
String handling routines

Michaël Van Canneyt

February 6, 2010

Abstract

Pascal has long been known for its easy string manipulations. With the coming of
dynamically typed languages such as Python, Perl, PHP, Javascript, this advantage has
somewhat lessened, as these languages make manipulating strings also less cumber-
some. If well programmed, Pascal programs have still the advantage: Speed (because
it is compiled) and safe (type safety). An overview.

1 Introduction

Many - if not all - computer programs manipulate text (strings) at some point, if just to
show a message on the screen. The ease of use of string handling is therefor an important
asset. In the realm of compiled languages, Pascal has traditionally held the advantage over
C, due to the ease of use and the type safety - inherently making a pascal program more
safe from buffer overflows than a C program ([see article on strings sent by Rosa]). This
inherent unsafety is probably the reason why C is rarely - if at all - is used for webserver
programming, favouring interpreted, dynamically typed, languages.

Security issues aside, Pascal has from the very start provided a set of intuitive routines to
manipulate strings. Some of these have been incorporated in the system unit, so they are
available in all Pascal programs. A large part of the routines has been put in the SysUtils
and later the StrUtils units. In this article an overview of what is available is presented.

2 A word about string types

In the beginning days of Pascal, strings were limited to a length of 255 characters, each
character 1 byte long. Strings of this type are very efficient in terms of manipulation
and speed: they don’t use heap memory. This string type still exists today, and is called
ShortString.

The 255 character limit became increasingly a problem, so a new string type was intro-
duced that lifted this limit: the AnsiString type. A small exception aside, it could be
used just as a shortstring. This string was efficient in memory due to an inherent reference
counting mechanism, but slower in usage, since it required heap memory, plus extra excep-
tion handling mechanisms: all this is hidden from the programmer, but has a performance
impact.

Both string types suffered from the problem that they worked with single-byte characters,
which could contain only characters of 1 codepage (at most 255 different characters). So
the Widestring type was introduced, which sported 2 bytes per character, and was able to
support all unicode characters. This type was not reference counted, but was used in win-
dows OLE (activeX) mechanisms. This string type was much less peformant as ansistrings:

1



no reference counting. Additionally, special Windows memory management is needed to
allocate memory for them. This string type string requires still a lot of manipulations when
codepage conversions need to be performed or when they must be converted to the easier
AnsiString type.

Delphi 2009 introduced a new string type: it works like an ansistring, but has addition-
ally a codepage associated with it (Free Pascal support for this string type is forthcoming).
Codepage conversions are handled automatically. Other than that, they work just like an-
sistrings. This additional functionality comes again with a price: The actual size (in bytes)
of a characters is unknown, and the checking and optional converting of code pages requires
additional time.

Nevertheless, all what follows should be independent of the actual string type used.

3 Basic operations

There are 6 basic operations that can be performed on a piece of text: finding its length,
putting 2 pieces together, taking a piece out of it, deleting a part of the string, inserting
something in the string, or searching for a word. These operations are summarized in 6
routines of the system unit (in the same order):

// Return the length of a string
function Length(S : string): Integer;
// Append S2 to S1 and return result
function Concat(s1: string; s2: string): string
// Return count characters from S starting at Index
function Copy(S : String;

Index: Integer; Count: Integer): string;
// Delete Count caracters from S starting at Index
procedure Delete(var S: string;

Index: Integer; Count: Integer);
// insert Source in S at position Index
procedure Insert(Source: string;

var S: string; Index: Integer);
// return (1-based) position of Substr in S.
function Pos(const substr: AnsiString;

const str: AnsiString): Integer;

The Concat operation is a left-over from the beginning days of Pascal: the + operator
performs the same task. In fact, Concat can be written as:

function Concat(s1: string; s2: string): string;
begin

Result:=S1+S2;
end;

The Insert operation can actually be expressed as a Copy operation:

procedure Insert(Src: string;
var S: string; Index: Integer);

begin
S:=Copy(S,1,Index-1)+Src+Copy(S,Index,Length(S)-Index+1);

end;

2



Note that event his implementation is safe (handles bad situations): the Copy function will
do all necessary checks on valid values for Index.

With these 6 routines, an amazing number of things can be done. For instance, the follow-
ing search-and-replace routine uses almost all the basic routines:

Function replace(Const AText, Src,Dest : String) : String;

Var
P : Integer;
S : String;

begin
Result:=’’;
S:=AText;
// While there is any text to search left
While (Length(S)>0) do

begin
// search for text

P:=Pos(Src,S);
If P=0 then

begin
// nothing found, copy rest to result
Result:=Result+S;
S:=’’;
end

else
begin
// Append text prior to match, and append dest
Result:=Result+Copy(S,1,P-1)+Dest;
// Delete match from text to search.
Delete(S,1,P+Length(Src)-1);
end;

end;
end;

The above code is an example of how easy the basic functions work. The below screenshot
shows how it can be used in practice:

The OnClick handler of the ’Go’ button looks as follows:

procedure TForm1.Button1Click(Sender: TObject);
begin

MResult.Text:=Replace(MText.Text,ESrc.Text,EDest.Text);
end;

Nothing could be easier.

4 Case sensitivity

Pascal is a case-insensitive language. That is, it does not matter if one writes ’Begin’ or
’begin’. The standard string routines and operations, however, are case sensitive. The
following expressions will return False:

3



Figure 1: Using the replace function

’Begin’=’begin’
Pos(’delphi’,’Delphi is a RAD tool’)=1;

The system unit has (for historic reasons, it existed in Turbo Pascal) only 1 function to deal
with the case of strings:

Function UpCase(C : Char) : Char;

It converts a single letter in the range ’a’..’z’ to its uppercase equivalent. It is obvious that
this is a very limited function.

Luckily, the SysUtils unit contains more functions to handle case sensitivity:

// Convert normal letters to uppercase
function UpperCase(S: string): string;
// Convert all letters to uppercase
function AnsiUpperCase(S: string): string;
// Convert normal letters to lowercase
function LowerCase(: string): string;
// Convert all letters to lowercase
function AnsiLowerCase(S: string): string;
// Compare 2 strings, ignoring case for ’a’..’z’
function CompareText(S1, S2: string): Integer;
// Compare 2 strings, ignoring case
function AnsiCompareText(S1, S2: string): Integer;

The compare functions return an integer result. Zero indicates the two strings are equal, less
than zero means S1 is less than S2, larger than zero means S1 is larger than S2. The follow-
ing screenshot demonstrates the differences between the working of the Uppercase and
AnsiUppercase function: The same holds for the lowercase and compare functions.
The OnClick handler of the ’Uppercase’ button looks as follows:

4



Figure 2: Ansi versus non-ansi functions

procedure TForm1.BUppercaseClick(Sender: TObject);
begin

ENormal.Text:=UpperCase(ESource.Text);
EAnsi.Text:=AnsiUppercase(ESource.Text);

end;

The Comparetext and AnsiCompareText will give different results when compar-
ing the 2 resulting strings. CompareText will indicate that they are different, while
AnsiCompareText will declare them to be equal, because CompareText will com-
pare all letters not in the regular alphabet based on their byte values.

There are some wrapper functions around CompareText:

// Check if 2 strings are equal, ignoring case for ’a’..’z’
function SameText(const S1, S2: string): Boolean;
// Check if 2 strings are equal, ignoring case
function AnsiSameText(const S1, S2: string): Boolean;

They simply check whether the CompareText and AnsiCompareText functions re-
turn zero, and return True if this is the case.

The Compare* and Same* functions exist in variants that compare strings case sensi-
tively. Instead of ending on ’Text’, their names end on ’Str’:

// Compare 2 strings
function CompareStr(S1, S2: string): Integer;
// Compare 2 strings, in current locale
function AnsiCompareStr(S1, S2: string): Integer;
// Check if 2 strings are equal
function SameStr(const S1, S2: string): Boolean;
// Check if 2 strings are equal in current locale
function AnsiSameStr(const S1, S2: string): Boolean;

The difference between the Ansi and non-Ansi version lies in the way they treat special
characters such as á and à: the non-ansi versions will compare them according to their

5



ASCII values. This can be tested with the comparing program, provided on the disc ac-
compagnying this issue.

5 Searching and replacing

The standard Pos function can be used for rudimentary searching. The AnsiPos function
of the SysUtils unit does the same thing, only it takes care of multi-byte characters, as
used in the Far East. There is no case-insensitive version of Pos, but the following 2
functions from the StrUtils unit can be used to detect the presence of one string as part of
another:

// Return True if AText contains ASubText, case sensitive
function AnsiContainsStr(Const AText: string;

Const ASubText: string): Boolean;
// Return True if AText contains ASubText, case insensitive
function AnsiContainsText(const AText: string;

const ASubText: string): Boolean;

These functions do not return the exact position, just the presence. The StrUtils unit
does contain two other extensions to Pos. The first is called PosEx:

function PosEx(Const SubStr: string;
Const S: string;

Offset: Integer = 1): Integer;

It functions the same as Pos, but instead of starting the search at the first character of the
string S, it starts at position Offset. It can be used to search for multiple matches in a
string by continuing the search at the last match:

procedure TForm1.BSearchClick(Sender: TObject);

Var
Plast,P : Integer;
S,ST,PL : String;

begin
// Get copy of strings
ST:=ESearch.Text;
S:=Memo1.Text;
// Initialize position
Plast:=1;
Repeat

P:=PosEx(ST,S,PLast);
If P<>0 then

begin
// Set new search position
PLast:=P+Length(ST.Text);
// Add position to result set
If PL<>’’ then

PL:=PL+’, ’;
PL:=PL+IntToStr(P);
end;

Until P=0;

6



Figure 3: Posex demo

// Show message with results:
If (PL=’’) then

ShowMessage(ST+’ was not found’)
else

ShowMessage(ST+’ was found at positions ’+PL);
end;

The result is shown in figure 3 on page 7.

An even more extended version of Pos exists in StrUtils, and is called SearchBuf:

function SearchBuf(Buf: PChar; BufLen: Integer;
SelStart: Integer; SelLength: Integer;

SearchStrin g: String;
Options: TStringSearchOptions): PChar;

It searchs the Buf null-terminated string buffer for SearchString. A set of SelStart,
SelLength indicators must be used to specify a search area (note that SelStart is 0-
based, as common with null-terminated strings). The optional Options parameter can be
used to further control the search:

soDown Search forward (the default) or backward from the end of the selection. If this
option is not specified, Selstart is the starting position of the search (from which
the search goes to the beginning of the buffer), and SelLength is ignored.

soMatchCase Search case sensitive.

soWholeWord Match only whole words. Words are any combination of alphabetical and
numerical characters, all other characters denote non-words. This is a problem, as
accented characters for instance will be considered whitespace.

7



The function works on a null-terminated string, and returns a null-terminated string.

This is not a very safe, but the following function is:

function SearchBuf(Buf : String;
SelStart, SelLength: Integer;
SearchString: String;
Options: TStringSearchOptions): Integer;

Var
PR,PBuf : PChar;

begin
Result:=0;
If (Buf<>’’) then

begin
PBuf:=PChar(Buf);
PR:=strutils.SearchBuf(PBuf,Length(Buf),

SelStart-1,SelLength,
SearchString,Options);

If (PR<>Nil) then
Result:=(PR-PBuf)+1;

end;
end;

It accepts a regular pascal string, the SelStart parameter is 1-based, and the return value
is the position in the string (1 based), as in the Pos function.

The function is easier to use than the one in sysutils. This function can be used for instance
to implement another function, which is strangely enough not implemented in StrUtils: a
POS function that starts searching at the back of the string, working its way to the begin-
ning.

Function RPos(Substr : String; S : String) : integer;

begin
Result:=SearchBuf(S,Length(S),0,Substr,[]);

end;

Note that the starting position of the search is the last character of the string.

To search and replace - as in the Replace function presented earlier is - the SysUtils unit
contains a more advanced version, which offers some extra functionality:

function StringReplace(const S: string;
const OldPattern: string;
const NewPattern: string;
Flags: TReplaceFlags): string;

The extra functionality is determined by the Flags set, which can contain the following
elements:

rfReplaceAll Replace all occurrencies of OldPattern with NewPattern. By default,
only the first match is replaced.

rfIgnoreCase The matches are searched ignoring case.

8



This function can be used in simple search/replace mechanisms in an application, as demon-
strated in the following routine, which replaces one text (in an edit control named EOld)
with another (in ENew) in a TMemo component (called MText). Additionally, there are 2
checkbox components to specify the flags (CBIgnoreCase and CBReplaceAll), and
a checkbox (CBSelectionOnly) to select whether only the selected text in the memo
should be searched:

procedure TMainForm.Button1Click(Sender: TObject);

Var
rf : TReplaceFlags;
S,N: String;

begin
// Get text to search
If CBSelectionOnly.Checked then

S:=MText.SelText
else

S:=MText.Text;
// Get options
RF:=[];
If CBreplaceAll.Checked then

Include(RF,rfReplaceAll);
if CBIgnoreCase.Checked then

Include(RF,rfIgnoreCase);
// get new text.
N:=Stringreplace(S,EOld.Text,ENew.Text,RF);
// Put it back in place
If CBSelectionOnly.Checked then

MText.SelText:=N
else

MText.Text:=N;
end;

The result can be seen in the following picture:

6 A Case Statement with strings

The StrUtils unit contains some more utility functions. One of these functions is an in-
teresting one, because it alleviates a commonly heard complaint about the Object Pascal
language, namely that it does not have a Case statement with string values. (Free Pascal
has a native Case statement with strings as of version 2.5.1).

The function is called IndexStr, and its case insensitive variant is called IndexText:

// Return index of AText in AValues
function IndexStr(const AText: string;

const AValues: array of string): Integer;
// Return index of AText in AValues (case insensitive)
function IndexText(const AText: string;

const AValues: array of string): Integer;

They can be used to create a Case statement, as in this command-line examining routine:

9



Figure 4: Stringreplace demo

procedure CheckCommandLineArguments;

Const
Cmds : Array[1..5] of string =

(’input’,’output’,’help’,’version’,’update’);

Var
I : Integer;
arg : string;

begin
I:=1;
While I<ParamCount do

begin
Arg:=ParamStr(i);
// Strip ’--’ from command.
Delete(Arg,1,2);
Case IndexStr(Arg,Cmds) of

0 : DoInput; // Zero based !
1 : DoOutput;
2 : ShowHelp;
3 : ShowVersion;
4 : DoUpdate;

else
// Not a valid command
Writeln(’Unknown option at pos ’,I,’: ’,Arg);

end;
Inc(I);
end;
end;

A similar construction can be used in text parsers to branch execution based on a current

10



word.

7 conclusion

There are more string functions in the StrUtils unit, but most of the remaining function
are simple wrappers around the functions presented here. An exception is the SoundEx
procedure, used in ’Sounds as’ functionalities, but the implementation is unfortunately
useful only for the English language: results in a non-englush language such as Dutch or
German are disappointing. The interested reader can consult the Delphi or Free Pascal doc-
umentation for an overview of the remaining function. The Free Pascal version of StrUtils
contains a lot more functions than the Delphi version, so if compatibility is required, only
the Delphi documentation should be consulted. The functions presented here do most of the
hard work in text manipulation, and they should make it clear that text analysis in Object
Pascal is actually quite easy, and is completely safe from buffer overruns. Nevertheless,
more advanced text treatment, such as writing a scanner/parser, makes surprisingly little
use of these functions. Maybe a future contribution will show why.

11


	Introduction
	A word about string types
	Basic operations
	Case sensitivity
	Searching and replacing
	A Case Statement with strings
	conclusion

