
Unit testing - test driven development.

Michaël Van Canneyt

May 25, 2014

Abstract
Testing new code is a natural thing, done by every programmer. Testing code in

a structured manner is also frequently found. Test driven development is taking struc-
tured testing to the extreme: An introduction to one of the possibilities for an Object
Pascal programmer: DUnit.

1 Introduction

As a software engineer, it is (hopefully) natural to test your code before shipping your
software. There are many ways to test code. Manually, through some test program, or
using a test framework. Test-Driven Development (TDD) takes this last approach even one
step further: the test code is written parallel with (or even before) the actual code to be
tested.

The use of test frameworks became well-established starting with the junit test framework
for Java: Extremely simple in its design, it is nevertheless very powerful.

Creating unit tests in a test framework offers several advantages:

• The output of the tests is uniform.

• The tests themselves are written largely in the same manner. Test code written in a
test framework is recognisable for any programmer familiar with the framework.

• It is easily automated.

The fact that the output is uniform makes it suitable for storing. Using some automation, it
is then possible to do automated regression testing, and it becomes doable to do continuous
delivery.

Unit testing does not mean testing a “unit” in the Delphi sense. The “unit” in “unit testing”
is a single unit of functionality: this can be a method, a procedure or function, but can also
be a class or a Delphi unit. Which of these possibilities is chosen depends on the tester.

Dunit is a test framework resembling the junit testing framework, it is shipped with at least
Delphi XE and higher. DUnit2 is another test framework for Delphi. DUnit2 can work with
Free Pascal and Lazarus. The latter ship with fpcunit, which is to a large degree compatible
to DUnit.

In this article the use of DUnit, as distributed with Delphi, is demonstrated and explained.

2 What to test

Normally, unit tests test a single unit of functionality: the test checks whether the function-
ality behaves as expected, i.e. obeys the ’API contract’. This usually means constructing

1

several kinds of input for an algorithm , and checking whether the output is what is ex-
pected. Here input can take various forms: for a function this may be a combination of
arguments. It can also be a complete XML or JSON document to be processed by a com-
ponent, and so on.

Typically, all functions in a unit or all public methods of a class will be tested.

Testing also includes checking for error conditions, for example: checking that taking the
square root of a negative number results in an error; or checking how a routine that expects
XML behaves in case it gets JSON as input. Checking for errors becomes doubly necessary
if the API specifies a series of error codes: in that case the testsuite should check that the
proper error code is returned.

Some people take test-driven development to the extreme by first developing the test code,
watching it fail, and then implement the actual code till it the tests succeed. The usefullness
of way of working is debatable: the interface (contract) may not yet be known in advance;
it also supposes that the test code is written correctly. Also, a test may fail because the test
code is written wrongly...

Although unit testing of a GUI is possible, it is somewhat awkward; it is difficult to simu-
late all possible actions of a user. It is also difficult to integrate in an automated build sys-
tem, which is why unit testing is usually reserved for business logic code - which should
normally be separate from GUI logic, a requirement that requires some discipline when
working in a RAD environment such as Delphi.

3 Getting started

To demonstrate how DUnit works, a new fictitious component (TMyComponent) is cre-
ated in a new unit (mycomponent), in a new package (newpackage). The package is
in a project group. Part of the component code has been written, and now it is time to test
the implementation. So, “Add new project” is chosen, and under “Unit test” the entry ’Test
Project’ (figure 1 on page 3)is chosen.

Upon choosing this, the new test project dialog in figure 2 on page 3 is shown. The dialog
is self-explaining. The first option ’Source Project’ specifies the project to be tested. This
option is important, it because it determines what the other dialog in the dunit package will
show when invoked.

The next part of the dialog asks whether the test application should be a GUI or a command-
line application. This setting can be changed later at any time. The command-line applica-
tion is suitable e.g. for integration in a build process or nightly regression testing.

Once the wizard is completed, a new project has been added to the project group. Let’s
look at the project source:

program mypackageTests;

{$IFDEF CONSOLE_TESTRUNNER}
{$APPTYPE CONSOLE}
{$ENDIF}

uses
DUnitTestRunner;

{$R *.RES}

begin

2

Figure 1: Starting a new test project

Figure 2: The test project wizard

3

Figure 3: The new test unit wizard

DUnitTestRunner.RunRegisteredTests;
end.

The call to ’RunRegisteredTests’ reveals that there must be tests registered somewhere:
DUnit works with a registry (a list, or actually a tree) of tests.

When the application is run, first all tests must be registered with the test framework. When
this is done, the test framework will then run the tests one by one, and collect the test results.

Registering a test with the test framework is normally done in the initialization section of
the unit that implements the test, although this is not a requirement. All that is needed is
that the test is registered before RunRegisteredTests is called.

After creating the test project, no tests of test code exist yet. To add test code, a new unit
must be created: From the “File-New-Other” dialog, under “Unit test”, the “Test Case”
item must be chosen. This will pop up the ’Test case wizard’ dialog.

This dialog will present a list of all the units found in the “source project” that was specified
when the test project was started. When selecting a unit, a list of classes, with their methods
is presented, as seen in figure 3 on page 4.

Placing a checkmark in front of all methods that must be tested will create an empty test-
method for that method. (the .ctor stands for the constructor of the class). When the
dialog is done, the wizard generates a new unit with a skeleton test case class declaration.
For the case of the TMyComponent, this results in the following class:

TestTMyComponent = class(TTestCase)
strict private

FMyComponent: TMyComponent;
public

procedure SetUp; override;
procedure TearDown; override;

published
procedure TestDoSomethingProtected;

4

procedure Test.ctor;
end;

DUnit Test cases are organized in test classes, which descend from TTestCase. All
published procedures are considered tests: the test framework will instantiate the test class
at one time or another, and will then call the various published procedures one by one, in
the order that they are declared. These procedures cannot have arguments, and should not
be functions (i.e. they can not return a result).

At the end of the unit, the following code can be found:

initialization
RegisterTest(TestTMyComponent.Suite);

This code registers the test class as a test suite in the DUnit test registry. This registration
can be moved to a central routine, or changed in any other way, as long as the test is reg-
istered before the call to RunRegisteredTests. The registration is done as a testsuite
using the standard Suite method of the TTestCase class, because the class contains
actually multiple tests: one per published method, and hence the class forms a testsuite in
itself.

Several things can be noted about the code created by the wizard.

1. It declares a field of the type TMyComponent, the class that will be tested.

2. It declares 2 standard methods: SetUp and TearDown. These methods are called
before and after each test. They are used to instantiate the TMyComponent instance.

3. It declares a published procedure TestNNN for each method that was selected in the
wizard.

4. The generated code will not compile: Test.ctor is not a valid method name.

5. No regular functions or procedures (functions/procedures that are not methods) can
be selected to generate a test case for.

6. Properties cannot be selected either.

7. It allows you to select protected methods, but these are obviously not directly callable
from a testcase.

The wizard generates skeleton code, this means it may require some clean-up before it is
compilable, depending on the options that were chosen in the dialog.

The generated Setup and Teardown methods look as follows:

procedure TestTMyComponent.SetUp;
begin

FMyComponent := TMyComponent.Create;
end;

procedure TestTMyComponent.TearDown;
begin

FMyComponent.Free;
FMyComponent := nil;

end;

5

The above will not compile, because the TComponent constructor requires an Owner
argument. This is easily corrected. But the code gives a clue as to the meaning of these
methods:

• Setup is called before each test method, and should set up initial conditions for the
test. All tests will test some functionality of TMyComponent, so it is logical that
Setup sets up an instance of the component.

• Similarly, TearDown will clean up after the test: it frees the component from mem-
ory.

An important aspect of unit testing is that each test must be isolated: it should start with a
clean slate. It should not be influenced by the results of other tests, nor should a test require
another test to be run first. That is why the Setup and Teardown methods should always
result in a clean, new, situation for each test.

The constructor or destructor of the testcase class itself must not be used to set up the initial
situation: a test framework is free to choose whether it will instantiate the test class once
for each test method, or once for all test methods. The only guaranteed thing is that the
Setup and Teardown methods are called before and after the test, respectively.

4 Implementing test code

Now that the testcase class is implemented, it is time to write actual test code. The .ctor
test generated by the wizard is renamed to TestConstructor, and filled with the fol-
lowing code:

procedure TestTMyComponent.TestConstructor;
begin

CheckNotNull(FMyComponent.MyStrings,
’Strings property correctly initialized’);

CheckEquals(0,FMyComponent.MyStrings.Count,’Strings empty.’);
end;

This code speaks almost for itself. The first line checks that the MyStrings property
of TMyComponent is initialized with a TStrings instance. The second line checks
that the number of strings in the list is zero. The CheckNotNull and CheckEquals
methods are part of TAbstractTest, an ancestor of TTestCase. They are declared as
follows:

procedure CheckNotNull(obj: TObject; msg: string = ’’);
procedure CheckEquals(expected, actual: integer; msg: string = ’’);

Both methods will test (check) a condition: In the case of CheckNotNull this means
checking that Obj is not equal to Nil, and for CheckEquals it means verifying that the
actual value is equal to the expected value. Both methods will raise an ETestFailure
exception if the condition is not met; The failure error message can be specified as the last
option.

Overloaded versions CheckEquals exists for almost all basic pascal types, just as a
CheckNotEquals method exists to verify that 2 values are not equal. And similarly to
CheckNotNull, a CheckNullmethod exists. To compare object or interface instances,
instead of CheckEquals, CheckSame should be used:

6

procedure CheckSame(expected, actual: IUnknown; msg: string = ’’);
procedure CheckSame(expected, actual: TObject; msg: string = ’’);

Checking whether an instance is of a certain class can be done easily with:

procedure CheckIs(AObject: TObject; AClass: TClass; msg: string = ’’);

Some more check methods exist, but the above is the bulk of the methods that will be used
in testing code.

Since these testing methods raise an exception, this means that the test method will stop at
the first error: One one hand, this is logical since the rest of the method may rely on the
fact that the check passed. In the case of the above method, test line line 2 would result in
an access violation if the check in the first line didn’t raise an exception.

Is the above a useful test, since clearly the component will never function if it is not cor-
rectly initialized? This is a matter of opinion, and depends how far one wishes to go in
testing. There is one case when testing the constructor is definitely useful: if default values
are specified for published properties, it may be a good idea to check that the constructor
actually sets the value as declared in the property.

Ultimately, all Check methods call the Fail method to raise the ETestFailure er-
ror message. This method is also available in case a test requires a more elaborate test
condition, which is not easily expressed as an (in)equality.

procedure TestTMyComponent.TestSomethingDifficult;
begin

If Not SomeVeryDiffcultTestCondition then
Fail(’This test failed, condition not met’);

// More test code here.
end;

5 Running the tests

To give some more body to the tests, a public Clear method is added to the component,
which is supposed to clear the strings, and do some other clearing as well. An additional
test is written for this method:

procedure TestTMyComponent.TestClear;
begin

FMyComponent.MyStrings.Add(’a string’);
FMyComponent.Clear;
CheckEquals(0,FMyComponent.MyStrings.Count,’Strings empty after Clear.’);

end;

Now 2 test methods exist, at least one of which actually tests behaviour, and the test pro-
gram can be run.

The test runner program shows all available tests in a tree-like structure, each test can be
individually selected or deselected: the toolbar contains buttons to select/deselect all tests
or just the selected test or testsuite. It also contains a button to select all failed tests - more
about this later.

Running the tests using the ’Run Selected Tests’ button results in a screen as shown in
figure 4 on page 8. The first progress bars will indicate how many tests have been run, and

7

Figure 4: Running the test program

the second indicates the success/failure rate. The small grid below the progress bars shows
a small statistic, and the grid below that one shows failure or error messages.

The test run shows a score of zero: the first test failed, and the second resulted in an error.

There are 3 possible outcomes for a test:

Success The test completed successfully.

Failed The test failed: a condition was not met, and a ETestFailure exception was
raised.

Error An error occurred during execution of the test. This is not the same as a test failure:
any exception (different from ETestFailure) that occurs during execution of the
test is reported as an error.

Clicking on a test or an error in the grid with failures and errors, will show some more
detail about the failure in the bottom area of the test screen.

That the second test gives an error is normal: it relies on the fact that the MyStrings
property is properly initialized. The result of the TestConstructor test shows that it
is not properly initialized. The solution is to adapt the constructor of the component:

constructor TMyComponent.Create(AOwner: TComponent);
begin

inherited;
FMyStrings:=TStringList.Create;

end;

Running the test program again will now show (figure 5 on page 9) that the first test
succeeds, and the second fails. Before fixing this, it is a good idea to push the ’Select failed

8

Figure 5: Running the test program again

tests’ button. This will deselect all succeeded tests, leaving only failed tests selected.

The selection of tests is saved across runs of the test program. This means that at the
next run of the test program, only the failed test will be selected. When the ’Run selected
tests’ button is pressed, only tests that previously failed will be run. In some cases this can
drastically reduce the test run time.

6 Testing for exceptions

Handling of error conditions form part of the contract (API) of a component. Thus, they
must also be tested. Assume the TMyComponent call has a SetCapacity call that
accepts only even arguments. This can be coded as follows:

procedure TMyComponent.SetCapacity(const ACapacity: Integer);
begin

If (ACapacity mod 2)<>0 then
Raise EMyException.CreateFmt(’Capacity %d must be even.’,[ACapacity]);

FCurrentCapacity:=ACapacity;
end;

To test this, the following code can be used:

procedure TestTMyComponent.TestSetCapacity;

Var
EC : TClass;

9

begin
// This should work
FMyComponent.SetCapacity(100);
CheckEquals(100,FMyComponent.CurrentCapacity,

’100 is ok’);
EC:=Nil;
Try

// This should not work.
FMyComponent.SetCapacity(99);

except
On E : Exception do

EC:=E.ClassType;
End;
If EC=Nil then

Fail(’Expected EMyException, but no exception was raised’);
CheckEquals(EMyException,EC,

’Exception was raised, but of wrong class.’);
end;

This becomes awkward to write if a lot of errors must be tested. Fortunately, the same can
be achieved with the CheckException method;

procedure TestTMyComponent.SetOddCapacity;

begin
FMyComponent.SetCapacity(99);

end;

procedure TestTMyComponent.TestSetCapacity2;

begin
FMyComponent.SetCapacity(100);
CheckEquals(100,FMyComponent.CurrentCapacity,’100 is ok’);
CheckException(SetOddCapacity,EMyException,

’setting odd capacity results in exception’);
end;

The CheckException method expects a routine that must throw an exception, and the
class of this exception. Optionally, an error message may be specified. The routine will be
run, and the test will fail in 2 cases:

1. if no exception was raised.

2. when the exception class differs from the expected exception class.

In this case, the routine to run is a method of the test class. This need not be so: a method of
the component that is tested can also be called directly, provided it has the correct signature.

7 Testsuites

Each TTestCase class is a testsuite in itself. When registered, it appears as a top-level
node in the test tree, with all the published methods as leaf nodes below the top-level node.

10

But what if you want to add more structure to the test tree ? For instance, for a database
application, you may want to separate the tests that require database access from the tests
that do not need database access, and create 2 trees.

This means that for instance you can run the tests that do not require database access with-
out connecting to the database.

There are several ways to do this. Imagine a test case

TTestMyDBComponent = Class(TTestCase)
published

procedure TestRead;
procedure TestCreate;
procedure TestUpdate;
procedure TestDelete;

end;

Then this can be registered in a database testsuite as follows:

initialization
RegisterTest(’Database tests’,TTestMyDBComponent.Suite);

This will create a testsuite called ’Database Tests’ if it doesn’t exist yet, and will register the
TTestMyDBComponent testcase in that testsuite. A hierarachy of suites can be created
by putting dots in the test name:

initialization
RegisterTest(’Database.Local’,TTestMyLocalDBComponent.Suite);
RegisterTest(’Database.Remote’,TTestMyRemoteDBComponent.Suite);

This will create a test suite called ’Database’, with 2 sub-suites below it: ’Local’ and
’Remote’. Instead of the dot (.) character, a slash or backslash character can also be used
to separate the various levels.

An alternative is to create the testsuite manually:

Var
DBTestSuite : TTestSuite;

initialization
DBTestSuite:=TTestSuite.Create(’Database tests’);
DBTestSuite.AddTest(TTestMyDBComponent.Suite);
RegisterTest(DBTestSuite);

Using the manual way, quite complex test trees can be established. There is a shorthand for
this construction:

Var
DBTestSuite : TTestSuite;

initialization
RegisterTest(TestTMyComponent.Suite);
DBTestSuite:=TTestSuite.Create(’Database tests’,[

TTestMyDBComponent.Suite
]);

RegisterTest(DBTestSuite);

Whatever the used method, the result is always the same, and is shown in figure figure 6 on
page 12.

11

Figure 6: Dividing tests in testsuites

12

8 One time Setup/Teardown: decorators

There is another reason for using testsuites: the Setup and TearDownmethods are called
to create the initial situation for each test. For a database test this would mean connecting to
and disconnecting from the database. Obviously, this would adversely affect performance.
One could suppose that the constructor of the test case is the place to do so, but since the
testsuite does not guarantee how a testcase is instantiated, this is not a good solution. A
way is needed to make sure a routine is run once per test(suite).

There are 2 ways to solve this problem. In fact, they amount to the same thing. The first
is to use a test decorator. The test decorator can be used to ’Decorate’ a test, i.e. it is to be
executed whenever a test is executed.

The TTestDecorator class in the TestExtensions unit does just that. To use it,
the RunTest method of the test decorator must be overridden:

TMyDBTestDecorator = Class(TTestDecorator)
Procedure RunTest(ATestResult: TTestResult); override;

end;

The method RunTest then just needs to implement the connect/disconnect:

Procedure TMyDBTestDecorator.RunTest(ATestResult: TTestResult);

begin
ConnectToDatabase;
try

Inherited;
finally

DisconnectFromDatabase;
end;

end;

And to use this class, instead of registering the test, the test decorator is registered:

RegisterTest(TMyDBTestDecorator.Create(TTestMyDBComponent.Suite));

A test decorator can contain only one test, but an instance can be created for each test that
needs this decoration.

Obviously, the test to be decorated can also be a test suite. So to make sure that the database
connection is made only once for all Database related tests, the following test setup can be
used.

Var
DBTestSuite : TTestSuite;

initialization
RegisterTest(TestTMyComponent.Suite);
DBTestSuite:=TTestSuite.Create(’Database tests’);
DBTestSuite.AddTest(TTestMyDBComponent.Suite);
RegisterTest(TMyDBTestDecorator.Create(DBTestSuite));

In this case, a simpler way is to create a descendant of TTestSuite and override the
testsuite’s RunTest method:

13

TDBTestSuite = Class(TTestSuite)
Procedure ConnectToDatabase;
Procedure DisconnectFromDatabase;
Procedure RunTest(ATestResult: TTestResult); override;

End;

The code for the RunTest method is the same. The code for registering the tests is somewhat
simpler:

Var
DBTestSuite : TDBTestSuite;

initialization
RegisterTest(TestTMyComponent.Suite);
DBTestSuite:=TDBTestSuite.Create(’Database tests’);
DBTestSuite.AddTest(TTestMyDBComponent.Suite);
RegisterTest(DBTestSuite);

The end result of all these mechanisms is the same; the use of a test decorator will insert
an extra level in the tree, giving a visual indication that a test decorator is used.

9 Conclusion

Anno 2014, the ability to use a test framework should be part of the toolbox of every
programmer. The DUnit test framework is simple to use, and offers all the functionality
required to run automated tests. The purpose of this article was to introduce the topic,
showing that it is not hard to do, and has many benefits. Many areas (mock classes and other
techniques used in testing) are not explored, but this can be left for a future contribution.

14

	Introduction
	What to test
	Getting started
	Implementing test code
	Running the tests
	Testing for exceptions
	Testsuites
	One time Setup/Teardown: decorators
	Conclusion

