Using the browser APIs from WebAssembly

Michaél Van Canneyt

May 4, 2024

Abstract

WebAssembly modules have no access to the world outside the webassem-
bly virtual machine, except through the APIs that are made available from
the host environment. The Browser has lots of APIs, and in this article we
show how to make use of all possible Browser APIs in webassembly. More-
over we will show that you can use these APIs as if you were programming
Javascript directly.

1 Introduction

The WebAssembly support of Free Pascal has been introduced in some previous ar-
ticles: Free Pascal can compile your pascal code to WebAssembly, and the resulting
webassembly file can be run in any hosting environment.

The most used hosting environment is still the browser. Still, many efforts are
underway to make webasssembly usable in dedicated containers: this offers the
possibility to create safe sandboxed environments for your programs.

Your programs will be safe and sandboxed, because a webassembly can only com-
municate with the world outside the webassembly through the APIs that are made
available by the hosting environment.

The webassembly standard does not specify what APIs a hosting environment needs
to expose, it only describes how these APIs can be exposed.

In order for a Free Pascal program to run, it requires the host environment to
expose the WASI API to the webassembly. This API is managed separately by the
WebAssembly committee, and offers some limited services: file access, getting the
time and so on. It provides just the calls that allow the FPC team to implement
the SysUtils unit, which provides these basic services to your pascal program.

Inversely, a webassembly module can export some functions, which can be called
from the hosting environment.

This situation is shown for the browser in figure [1| on page [2} the Javascript in
a web page can load a webassembly module. The webassembly module imports
some routines made available by the Javascript (the blue arrow), and exports some
functions which can be called from Javascript (the green arrow).

In the browser, calling a webassembly function suspends the javascript execution
flow: the Javascript waits for the called webassembly function to finish, before it
resumes execution. It also means no event handlers will be executed while the
Webassembly is executing.

Running a complete program in webassembly simply means calling the main func-
tion of the application, which must of course be exported from the webassembly; In
pascal this means the program begin..end block will be executed.

Figure 1: Import and export of functions from and to a webassembly module

Browser

Javascript

‘ Imports ‘

Exports

WebAssembly

2 The JOB framework

The browser has hundreds of APIs available in Javascript, these APIs are stan-
dardized and described in the form of interfaces. For a webassembly program run-
ning in the browser, it would be interesting to have access to the full browser
API: This would allow the Webassembly program to do everything that can be
done in Javascript, with the additional advantages that no-one can read the code,
and that for computationally intensive tasks, the webassembly executes faster than
Javascript.

Free Pascal now offers a way to access the APIs of the browser: The Javascript Ob-
ject Bridge or JOB for short. This development was sponsored by Tixeo, a company
interested in porting their software to the browser.

The JOB mechanism (or API) offers a way to create a proxy interface or class in
WebAssembly, for any Javascript API. This means that for every class available in
Javascript, you can create a class in WebAssembly that will have the same decla-
ration as its counterpart in Javascript.

Whenever you create an instance of a proxy class in WebAssembly, this will auto-
matically create its counterpart in Javascript. When you call a method or set a
property on the proxy class, this will call the method or set the property on the
Javascript counterpart of the proxy class. All this is transparent for the webassem-
bly programmer: to the webassembly, it is as if he is creating and using classes in
WebAssembly.

Schematically, this looks like figure [2] on page

JOB does the following things to make this possible:
e You can create a Javascript object, and get a reference to this new object.
e You can get a reference to an existing Javascript object.

e Using this reference, you can call the methods of the object or set its properties
as if you were manipulating a native Pascal object.

To illustrate this, in Javascript you can set the caption of a button as follows:

Figure 2: Webassembly proxy classes for Javascript classes

WebAssembly Javascript

TJSBrowser = Class(TProxy) Browser = Class(object)
function fetch{options) : TISPromise k1 I~ | function fetch(options) : Promise
property Document : TJSDocument; N JOB 1| document: Document;

end; end;

document .getElementById("mybutton") .innerText="Press me";
when using JOB, in your webassembly Pascal program you can write
document .getElementById(’mybutton’) .innerText:=’Press me’;

Which is of course a one-to-one translation of the Javascript code.

To understand what happens, let us analyse this code. First of all, the ’document’
variable is used. The document is exposed in the browser. using JOB, we can define
an interface and instantiate a variable:

Type
// The API we want to use.
IJSDocument = interface(IJSNode)
function getElementById(const aElementId: UnicodeString): IJSElement;
end;

// A class that implements this API.
TJSDocument = class(TJSNode)

function getElementById(const aElementId: UnicodeString): IJSElement;
end;

var
JSDocument : IJSDocument;

initialization
JSDocument : =TJSDocument . JOBCreateGlobal (’document’) ;
end.

The JOBCreateGlobal call will retrieve a reference to the document instance in
Javascript, and uses it to create an instance of the TJSDocument proxy for the
Document class.

The getElementById method is implemented as follows:

function TJSDocument.getElementById(const aElementId: UnicodeString): IJSElement;
begin
Result:=InvokeJSObjectResult (’getElementById’,

[aElementId],
TJSElement) as IJSElement;
end;

The InvokeJSObjectResult method call is part of the JOB API, and it executes
a method in Javascript: the name of the method to call must be specified, as well
as any arguments that the method needs.

Since the result will be an object, the Javascript side of JOB will return simply a
reference to the resulting object in Javascript (internally, this is an integer). To
convert this reference to an actual class instance, the class of the object is specified
(TJSElement): An instance of this class will be created, passing it the reference
returned by the Javascript side of JOB.

When the getElementById call returns, the result is a IJSElement interface. On
this result, the innerHTML property can be set. This is also handled by JOB:

All properties of a Javascript object can be represented by JOB as native pascal
properties:

Type
IJSElement = interface(IJSNode)
function _GetinnerHTML: UnicodeString;
procedure _SetinnerHTML(const aValue: UnicodeString) ;
property innerHTML: UnicodeString read _GetinnerHTML
write _SetinnerHTML;
end;

TJSElement = class(TJSNode)
function _GetinnerHTML: UnicodeString;
procedure _SetinnerHTML(const aValue: UnicodeString) ;
property innerHTML: UnicodeString read _GetinnerHTML
write _SetinnerHTML;
end;

The implementation of the Read/Write accessors is quite simple:

function TJSElement._GetinnerHTML: UnicodeString;
begin

Result:=ReadJSPropertyUnicodeString(’innerHTML’);
end;

procedure TJSElement._SetinnerHTML(const aValue : UnicodeString);
begin

WriteJSPropertyUnicodeString(’innerHTML’ ,aValue) ;
end;

The use of interfaces make sure that when an (intermediate) object is no longer
needed, the object also released on the Javascript side.

To make all this possible, on the Javascript side, the JOB API consists of (currently)
11 API methods. When these 11 methods are implemented, the webassembly can
use proxy classes to execute any method on any object in the browser. A default
Javascript implementation for JOB has been developed using Pas2JS (naturally),
but one could write this API in plain Javascript as well.

The JOB technology is implemented in 2 units:

Job.js for the webassembly program: it implements the various JOB calls that
handle encoding a call to the Javascript side of things, sends the call descrip-
tion to the Javascript environment and when the call returns, it retrieves the
result and converts it, if needed, to an object instance.

Job_Browser for the pas2 program. This implements the decoding of a call, exe-
cutes the call on the Javascript object, and when the call returns, it encodes
the result and sends it back to the WebAssembly.

There is a third (shared) unit which contains some common constants and types
that make up the JOB APL

3 WeblDL2pas revisited

In the above code examples, we showed how to access arbitrary methods and prop-
erties of some Javascript objects. The examples made use of an interface and a class
that implements this interface. It makes clear that for every method you wish to
call and for every property you wish to get or set, a small piece of 'glue’ code needs
to be created: a proxy object for every Javascript object.

If all classes and APIs of the browser must be encoded like this, this is a lot of work.

You could call the JOB methods directly, in that case no classes and no glue code
needs to be produced. The disadvantage of that approach is that there is no type
safety, and no code completion if you want to code in the IDE. You also will need
to manage the lifetime of the objects explicitly.

Luckily, there is no need to code all these proxy classes. This task can be automated.

All browser APIs are standardized by the W3C committees using a IDL (Interface
Definition Language) called WebIDL. All browser creators use these IDL files to
implement their Javascript APIs. The Mozilla foundation maintains these files,
they are available at:

https://hg.mozilla.org/mozilla-central/file/tip/dom/webidl
or on:
https://github.com/mozilla/gecko-dev.git

There are some really minor differences between these archives, most likely due to
the time it takes to synchronize. As you can see in these archives, there are more
than 700 files, representing all the APIs made available by the browser.

In a previous article on Pas2js, the webidl2pas tool that comes with Free Pascal and
pas2js was discussed. This tool can transform a .webidl file to a Pascal external
class definition that can be used by Pas2JS. The tool has been adapted so it can
now also create the proxy classes to access all the browser APIs from webassembly.

By downloading and concatenating all .webidl files from the above sources and
applying some small patches (the files are not perfect, and one or two constructs
are not possible in Pascal), a pascal unit can be produced that describes all these
APIs.

Such a file has been committed to the FPC git repository: job_web (the file is located
in packages/wasm-job/examples). The file is huge. The interface section contains
is about 80.000 lines long and contains roughly 1600 interface declarations, and a
similar amount of classes. This represents all the available browser APIs: by using

Figure 3: The various layers used in webassembly to use the browser APIS

Browser

Javascript & DOM

Job_browser

Imports

Job.js

WebAssembly

this file in your webassembly program, you have direct access to all possible browser
APIs.

Diagrammatic, the architecture of a web application wishing to use the Javascript
and DOM APIs using JOB looks like figure [3] on page [0}

4 A javascript camera application

To make all this a little more understandable, we’ll create an example: a web page
where we have a video element, connected to the camera, and a canvas where we
can create a picture (a still) of what the camera is showing. Basically, a camera
application as you would have it on your smartphone.

We will make this application first in Javascript, then in Pas2JS and lastly we’ll
make it using a webassembly program. We’ll show how the code is similar at each
stage.

The HTML for this webpage will be the same in all 3 cases. The actual program
will be in the camera. js javascript file:

<!doctype html>
<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">

<title>Video capture still - Javascript</title>

<link rel="stylesheet" href="css/bulma.min.css">

<link rel="stylesheet" href="css/camera.css">

<script src="camera.js" type="application/javascript"></script>
</head>

<

<
</h

As usual we use some Bulma CSS classes to format the page. There are 4 elements

whi

vid

body>
<div class="container">

<h1l class="title is-1">Capture still from video</h1>

<div class="columns">
<div class="camera column">

<video id="video">Video stream not available.</video>

</div>
<div class=" column">
<canvas id="canvas" ></canvas>
</div>a
</div>
<div class="box columns is-centered">
<div class="column is-3">

<button id="start" class="button is-info"></button>
<button id="still" class="button is-1link"></button>

</div>
</div>
</div>
/body>
tml>

ch are important, so they have an id attribute:

eo a video element, which will show the camera feed.

canvas a canvas element, which will show the still.

start a button to start the camera feed. When pressed, this will ask for permission
to use the camera. Note that this button does not show a caption, it will be

stil

The id attribute is used to get a reference to the elements when the page is loaded,

int

var
var
var
var
var
var

fun

set in code.

1 a button to create a still (photo) from the camera feed. Similarly, the caption

for the button will be set in code.

he camera. js javascript program:

video = null;
canvas = null;
context = null;
photo = null;
startbutton = null;
stillbutton null;

ction startup() {

video = document.getElementById(’video’);

canvas = document.getElementById(’canvas’);
context = canvas.getContext(’2d’);

startbutton = document.getElementById(’start’);
startbutton.innerText = ’Start video’;

startbutton.addEventListener(’click’, startvideo);

stillbutton = document.getElementById(’still’);

stillbutton.innerText = ’Create still’;
stillbutton.addEventListener(’click’, createstill);
}

window.addEventListener(’load’, startup);

Note how a reference to each of the 4 elements is stored in a variable. We also store
a context for the canvas, this context is used later to draw on the canvas.

The startvideo event handler is called when the user clicks the ’start’ button:

function startvideo(ev) {
navigator.mediaDevices.getUserMedia({
video: true,
audio: false
13)
.then(function(stream) {
video.srcObject = stream;
video.play();

19
.catch(function(err) {

console.log("An error occurred: " + err);
b;

}

The getUserMedia call will ask for permission to use the camera. This function
returns a promise, and when the promise resolves, the stream is coupled to the video
element.

Lastly, the click’ handler for the ’still’ button draws the current video frame on
the canvas:

function createstill(ev) {
canvas.width = video.clientWidth;
canvas.height = video.clientHeight;
context.drawImage(video, 0, 0, video.clientWidth, Video.clientHeight);

}

And that’s all there is to creating a camera program using the browser. You can
load this page from a webserver using the browser, or you can open it by double-
clicking the file in the file explorer: your default browser will open and show the
application. In both cases, the program will function.

5 The camera application in Pas2js

In a first step, we will code the camera application in pas2js. This will allow us to
transform the Javascript to pascal, without concerning ourselves with the details of
using webassembly.

The first thing to do is to add the mandatory script tag for running a pas2js appli-
cation to the HTML:

<script>
window.addEventListener(’load’, rtl.run);
</script>

Then we translate our program piece by piece. We will put all code in a class, it
will become apparent in the next example why this is necessary.

TCameraApp = class
video : TJSHTMLVideoElement;
canvas : TJSHTMLCanvasElement;
context : TJSCanvasRenderingContext2D;
startbutton : TJSHTMLElement;
stillbutton : TJSHTMLElement;
function StartStream(JS : JSValue) : JSValue;
function DoError(JS : JSValue) : JSValue;
Procedure StartVideo(Event: TJSEvent) ;
Procedure CreateStill(Event: TJSEvent);
procedure Run;

end;

This class declares the same variables and functions as our Javascript code. The
main difference is of course that Pascal is a strongly typed language, and we must
specify the types of all variables, method arguments and function results.

The main program simply creates an instance of this class and calls the Run method:

With TCameraApp.Create do
Run;

The run method looks suspiciously familiar:
Procedure TCameraApp.Run;

begin
video:=TJSHTMLVideoElement (document.getElementById(’video’));
canvas:=TJSHTMLCanvasElement (document . getElementById(’canvas’));
context:=TJSCanvasRenderingContext2D (canvas.getContext(°2d’));

startbutton:=TJSHTMLElement (document.getElementById(’start’));
startbutton.innerText:=’Start video’;
startbutton.addEventListener (’click’, @startvideo);

stillbutton:=TJSHTMLElement (document.getElementById(’still’));
stillbutton.innerText:=’Create still’;
stillbutton.addEventListener(’click’, Q@createstill);

end;

As you can see, this method is an almost copy-and-paste of the main javascript
method. The biggest difference is the typecasts, which are of course needed to keep
the Pascal compiler happy.

The StartVideo callback is slightly different. Pas2js’ Web unit contains a typed
defintion of the constraints argument to the getUserMedia call. Using an instance
of this class allows us to make sure that the correct elements are specified. We also
don’t use anonymous methods (although this would be possible), but use named
functions to handle the various possible outcomes of the promise:

Procedure TCameraApp.StartVideo(Event: TJSEvent);

var
constraints : TJSMediaConstraints;

begin
constraints:=TJSMediaConstraints.new;
constraints.video:=True;
constraints.audio:=False;
Window.navigator.mediaDevices.getUserMedia(constraints)
._then(@StartStream)
.catch(@DoError)
end;

The StartStream method is executed when the promise resolves correctly. The
promise resolved result (JS) must be typecast to the correct class before we can
assign it to the srcObject property of the video element:

function TCameraApp.StartStream(JS : JSValue) : JSValue;
begin
Result:=Undefined;
video.srcObject:=TJSHTMLMediaStream(JS);
video.play(Q);
end;

Other than that, the code is identical to the Javascript implementation. The same
is true for the DoError method:

function TCameraApp.DoError(JS : JSValue) : JSValue;

begin

Result:=Undefined;

console.log(’An error occurred: ’ + String(JS));
end;

Lastly, the >click’ event handler of the still button is again almost a copy and
paste of the corresponding Javascript code.

Procedure TCameraApp.CreateStill(Event: TJSEvent) ;

begin

canvas.width:=video.clientWidth;

canvas.height:=video.clientHeight;

context.drawImage(video, 0, O, video.clientWidth, video.clientHeight);
end;

And with this the demo application is translated to pascal.

The workings of this application are no different from the pure Javascript version,
and the Pascal code is - disregarding its Pascal nature - the same as the Javascript
code.

6 The camera application in WebAssembly

Lastly, we come to the part that is the focus of this article: the webassembly
program.

10

To make this application using webassembly, we need to create actually 2 applica-
tions: the webassembly loader program, and the webassembly program itself.

The former is a small boilerplate application, created with pas2js. It is a generic
program that can be used to load any webassembly program that uses JOB to
communicate with the browser APIs.

The webassembly program is actually a library: in the initialization, the necessary
callbacks are set up and then it needs to return control to the browser in order for
the Javascript event loop to be run.

The program logic is implemented in TMyApplication. This class is a descendant
of TBrowserWASIHostApplication.

The TBrowserWASIHostApplication class, in turn, is a TCustomApplication de-
scendant which allows you to start a WebAssembly module written in Free Pascal:
it has been introduced in an earlier article on FPC Webassembly support.

The class needs very little methods: a constructor, the DoRun method, and an
OnBeforeStart method.

Note the JOB_Browser unit in the uses clause: this unit contains the TJSObjectBridge
class, which is the implementation of the JOB mechanism:

program camera;
{$mode objfpc}

uses
JS, Classes, SysUtils, Web, WasiEnv, WasiHostApp, JOB_Browser, JOB_Shared;

Type

TMyApplication = class(TBrowserWASIHostApplication)
Private

FJOB: TJSObjectBridge;

function OnBeforeStart(Sender: TObject;

aDescriptor: TWebAssemblyStartDescriptor): Boolean;

Public

constructor Create(aOwner : TComponent); override;

procedure DoRun; override;
end;

The TJSObjectBridge is the class that registers the needed JOB functions in the
webassembly. Under normal circumstances, only 1 property of this class needs to
be set in order for it to do its work: the WasiExports property. Other than that it
performs its work completely in the background.

So, we create an instance of TJSObjectBridge, pass it the WasiEnvironment so
it can register itself with the Webassembly modules that are loaded later on, and
store a reference to it in FJOB:

constructor TMyApplication.Create(aOwner: TComponent) ;

begin
inherited Create(alOwner);
FJOB:=TJSObjectBridge.Create(WasiEnvironment) ;
RunEntryFunction:=’_initialize’;

end;

11

The last line in this function sets RunEntryFunction to _initialize. This must
be done because our webassembly module is a library:

The default run entry point (used for programs) is _start. For a library, only
the initialization of the library must be performed, and the exported function that
handles this initialization is called _initialize.

In the DoRun method, we simply call StartWebAssembly, passing it the name of the
created webassembly function

procedure TMyApplication.DoRun;

var
wasm : String;

begin
Terminate;
// Allow to load file specified in hash: index.html#mywasmfile.wasm
Wasm:=ParamStr (1) ;
if Wasm=’’ then
Wasm:=’wasmcamera.wasm’;
StartWebAssembly (Wasm, true,@nBeforeStart) ;
end;

The ParamStr (1) retrieves the first name after the hash sign in the URL. If set,
then it is interpreted as the name of the webassembly file to load. If not set, we use
'wasmcamera.wasm’ as the name.

The StartWebAssembly function will load the requested webassembly and executes
the run entry function. (in our case, _initialize). The last parameter is an event
which is executed right before calling the run entry function: this allows the caller
to do extra initialization after the webassembly module was loaded, but before the
start function is called.

The event handler sets the WasiExports property of the TISObjectBridge instance
to the list of exported functions from the webassembly:

function TMyApplication.OnBeforeStart(Sender: TObject;
aDescriptor: TWebAssemblyStartDescriptor): Boolean;

begin
FJOB.WasiExports:=aDescriptor.Exported;
Result:=true;

end;

The JOB framework needs a single exported function which it uses to call callback
functions (event handlers) in webassembly. It searches this function in the list in
WasiExports.

All that is left to do is to create and initialize an instance of our application class
and call the Run method, the usual code needed when using the application class:

var
Application : TMyApplication;

begin

Application:=TMyApplication.Create(nil);
Application.Initialize;

12

Application.Run;
end.

With this, the loader for our webassembly module is finished. Note that there is no
code specific to our camera application: this is completely generic code that can be
used to load any webassembly module which needs the JOB framework.

So now we turn to the code for our webassembly module, which is implemented as
a library. It starts out in the usual way:

library wasmcamera;

{$mode objfpc}
{$h+}
{$codepage UTF8}

uses
SysUtils, Variants, Job.Js, JOB_Web;

Note that it uses the Job.Js unit with the implementation of the webassembly
side of the JOB mechanism, and the JOB_WEB unit, which was generated by the
webidl2pas tool. Then it defines the TCameraApp class:

type

TCameraApp = class
Video: IJSHTMLVideoElement;
Canvas: IJSHTMLCanvasElement;
StartButton: IJSHTMLButtonElement;
StillButton: IJSHTMLButtonElement;
Context: IJSCanvasRenderingContext2D;
function StartStream(const Res : Variant) : Variant;
function DoError(const Res : Variant) : Variant;
procedure StartVideo(Event: IJSEvent);
procedure CreateStill(Event: IJSEvent);
procedure Run;

end;

As you can see, this class is virtually identical to the class for the Pas2js program.
The only thing that changes are some types: Instead of classes (using prefix TJS)
we use interfaces (using prefix IJS). The pas2js JSValue is replaced with Variant:
both correspond to the any type in the IDL descriptions of the APIs.

The Run method, which actually will initialize our application, is almost a copy of
the pas2js code:

procedure TCameraApp.Run;

begin
Video:=TJSHTMLVideoElement.Cast (JSDocument .getElementById(’video’));
Canvas:=TJSHTMLCanvasElement.Cast (JSDocument.getElementById(’canvas’));
Context:=TJSCanvasRenderingContext2D.Cast (Canvas.getContext(’2d’));

StartButton:=TJSHTMLButtonElement.Cast (JSDocument.getElementById(’start’));

StartButton.InnerHTML:=’Start video’;
StartButton.addEventListener(’click’, @StartVideo);

13

StillButton:=TJSHTMLButtonElement.Cast (JSDocument.getElementById(’still’));
StillButton.InnerHTML:=’Create still’;
StillButton.addEventListener(’click’, @CreateStill);

end;

Note the calls to the Cast class method in order to do a typecast from one interface
type (in this case IJSElement) to another interface type.

This is needed in order to be able to do some reference count housekeeping. A
regular typecast would result in wrong reference counts and could lead to objects
being destroyed in Javascript when they’re still used in the webassembly.

Other than that, the code is identical to the pas2js code or the Javascript code: no
trickery is needed to set the callbacks, a real pascal event handler can be used.

It should be noted that all event handlers are declared with ’of object’, meaning
that only methods of classes can be used as callback handlers, plain routines cannot
be used.

The StartVideo callback handler also looks surpisingly familiar:
Procedure TCameraApp.StartVideo(Event: IJSEvent);

var
constraints : TJSMediaStreamConstraints;

begin
constraints:=TJSMediaStreamConstraints.Create;
constraints.video:=True;
constraints.audio:=False;
JSWindow.navigator.mediaDevices.getUserMedia(Constraints)
._then(@StartStream)
.catch(@DoError)
end;

Except for a constructor that is named Create, as opposed to the customary New
in pas2js, the code is identical.

The getUserMedia returns a promise, and when this is resolved StartStream is
called, which is again a copy of the pas2js method:

function TCameraApp.StartStream(const Res : Variant) : Variant;

var
Stream : IJSMediaStream;

begin
Stream:=IJSMediaStream(Res) ;
Video.srcObject := Stream;
Video.play(Q);

end;

In case of an error, doError is called. Again, no change in code:
function TCameraApp.DoError(const Res : Variant) : Variant;

begin

14

Figure 4: The webassembly camera program at work

Video capture still - Javascript — Mozilla Firefox
Fle Edit View History Bookmarks Tools Tabssharing devices Help

Video capture still - Javascript X |+

< C @ 0 O D0 =20 localhost:3000 G %% Qsearch L OB & T T O # r &5 3 » =

Capture still from video

‘Start video Create still

writeln(’Error accessing the webcam: ’+string(Res));
end;

The code for the CreateStill method, is also unchanged:
procedure TCameraApp.CreateStill(Event: IJSEvent);

begin
Canvas.width:=Video.clientWidth;
Canvas.height:=Video.clientHeight;
Context.drawImage(Video,0,0,Video.ClientWidth,Video.ClientHeight) ;
end;

All that is left to do is to export a callback function which the JOB framework
needs (JOBCallBack, implemented in the Job.Js unit), and to create an instance of
our camera application class:

exports
JOBCallback;

begin
With TCameraApp.Create do
Run;
end.

For all practical purposes, the webassembly program can be coded as the javascript
version or Pas2js version would be coded.

The result of all this work is shown in figure [f] on page [T5]

15

7 Using custom objects

JOB is used to give access to all the browser APIs. However, is it also possible to use
custom objects created in Pas2js or any other Javascript API from any Javascript
framework? The answer is ’Yes, of course’. You can perfectly code a webassembly
proxy for a Pas2js pascal class or a Javascript class. If a .webidl exists for the
Javascript class, the proxy code could be generated by the webidl2pas tool.

Javascript classes have a function that serves as the constructor. If this is a globally
registered function, the JOB framework will find the function: it looks for the
constructor function in the global (window) scope. All that is needed is to declare
the name of this function in the webassembly proxy class.

For Pas2js classes, you can specify a constructing function in the host environment.
Given the following class implemented in Pas2js:

TMyObject = Class(TObject)
private
fa: String; external name ’a’;
public
Constructor Create(aValue : string);
Property a : String Read fa write fa;
end;

constructor TMyObject.Create(aValue: string);
begin

fa:=aValue;
end;

You can create a constructor function to create a Javascript instance of this func-
tion. The constructor function accepts the name of the requested object, and the
parameters for the constructor which are provided in an array of JSValue (variants,
for all practical purposes).

In the host application presented earlier, this would mean adding a method as
follows:

function TMyApplication.CreateMyObject(const aName: String;
aArgs: TJSValueDynArray): TObject;
begin
Result:=TMyObject.Create(String(aArgs[0]));
end;

Note that because the aName parameter contains the requested class name, you can
use a single constructor function to construct many classes.

Registering the constructor function with the JOB framework is done using the
RegisterObjectFactory call of the TISObjectBridge class:

FJOB.RegisterObjectFactory(’MyObject’,0CreateMyObject) ;

You can do this call right after creating the TISObjectBridge class.

If some Javascript class does not register itself in the global scope, then the JOB
implementation will not find it without help. You can register a function that
creates a regular Javascript object in a similar manner as for a Pascal class:

function TMyApplication.CreateBrowserObject(const aName: String;

16

aArgs: TJSValueDynArray): TJSObject;
begin
Result:=TJSObject.New;
Result[’Aloha’] :=String(aArgs[0]);
end;

In the above example, a plain Javascript 'Object’ instance is created, but in fact
any Javascript object can be returned. This constructor function must also be
registered with the RegisterJSObjectFactory call:

FJOB.RegisterJSObjectFactory(’MyBrowserObject’,@CreateBrowserObject) ;

The reason that 2 different calls are needed is that from an Object Pascal point of
view, the Javascript TISObject inheritance tree is distinct from the Object Pascal
TObject inheritance tree.

After these calls, when the webassembly part of JOB needs to create an instance
of MyObject or a MyBrowserObject, the correct registered function will be called
to create an instance. The necessary housekeeping will be done as it is done for
Browser-provided objects: associate an ID with the object, and return that ID to
the webassembly.

The webassembly proxy interface and class for the TMyObject class look as follows:

IJSTestObj = Interface (IJSObject)
[’ {DEO3E9A4-3960-4090-A3FA-387B61ESAEA9}]
function GetStringAttr : UnicodeString;
procedure SetStringAttr(const aValue : UnicodeString);
property StringAttr : Unicodestring Read GetStringAttr
Write SetStringAttr;
end;

TMyTestObj = Class(TJSObject,IJSTestObj)
constructor Create(a: String);
class function JSClassName: UnicodeString; override;
function GetStringAttr : UnicodeString;
procedure SetStringAttr(const aValue : UnicodeString) ;
property StringAttr : Unicodestring Read GetStringAttr
Write SetStringAttr;
end;

The implementation of the proxy class is simple. The JOBCreate method of TJSObject
can be used to construct a new object. In order to do its work, it needs to know
the class name of the Javascript class. It expects the JSClassName class function
to return the correct class name, so we override that function and let it return the
name we used to register our constructor function:

class function TMyTestObj.JSClassName: UnicodeString;
begin

Result:=’MyObject’;
end;

constructor TMyTestObj.Create(a: String);
begin

Inherited JobCreate([a]);
end;

17

The JOBCreate method accepts parameters as an array of const, which are encoded
and sent to the browser side.

The implementation of the property getters and setters are simple:

function TMyTestObj.GetStringAttr: UnicodeString;
begin

Result:=ReadJSPropertyUnicodeString(’a’) ;
end;

procedure TMyTestObj.SetStringAttr(const aValue: UnicodeString);
begin

WriteJSPropertyUnicodeString(’a’,aValue);
end;

Similarly named ReadJSProperty* and WriteJSProperty* calls exist for all simple
Pascal types, you must choose the function that corresponds to the type of the
property in your Javascript class.

Note that the name of the field is given as ’a’: this is the Javascript name of the
field in the Pascal class: it was forced to ’a’ using the external name ’a’ modifier
in the class declaration. Without this modifier, >fa’ would need to be used.

If a property must be set using a setter/getter, then you must adapt the proxy code
accordingly, of course: you must then code a call to the getter and setter.

The class is now ready for use in your webassembly program:

var
T : IJSTestObj;

begin
Writeln(’Creating TMyTestObj object’);
T:=TMyTest0bj.Create(’solo’);
Writeln(’Property : ’,T.StringAttr);
end;

The expected output is of course ’solo’ for the property value.

The source code that demonstrates this is included in the pas2js suite of demos,
under the demo/wasienv/job/simple directory.

8 Conclusion

With the JOB technology, it is now possible to use all browser APIs in a webassem-
bly program without having to resort to lots of import/export routines: a list of 11
functions is sufficient to create and use every possible browser object. To the best
of the author’s knowledge, currently the only other compiled language — compilable
to WebAssembly — that offers this possibility is Rust.

As indicated above, the job_web unit is large. This is somewhat of a disadvantage:
the compiler takes a lot of time compiling this unit, well over 1 minute. The reason
is the use of interfaces, which result in a lot of hidden code to call methods on an
interface, and the resulting unit is well over 66Mb. While the linker removes all
unused code and your program will contain only the needed code, the unit must be
compiled (luckily only once) and this takes time.

18

For this reason, an extension of the webidl2pas program is envisioned: by passing
it a list of classes that are actually needed, it can determine which types are needed
(including of course all implicit types), and can then proceed to create code for only
these needed types. By passing it the HTMLVideoElement and HTMLCanvasElement
as needed classes, it would then create only the classes that are actually needed to
create our program.

But in the meantime, the job_web unit can be used to create webassembly programs
that have all the advantages of native code, but which can additionally create
stunning user interfaces using the browser APIs.

19

	Introduction
	The JOB framework
	WebIDL2pas revisited
	A javascript camera application
	The camera application in Pas2js
	The camera application in WebAssembly
	Using custom objects
	Conclusion

