various attributes of each of these tags. The HTML entities are
also described, and and some functionality to transform strange characters to HTML
entities is provided.

HtmlElements contains a series of HTML DOM elements: for each HTML tag, a DOM
element is defined which has as properties all valid attributes for this tag.

HtmlWriter is a component which allows to produce HTML in a procedural way, mimic-
ing what would be done in e.g. PHP. It constructs a HTML document as defined in
the htmlelements unit, which can then be streamed. This allows to write structurally
correct HTML. It is used by a lot of the HTML content producers.

fpHttp contains the basic TCustomHTTPModule definition, as well as a factory for
registering and creating TCustomHTTPModule instances. It also contains basic
definitions for HTTP actions.

WebSession contains a session-aware descendent of TCustomHTTPModule: TSessionHTTPModule,
and has functionality to create and maintain sessions using .ini files and cookies.

fpTemplate Template handling support.

fpWeb Contains a version of a general purpose HTML module which can be used in the
Lazarus IDE. It’s a descendent of the TSessionHTTPModule class.

custcgi Contains descendent of the general TCustomApplication class, called TCustomCGIApplication,
which handles the CGI protocol: it prepares a TRequest variable and a TResponse
variable, which it then passes to an abstract HandleRequest method. It has no
knowledge of TCustomHTTPModule at all. In principle, using this class, a CGI
application can be built.

fpCGI contains a descendent of the TCustomCGIApplication class which will use
the HTTP Module factory to create an TCustomHTTPModule instance, depending
on the URL with which it was invoked. This is the application class as it is used in
the Lazarus IDE.

fpHTML contains various HTML content producers, as well as a TCustomHTTPModule
descendent which can only produce HTML content: it cannot be used to send image
or other non-html files. This module can be created in the Lazarus IDE.

In the following sections, the base objects will be discussed, and also how they can be used.

3

4 Request and Response

The httpdefs unit contains the basic classes used for web programming. These classes
describe the client’s (browser’s) request, and the server’s response to the request. Both re-
sponse and request consist of 2 parts, namely the headers and the data. Both classes descend
from a common ancestor which contains most headers. Similar classes exist in the Delphi
websnap package: the names have been kept different, so as to allow future development
of descendents of the FPC classes which match the interface of Delphi’s classes.

The following main classes are defined in the httpdefs unit:

THTTPHeader The common ancestor of TRequest and TResponse. For all variables
allowed in the HTTP headers, a property with the same name exists. It contains
methods for loading all variables from a stream or from a stringlist.

TRequest A descendent of THTTPHeader which has properties for cookies, POST or
GET method query variables, and properties for handling uploaded files.

TResponse A descendent of THTTPHeader which has properties for cookies, and func-
tionality to send the response to the client.

TCustomSession an abstract class which represents a web session: it simply introduces
the possibility of storing variables across sessions. This is an abstract class, from
which a descendent must be created.

Other than these main classes, the following auxiliary classes exist:

TUploadedFile a TCollectionItem descendant representing an uploaded file.

TUploadedFiles a TCollection descendant representing the uploaded files. The Files
property of the TRequest class is a TUploadedFiles instance.

TCookie a TCollectionItem descendant representing a cookie which can be sent to
the client. The various fields (expires, secure) for a cookie are implemented as the
properties of this collectionitem.

TCookies a TCollection descendant representing cookies sent to the client. The Cookies
property of the TResponse class is a TCookies instance.

The TRequest and TResponse classes provide storage for all headers, and can be
used as-is. The instantiating routines only need to fill in all properties before passing the
TRequest on.

To create a response, the most important properties of the TResponse class are the fol-
lowing:

Property Code: Integer;
Property CodeText: String;
Property ContentStream : TStream;
Property Content : String;
property Contents : TStrings;
property Cookies: TCookies;
Property HeadersSent : Boolean;
Property ContentSent : Boolean;

The meaning of these properties should be obvious:

4

Code This is the HTTP returncode which should be sent back to the client browser. Af-
ter the HTTP headers have been sent, this property should no longer be changed.
Standard, this is a 200 response code (all OK)

CodeText Is the Code in plain text. After the HTTP headers have been sent, this property
should no longer be changed.

Content the content to be sent to the browser, as a string. Setting this will also set the
content of the Contents property.

Contents the content to be sent to the browser, as a stringlist. Setting this will also set the
Content property.

Contentstream a stream whose content should be sent to the client. If this property is set,
then both Content and Contents will be ignored; The content of the stream will
be sent as-is to the client. This can be used to send images to the browser. The stream
instance will be freed of when the request instance is destroyed.

Cookies The collection of cookies to be sent back. Changing the cookies after the HTTP
headers have been sent has no effect, as the cookie definitions are sent in the HTTP
headers.

HeadersSent is True if the headers have already been (partially) sent to the client browser.

ContentSent is True if the content has already been (partially) sent to the client browser.

Other than these properties, the usual HTTP header properties can be set. Notably, the
ContentType property should be set. By default it is set to ’text/html’, so if some-
thing else than HTML is to be sent to the client, this property should be set correctly.

to send the headers, the SendHeaders method can be used. To send the content, the
SendContents method can be used: if the headers have not yet been sent they will be
sent first.

5 The TCustomCGIApplication class

The custcgi unit contains a descendent of the TCustomApplication class, called
TCustomCGIApplication. This class overrides the various methods of TCustomApplication
to handle the parsing of the HTTP variables: It instantiates 2 descendants of TRequest
and TResponse, and invokes an abstract HandleRequest method, passing these in-
stances to the method. After the request was handled, the result is sent back to the server. It
also overrides the HandleException method, and transforms an exception to a suitable
error page.

The main methods in this class are, first of all, the Initialize method:

Procedure TCustomCGIApplication.Initialize;

begin
StopOnException:=True;
Inherited;
FRequest:=TCGIRequest.CreateCGI(Self);
InitRequestVars;
FOutput:=TIOStream.Create(iosOutput);
FResponse:=TCGIResponse.CreateCGI(Self,Self.FOutput);

end;

5

As can be seen, a TCGIRequest and TCGIResponse instance are created. The InitRequestVars
method handles the parsing of the GET or POST variables. Setting StopOnException
to True makes sure that the Run method stops after an exception was caught. (for GUI
programs, this is generally set to False)

The DoRun method is very simple:

procedure TCustomCGIApplication.DoRun;
begin

HandleRequest(FRequest,FResponse);
If Not FResponse.ContentSent then

begin
FResponse.SendContent;
end;

Terminate;
end;

It calls the abstract HandleRequest method. after the request was handled, the content
is sent to the webserver, if it was not yet sent.

Actually, this is enough to start programming CGI programs. All that needs to be done in
Lazarus is to create a descendent of TCustomCGIApplication.

If the WebLaz package is installed in the Lazarus IDE, it is sufficient to choose ’Custom
CGI Application’ from the ’File–New’ dialog. Lazarus then creates a new project file with
the following code in it:

program dumpcgi;

{$mode objfpc}{$H+}

uses
Classes,SysUtils,httpDefs,custcgi,cgiApp;

Type
TCGIApp = Class(TCustomCGIApplication)
Public

Procedure HandleRequest(ARequest : Trequest; AResponse : TResponse); override;
end;

Procedure TCGIApp.HandleRequest(ARequest : Trequest; AResponse : TResponse);

begin
// Your code here

end;

begin
With TCGIApp.Create(Nil) do

try
Initialize;
Run;

finally
Free;

end;
end.

All that needs to be done is to insert the code in HandleRequest, and to use the

6

ARequest and AResponse instances to create a web page.

The webutil unit contains a method DumpRequest, which can be used to create a HTML
page which shows the contents of the request instance:

procedure TMyWeb.HandleRequest(ARequest: TRequest;
AResponse: TResponse);

Procedure AddNV(Const N,V : String);

begin
AResponse.Contents.Add(’<TR><TD>’+N+

’</TD><TD>’+V+
’</TD></TR>’);

end;

Var
I,P : Integer;
N,V : String;

begin
With AResponse.Contents do

begin
BeginUpdate;
Try

Add(’<HTML><TITLE>FPC CGI Test page</TITLE><BODY>’);
DumpRequest(ARequest,AResponse.Contents);
Add(’<H1>CGI environment:</H1>’);
Add(’<TABLE BORDER="1">’);
Add(’<TR><TD>Name</TD><TD>Value</TD></TR>’);
For I:=1 to GetEnvironmentVariableCount do

begin
V:=GetEnvironmentString(i);
P:=Pos(’=’,V);
N:=Copy(V,1,P-1);
system.Delete(V,1,P);
AddNV(N,V);
end;

Add(’</TABLE>’);
Add(’</BODY></HTML>’);

Finally
EndUpdate;

end;
end;

end;

The TRequest.Contents is filled with a HTML page that contains the dump of the
request, and then the environment variables passed to the CGI script, are dumped in a
table. The output of this simple CGI program is shown in figure figure 2 on page 8 Very
simple and small CGI programs can be made like this. It would be very easy to make a
file upload or download program with techniques like this: the tedious details of handling
the request variables and sending the response are taken care of, so the programmer can
concentrate on web logic and creating content. There is little overhead, since the Lazarus
streaming system is not included, and there is no definition of a TCustomHTTPModule
is not included either.

7

Figure 2: Simple FPC CGI program - output

8

However, more is needed, and this is where the fphttp unit comes in.

6 Web modules and Web Actions

To create a web system where more functionality is included in 1 binary, and to enable a
more RAD approach to web programming, the system of TCustomHTTPModule is set
up.

The fphttp unit contains the definition of TCustomHTTPModule:

TCustomHTTPModule = Class(TDataModule)
Procedure HandleRequest(ARequest: TRequest;

AResponse: TResponse);virtual;abstract;
end;

It also contains the following overloaded procedures:

Procedure RegisterHTTPModule
(ModuleClass : TCustomHTTPModuleClass);

Procedure RegisterHTTPModule
(Const ModuleName : String;
ModuleClass : TCustomHTTPModuleClass);

These routines register a module in the Module Factory, using TModuleFactory:

TModuleFactory = Class
Function FindModule(AModuleName : String) : TModuleItem;
Function ModuleByName(AModuleName : String) : TModuleItem;
Function IndexOfModule(AModuleName : String) : Integer;
Property Modules [Index : Integer]: TModuleItem;

end;

This factory keeps a list of registered modules, and has some methods to look up modules.
The module definitions are stored in a TModuleItem class:

Property ModuleClass : TCustomHTTPModuleClass;
Property ModuleName : String;

The purpose of this factory is to be able to create a module on-demand, depending on
the URL asked by the client. This is best illustrated by an example. Supposing a CGI
application mycgi.cgi is located somewhere on the webserver, and that the URL for the
CGI is as follows:

http://www.mylocation.org/cgi-bin/mycgi.bin

Then the following URL could be used to select a particular TCustomHTTPModuleClass:

http://www.mylocation.org/cgi-bin/mycgi.bin/mymodule

If the CGI application detects this URL, then it should use the module factory to locate
module mymodule and let this module handle the request. For example, the FPC bug-
tracker and contributed units could be implemented in 2 different modules, and united in
one CGI application, and selecting one or the other could be done by entering the correct
URL:

9

http://www.freepascal.org/cgi-bin/fpc.cgi/bugs
http://www.freepascal.org/cgi-bin/fpc.cgi/contrib

if the modules were used in an apache loadable module to handle a certain location, then
they could be reached by e.g. the following URLs:

http://www.freepascal.org/fpc/bugs
http://www.freepascal.org/fpc/contrib

(Note that support for Apache modules is not yet implemented, it’s only in the planning
stage)

This principle of automatically ’dissecting’ an URL to execute a certain action can be ex-
tended by introducing webactions (much as in Delphi’s websnap). A webaction is a partic-
ular action to be undertaken when a given URL needs to be handled by a module.

The TCustomWebActions class is a collection of TCustomWebAction:

TCustomWebActions = Class(TCollection)
Function ActionByName(AName : String) : TCustomWebAction;
Function FindAction(AName : String): TCustomWebAction;
Function IndexOfAction(AName : String) : Integer;
Property OnGetAction : TGetActionEvent;
Property Actions[Index : Integer] : TCustomWebAction;

end;

The action itself is defined as follows:

TCustomWebAction = Class(TCollectionItem)
Property Name : String;
Property ContentProducer : THTTPContentProducer;
Property Default : Boolean;
Property BeforeRequest : TRequestEvent;
Property AfterResponse : TResponseEvent;

end;

The Name property is used to identify the action. The Default property specifies that
this is the action that should be executed if no action could be determined from the URL.
The ContentProducer property allows to couple a THTTPContentProducer to
the action. This component (which will be explained later) will then handle the request
further.

Modules that descend from TCustomHTTPModuleClass have a property of type TCustomWebActions
which allows to handle various actions in the same module: actions can be created in the
Lazarus Object Inspector, and events can be associated with them to create HTML content.

The advantage of this system is that various actions which are similar can be executed in
the same TCustomHTTPModuleClass, without having to code a system to differentiate
between various actions.

To illustrate the above, the idea of the bugtracker can be used again. The following URLs
would invoke different actions in the module for the bugtracker:

http://www.freepascal.org/cgi-bin/fpc.cgi/bugs/browse
http://www.freepascal.org/cgi-bin/fpc.cgi/bugs/show?id=52
http://www.freepascal.org/cgi-bin/fpc.cgi/bugs/edit?id=53
http://www.freepascal.org/cgi-bin/fpc.cgi/bugs/delete?id=54

10

The first URL would invoke the bugs module, and invoke the browse action, which would
show a list of bugs. The second URL, would invoke the show action, which could show 1
record from the bugs, namely the bug with ID 52. The third URL would invoke the edit
action for record 52. This could either emit an edit form or apply edits. Lastly, the last
entry could delete ID 54.

The following section shows how to use this system in Lazarus, using a TFPWebModule.

7 Modules in Lazarus

In Lazarus, the support for web modules is split out in 2 modules. The first is TFPWebModule.
It publishes following properties:

Property Actions : TFPWebActions;
Property ActionVar : String;
Property BeforeRequest : TRequestEvent;
Property OnRequest : TWebActionEvent;
Property AfterResponse : TResponseEvent;
Property OnGetAction : TGetActionEvent;
Property Template : TFPTemplate;
Property OnGetParam : TGetParamEvent;
Property OnTemplateContent : TGetParamEvent;

These properties have the following meaning:

Actions This is the collection with the various actions for this module. The actions are of
type TFPWebAction.

ActionVar The content of this request variable will be used to determine which action
should be executed, if the URL does not specify an action. By default the value is
’Action’. This means that the following URL’s are equivalent, they will execute the
same action:

http://www.freepascal.org/cgi-bin/fpc.cgi/bugs/browse
http://www.freepascal.org/cgi-bin/fpc.cgi/bugs/?Action=browse

BeforeRequest This event is executed by the module before the request is handled.

AfterResponse This event is executed by the module after the request was handled.

OnGetAction This event can be set to influence the choice of the action: it should return
the name of an action to be executed.

Template This property specifies a template which will be parsed and used as the basis for
the output, replacing template variables as it goes along. If this property is specified,
then the actions are bypassed.

OnGetParam This event is executed when a template variable’s value needs to be re-
trieved.

OnTemplateContent This event is executed for the special template variable ’Content’.

The various actions in the Actions property of TFPWebModule are of type TFPWebAction,
a descendent of TFPCustomWebaction. They have the following additional properties:

11

Property Content : String;
Property Contents : TStrings;
Property OnRequest: TWebActionEvent;
Property Template : TFPTemplate;

The meaning of these properties is again quite simple:

Content Can be set to a string which will be sent back as the HTML page. Can be used
for instance for a ’See you again’ kind of page when someone e.g. logs out.

Contents same as Content, only as a stringlist.

Template same as Content or Contents, but this is treated as a template to be parsed.

OnRequest this event can be used to handle the request if this action is invoked.

To demonstrate all this, a simple CGI application can be created. To do this, in the ’File-
New’ dialog, the ’CGI application’ item can be used. A cgi project will be created, and a
FPWebModule will be created automatically, which will be renamed as TCookieModule.
In the ’OnRequest’ event handler of the TCookieModule, the following code can be
placed:

procedure TCookieModule.ShowCookies(Sender: TObject;
ARequest: TRequest; AResponse: TResponse; var Handled: Boolean);

Var
C : TCookie;

begin
With AResponse.Contents do

begin
Add(’<HTML><TITLE>Cookie test</TITLE><BODY>’);
Add(’<H1>Cookie test page</H1>’);
if (ARequest.Cookie=’’) then

begin
Add(’Your browser did not offer a cookie for this site.’);
Add(’A cookie named FPCWebCookie has been offered to your’
Add(’browser, please accept it.’);
C:=AResponse.Cookies.Add;
C.Name:=’FPCWebCookie’;
C.Value:=’FPCRulez’;
Add(’<P>After accepting the cookie, reload this page’);
end

else
begin
Add(’Your browser offered a cookie for this site:
’);
Add(’<PRE>’);
Add(ARequest.Cookie);
Add(’</PRE>’);
end;

Add(’</BODY></HTML>’)
end;

Handled:=True;
end;

12

The routine checks whether a cookie FPCWebCookie was offered by the browser. If
it was not, then a cookie with this name is added to the response. The code for this is
self-explanatory. If a cookie was offered, the content of the cookie is shown.

In the initialization code of the unit, the register call which was automatically inserted by
Lazarus, is changed to:

initialization
{$I wmcookie.lrs}
RegisterHTTPModule(’cookie’, TCookieModule);

end.

Placing this CGI application (named web.cgi) in a location where the webserver finds it,
e.g. the user’s html directory, the cookie module is executed with the following URL:

http://localhost/~michael/web.cgi/cookie

The first time this is executed, the browser will be offered a cookie. The second time, the
value of the cookie will be displayed.

To show the execution of an action, and the meaning of a default action, a new module is
created. Two actions are created: One is called ’info’, and it’s Default property is set to
’True’. The other is called ’info2’. The Actionvar property of the main module is set
to ’Do’. Both actions get their ’Contents’ property filled with some simple HTML code,
enough to distinguish which action was execution.

The following URL’s will execute the first (’info’) action:

http://localhost/~michael/web.cgi/tmainmodule/info
http://localhost/~michael/web.cgi/tmainmodule?do=info
http://localhost/~michael/web.cgi/tmainmodule

The first one is a URL which points straight to the first action. The second uses the
ActionVar property of the module. The last one uses the Defafult property of the
first module. To execute the second action, the following URLs can be used:

http://localhost/~michael/web.cgi/tmainmodule/info2
http://localhost/~michael/web.cgi/tmainmodule?do=info2

Obviously, the content produced here is not very exciting. The idea of the above it to
illustrate the ideas underpinning the modules and actions.

8 Conclusion

In this first article, the basics of the web support in FPC/Lazarus have been put forward.
This is just the surface of what is possible, and only the basics of the web system have
been shown : Further possibilities will be explained in subsequent articles: Sessions, use
of templates, use of HTML producing components. It should be noted that the web com-
ponents of FPC/Lazarus are a recent development, and are still under development. The
planning for the near future is to implement support for Apache modules and an embedded
HTTP server, allowing to write stand-alone webservers. After that, more elaborate support
for webservices and webapplications should be implemented.

13

	Introduction
	Functional Architecture
	Unit structure
	Request and Response
	The TCustomCGIApplication class
	Web modules and Web Actions
	Modules in Lazarus
	Conclusion

