Test Insight in Lazarus

Michaél Van Canneyt

November 20, 2023

Abstract

The FPCUnit support in Lazarus has received an upgrade: The FPCUnit
unit testing framework now can communicate directly with the Lazarus IDE,
making it even more easie to fix errors in your code.

1 Introduction

Free Pascal has had a unit testing framework since almost 20 years: FPCUnit is in
use for the testing of many of the packages included in Free Pascal. It is roughly
compatible to DUnit, the Delphi unit testframework: vanilla test code written for
Dunit will compile with Free Pascal.

The Lazarus IDE has some wizards to make a FPCUnit test case and to start a
FPC unit test program. 2 kinds of test program can be created: a console test
program, and a GUI test program. The former shows the results of all tests on the
console. The latter uses a GUI window with a treeview to show all tests and the
result of the tests.

Both these programs have the same drawback: they do not interact with the IDE.
It would be much nicer if you could just click on the test name and be taken to the
implementation of that test in the IDE, Or, if there is a stack trace, on the error
location and be taken to the location where the error is raised.

Well, now you can: In the trunk version of Lazarus, the LazFPCUnit package has
been extended with 'Test Insight’. The idea for this feature has been taken from
the similarly named Delphi plugin by Stefan Glienke.

2 Architecture

The FPCUnit unit test system works like all other test systems. There is a test
registery, and there are test listeners. When the tests from the registry are run, the
progress and results are reported by the registered listeners. The console listeners
just write to the console in one of several formats (you can register your own), while
the UI listener adds nodes to a treeview.

The testinsight listener sends the results with HTTP requests to a server. The
location of this server can be specified in the sources, or in a small configuration
file.

The TestInsight support in the Lazarus IDE launches a small HT'TP server which
listens for the HTTP requests with the test results. The http server is started
when you open the "Test insight’ window from the *View - Test insight’ menu in the
Lazarus IDE. When the test program exists, it starts it with a special option, to

Figure 1: Creating a FPCUnit console program

Create a new project

ZE= Project Description
Application FPCUnit Console Test Application
Simple Program An application to run FPCURIt teskt
Program cases in console mode.
Console application
Library

FPCUnit Test Application
InstantFPC program
Daemon (service) application
HTTP server Application

CGl Application

Custom CGl Application
Apache Module

Help Cancel OK

get a list of tests. When you ask for a test run, the tests are run, and the window
displays the test results. Double clicking on a test will use the IDE code tools to
jump to the correct method in the test project.

If the test program cannot reach the testinsight HT'TP server, then it will fall back
to running as a regular FPCUnit test console program. You could do the same with
a Ul program if so desired, but this option has not been activated for the FPCUnit
UI test program.

3 Usage

For this to work, you need to have the latest IDE sources, and you must of course
install the lazfpcunit package. it is part of the standard list of packages in the IDE.

The 'New project’ - 'TFPCUnit Console Test Application’ menu item (figure (1| on
page [2)) has now a project wizard which offers some options. The following options
are available:

Run all tests by default The standard FPC unit console program shows a help
when running it without command-line options. If this option is checked,
the program will run the tests instead when no command-line options are
specified.

Default output format in this checkbox, you can set the default output format
for the console output. You can choose between XML, plain text (with or
without time info) or LaTeX.

Use testinsight to communicate results to the IDE When this option is set,
the test results are sent to the IDE with testinsight.

Create first test case When checked, the IDE immediatly launches the ’Create
FPCUnit testcase’ wizard when the project is created.

The options dialog is shown in figure 2] on page [3] Once your project is created

Figure 2: The FPCUnit console program options

Mew FPCUnit console testrunner program = o

Run all tests by defaulk
Default output fFormat

Plain text i
Use testinsight to communicate resulks to the IDE

Create firskt test case

Cancel OK

with the "Use testinsight’ option, you should save and compile it at once. This will
allow the IDE testinsight support to get a list of tests.

Once the project is compiled, you can open the testinsight window. The window
looks the same as the window of the graphical FPCUnit test program - not surpris-
ingly, since it was copied from that window. But some elements were added, and it
behaves differently from the original window.

When the window is opened, it will attempt to run the current project with the
appropriate options to get a list of test, and the result looks like figure [3| on page
it all went well. The ’Refresh’ button (first button on the toolbar) can be used to
refresh the list of tests if you want. The list of tests will be refreshed in each case
when the test program is actually run. When the active project is changed, then
the list of tests will also be automatically refreshed: the path of the current FPC
unit test executable is always shown in the status bar at the bottom of the window.

When you click the "Run all tests’ button (the green double arrow), the test program
will be executed. as the test results come in, the colored status indicator in front of
each test will change color according to the result of the test. If there is an error,
more info will be displayed in nodes below the test node, as shown in figure [on
page Double clicking on the test or an error node, will attempt to locate the
code of the test and open the source file. For most cases, this will work without
problem. However, the mechanism can fail in some cases:

1. The currently active project in the IDE is not a unit test project.
2. Item the sources of the test are not part of the project.

3. If you are using some more advanced features of the test framework (creating
tests dynamically). TestInsight supposes that the test names are method
names of a class.

Figure 3: The Lazarus Test Insight window

FPCUnit - run unit teskt = o

Actions Edit Tesk tree
= PP <D

S}
-+ [€ suite1
€ Test1
& Test2
- [@ Suite2
9 Test1
& Test2
i Test3

Shome/michael/projects/lazarus/components/fpcunit/testinsight/testing/clienttest

4 Converting an existing FPCUnit test program
to use TestInsight

The 'New program’ wizard cannot convert an existing program to use testinsight.
If you have an existing FPCUnit test program that you wish to convert so it uses
testinsight, you need to make some changes to the main project file.

The typical FPCUnit test console program has the following main project file source:
program clienttest;
{$mode objfpcI{$H+}

uses
Classes, jsonparser, consoletestrunner, tcTests;

type
TMyTestRunner = class(TTestRunner)
end;

var
Application: TMyTestRunner;

begin
Application := TMyTestRunner.Create(nil);
Application.Initialize;
Application.Title := ’FPCUnit Console test runner’;

Figure 4: The Lazarus Test Insight window with errors
FPCUnit - run unikt test

Actions Edit Tesk tree

= pr <>

Runs:3/5 Errors:1 Failures: 2

& All Tests

&9 suitel
(% Test]

- fi, Message: Test 1 fails

- {i, Exception: EAssertionFailedError

“@1 at 50000000000465791 TEST1, line 48 of tctests.pas
- E O Test2

- [@ suite2
- [& Tesk1
}3 Message: Test 1 fails
}3 Exception: EAssertionFailedError
,é'l at 500000000004656F1 TEST1, line 32 of tctests.pas
~-E O Tesk2
- [& Tesk3
}3 Exception message: test 3 errors
,é'l Exception class: Exception

- at $000000000046573D TEST3, line 41 of tctests.pas

test 3 errors
Exception class: Exception
at $0000000000465730 TEST3, line 41 of tctesks.pas

fhome/michael/projects/lazarus/components/fpcunit/testinsight/testing/clienttest

Application.Run;
Application.Free;
end.

2 things must be done with this project code:

1. The fpcunittestinsight unit must be added to the uses clause.

2. the function IsTestinsightListening must be called. If it returns True,
then the RunRegisteredTests routine must be called. Both are implemented
in the fpcunittestinsight unit. If IsTestinsightListening returns False,
then the original code must be executed.

The 2 functions to use are declared as follows:

procedure RunRegisteredTests(aConfig : String = ’’;
baseUrl: string = DefaultUrl);
function IsTestinsightListening(aConfig : String = ’’;
baseUrl: string = DefaultUrl) : Boolean;

The config argument is the name of an .INT file with the settings for the test run. By
default this is TestInsightSettings.ini, this is what the IDE uses. The selected
tests will be written in this file, and the port on which the IDE is listening (The
baseURL)

The BaseURL argument is the URL where the testinsight server is listening. By
default this is http://localhost:8081/tests, but this will be set by the IDE in
the config file.

You could change these defaults for example to run the test program remotely but
still receive the results locally on your development PC.

With these changes, the new project code will look like this:

program clienttest;
{$mode objfpcI{$H+}

uses
Classes, jsonparser, consoletestrunner,
tcTests, fpcunittestinsight;

type
TMyTestRunner = class(TTestRunner)
end;

var
Application: TMyTestRunner;

begin
if IsTestinsightListening() then
RunRegisteredTests(’’,’’)
else
begin
Application := TMyTestRunner.Create(nil);

Figure 5: The Lazarus Test Insight configuration panel

=l v &
projectt.lpr 3 IDE Options =
' — -
. insight % Server port
. TE -+ Environment 6789 :
5 Server path
Jtests ¥

Automatically Fetch test list on open

Help Apply Cancel OK

Application.Initialize;
Application.Title := ’FPCUnit Console test runner’;
Application.Run;
Application.Free;
end;
end.

Additionally, if you are running version 3.2.2 of the FPC compiler, in the project
inspector, you should also add the ’laztestinsight’ package as a requirement. For
FPC 3.3.1, this dependency is not needed, as the necessary units are present in the
Free Pascal sources.

5 Configuration

In the IDE, the port and base location on which the server should listen can be
set. In the "Tools - Options’ menu under TestInsight, the following settings can be
configured:

Base path this is the path on the HTTP server to which requests must be sent.
The default is ’/tests’.

Server port this is the path on the HT'TP server to which requests must be sent.
The default is 6789

Auto fetch tests When the "Test Insight’ window is opened, or the current project
changes then the list of tests is automatically fetched. When disabled, you
can use the refresh button to get the list of tests.

The settings dialog is shown in figure [5] on page

6 Conclusion

The ’Test Insight’ functionality makes it easier to do test-driven development by
allowing you to immediatly jump to the implementation of a test or a error location
from within the test result display embedded in the IDE. The current version of
"Test insight’ is but an initial version: Some extensions are planned, such as test
filtering and automatic selection of tests, and pas2js support of testinsight is also
in the works.

	Introduction
	Architecture
	Usage
	Converting an existing FPCUnit test program to use TestInsight
	Configuration
	Conclusion

