
Getting started with Lazarus: Database access

Michaël Van Canneyt

September 2, 2007

Abstract

In the series of articles about Lazarus, the focus was till now on controls. In this
article, the focus will shift to what most - if not all - software must do: retrieve and
manipulate data. The architecture of data handling in Lazarus will be explained and
demonstrated.

1 Introduction

Most business applications display and manipulate data coming from one or more data
sources: this data can come from a database server or from a set of files on disk. All these
forms of data are accessed using a common database architecture, which is included by
default in Lazarus. Many of the standard controls presented in the previous articles come
in a data-aware version: they know how to display data coming from this data architecture,
and know how to post changes to the data architecture.

The architecture is pure object pascal code: as such it is open, and components exist to
access many types of databases. Indeed, Lazarus itself is shipped with components that
allow acces to a variety of databases (open source or not) or file formats:

1. Comma-Separated Value (CSV) files.

2. DBF files

3. Firebird or Interbase databases

4. MySQL databases (versions 4.0, 4.1 or 5.0)

5. Oracle databases

6. PostgreSQL databases

7. Sqlite3 embedded databases

8. Any database for which a ODBC driver exists.

There are also components available that can keep in-memory data.

Other than this, there are database access layers provided by third-party developers, such
as

1. Advantage Database Server

2. ZeosLib is a set of components that allow to access a variety of databases.

1



Figure 1: The Lazarus Data Desktop

Obviously, anyone can write a series of components to acces any other database.

In addition to the components needed to access databases, Lazarus comes with an applica-
tion called the ’Lazarus Data Desktop’. It can be used to

• Access all lazarus-supported databases.

• Execute SQL queries on the SQL-based databases and view the result.

• Create databases.

• Create common SQL statements for tables.

• Create and maintain data dictionaries, which can be applied to datasets in an appli-
cation.

A screenshot of the ’Lazarus data desktop’ is shown in figure 1 on page 2. A full explana-
tion is outside the scope of this article, and may be left for a future contribution.

2 Architecture

At the heart of the database access architecture lies a set of basic, abstract components:

TDataset As the name suggests, this is the base component for all sets of data. It is a
component built around a memory buffer that contains the data - the source of the
data is determined by descendents. The data is organized in rows (records), and
each row is divided in named columns (fields). It introduces methods to navigate
and manipulate the data. It also introduces a cursor in the data: Only the data at the

2



current location of the cursor (the current record) can be shown and manipulated. In
order to change another row in the data, the cursor must be moved to this row.

By itself, TDataset does not provide access to data: the actual data is fetched by
descendent controls, which must override a designated number of abstract, protected
methods of TDataset, in which they copy the data to the memory buffers managed
by TDataset, and apply changes to the database or file should the data be changed;
However, this is transparent to the user of these descendents.

TField Represents a single field in the current record: It offers methods to retrieve the
value of the field. The value can be retrieved as any of the basic types supported by
Object Pascal, such as strings, integers, floating point, currency or TDateTime types.
In the case of BLOB fields the value can be retrieved as text or in a memory buffer,
or it can be saved to file. Various properties exist which dictate how the value should
be displayed in a GUI.

TDatasource is the compagnon component of TDataset: it communicates changes in
the dataset to any third component. In a way, it is the subject of the observer pat-
tern. Many datasources can be connected to a single TDatasource. Doing this
allows to selectively distribute data events to interested third components, such as
GUI controls.

3 Navigating through data

The heart of the data access mechanism is TDataset. It introduces all methods, needed
to access, navigate and manipulate data. It offers the following important properties:

Active A boolean property. If True, the dataset is open, and the data is available for
browsing and editing. If False, the dataset is closed, and the data is not available.
The property can be set to open or close the data. Note that this can cause an excep-
tion to be raised, if e.g. the SQL statement contains an error or if the file from which
data should be read is not available.

Recno The position of the cursor in the rows of the dataset. This can not always be relied
upon: some datasets are unidirectional (only forward navigation is allowed), because
the underlying data acces mechanism does not allow navigating back and forth be-
tween the rows.

Recordcount is not always available, but indicates the number of records in the set.

BOF The cursor is at the beginning of the set. Moving to the prior record will have no
effect.

EOF The cursor is at the end of the set. Moving to the next record will have no effect.

Fields an indexed array of TField instances. Each instance represents a field in the
current record.

Modified indicates whether the data in the buffer is modified.

State Indicates the current state of the dataset: this is a read-only property. The most used
states are dsInactive when the dataset is closed, dsBrowse when data is being
browsed. dsEdit is the state when editing the current record, or dsInsert when
a new record is being added.

3



FieldDefs a collection of TFieldDef items. Each item contains the definition of a field
in a row. This collection is filled by TDataset descendents so it represents accu-
rately the data one is trying to access. The collection then is used by TDataset to
create the TField instances when the dataset is opened. This happens transparantly,
and usually it is not necessary to access this collection - with the notable exception
of in-memory datasets.

Filter a filter expression to filter the records in the dataset. Whether this is implemented
(and with what syntax) or not depends on the particular TDataset engine.

Filtered a boolean property which indicates whether the filter expression in the Filter
property should be applied or not.

If a dataset is open, and both EOF and BOF are True, this means the dataset is empty
(contains no records). It is not advisable to check for RecordCount=0, because this may
not be implemented for the TDataset descendent in use.

The following is the only correct check:

Var
D : TDataset;

begin
D.Open;
Try

if (D.EOF and D.BOF) then
Raise Exception.Create(’No data available!’);

// Do something with D in case there is data.
Finally

D.Close;
end;

end;

The following methods are available to navigate the data:

Open opens the dataset: this is equivalent to setting the Active property to True.

Close closes the dataset: this is equivalent to setting the Active property to False.

Next moves the cursor to the next record in the dataset. If EOF is True, this has no effect.

Prior moves the cursor to the previous record in the dataset. If BOF is True, this has no
effect. Not all TDataset descendents support this operation.

First moves the cursor to the first record in the dataset. After a call to First, BOF is
True. Not all TDataset descendents support this operation.

Last moves the cursor to the last record in the dataset. After a call to Last, EOF is True.

MoveTo This method accepts a 1-based record number (RecNo as a parameter. It will
jump to the indicated record. Not all TDataset descendents support this operation.

Refresh refreshes the data in the dataset from it’s source.

With these methods and properties, most read-only operations can be performed on a
dataset. The following code will for instance walk over all records in the dataset, and
perform some operation:

4



Var
D : TDataset;

begin
D.Open;
Try

While Not D.EOF do
begin
DoSomeOperation(D);
D.Next;
end;

Finally
D.Close;

end;
end;

Note the try...finally block: if an exception occurs during manipulation of the data,
the dataset will be closed anyway at the end of the routine.

4 Accessing data in the fields

To access the field values in the current record, the Fields property can be used. This is a
property of class TFields, which has as a default property an indexed array of TField
descendent instances. The TField class has the following properties:

FieldName the name of the field.

DataType the database native type of the data in this field.

AsInteger the value of the data as an integer.

AsString the value of the data as a string.

AsDateTime the value of the data as a TDateTime value.

AsCurrency the value of the data as a Currency value.

AsFloat the value of the data as a Double value.

AsBoolean the value of the data as a Boolean value.

Value the value of the data as a variant.

Each AsNNN property will attempt to convert the actual data to the requested type. This
means that if the underlying database field is a string field, then reading the value by
means of the AsInteger property will attempt to convert the string value to an Inte-
ger. If the string value in the database is not a valid representation of an integer, then an
EConvertError will be raised. Conversely, setting the property will convert the value
to the type expected by the database.

The following routine dumps all data in a record to the console:

Procedure DoSomeOperation(D : TDataset);

Var
I : Integer;

5



F : TField;

begin
For I:=0 to D.Fields.Count-1 do

begin
F:=D.Fields[I];
Write(F.FieldName:32,’ : ’);
If (F.DataType=ftBlob) then

Writeln(’<BLOB>’)
else

Writeln(F.AsString);
end;

end;

Combined with the navigation example above, this would dump all data in a dataset to
screen.

In case the names of the fields are known, the fields can be accessed with the FieldByName
method of TFields or TDataset. Continuing the example above, if the Dataset D con-
tains the result of an SQL Query like the following:

SELECT FirstName, LastName, BirthDay From Persons;

then the DoSomeOperation could be coded like this:

Procedure DoSomeOperation(D : TDataset);

Var
BD : TDateTime;

begin
Writeln(’FirstName : ’,D.FieldByname(’FirstName’).AsString;
Writeln(’LastName : ’,D.FieldByname(’LastName’).AsString;
BD:=D.Fields.FieldByName(’BirthDay’).AsDateTime;
Writeln(’BirthDay : ’,DateToStr(BD));

end;

Note that BD is retrieved from the Fields property. FieldByName will raise an excep-
tion if the dataset does not contain a field with the requested fieldname. If this behaviour
is not desirable, the alternate FindField method will simply return Nil if the requested
field is not present. This can be used to check for the existence of a field, like this:

Function HasField(D : TDataset; FieldName : String) : Boolean;

begin
Result:=D.FindField(FieldName)<>Nil;

end;

Note that the items in the Fields property are not all of type TField: they are descen-
dents of TField, a descendent exists for each native database type. When fetching data
from the database, each TDataset will map the native database type for each field in
the recordset to a TField descendent class, and will set the DataType property to a
value that describes best the type of the data in the database. Several standard TField
descendents are available:

6



TIntegerField for up to 32-bit signed integer values. DataType will be ftInteger.

TSmallIntField for up to 16-bit signed integer values. DataType will be ftSmallInt.

TWordField for up to 16-bit unsigned integer values. DataType will be ftWord.

TLargIntField for 64-bit integer values. DataType will be ftLargeInt.

TFloatField for floating point values. DataType will be fDouble.

TStringField for string values. DataType will be ftString.

TBCDField for BCD values. DataType will be ftBCD.

TDateField for date values. DataType will be ftDate.

TTimeField for time values. DataType will be ftTime.

TDateTimeField for TDateTime values. DataType will be ftDateTime.

TBLOBField for BLOB data (binary data without form). DataType will be ftBLOB.

TMemoField for BLOB data which contain only text. DataType will be ftMemo.

Exactly which field is used depends on the TDataset descendant. More specialized
TField descendents exist, and although they are rarely used, some TDataset descen-
dents use specialized TField descendents to encapsulate database specific behaviour for
the field types.

5 Manipulating data

Till now, all methods and properties were of use for viewing and navigating through data.
There are obviously also methods for editing, adding and deleting data:

Edit Puts the dataset in edit mode. After this command, the contents of the current record
can be modified. (The State property will equal dsEdit).

Insert Puts the dataset in insert mode at the current location: a new record is added. After
this command, the contents of the new record can be modified. (The State property
will equal dsInsert).

Append Is equal in functionality to Insert, only the new record is added at the end of
the recordset. The State property will equal dsInsert as well.

Post If the dataset is in edit or append mode, then the Post command will commit the
changes to the record buffer, and will put the dataset again in browse mode. De-
pending on the TDataset descendent implementation, the changes will also be
committed at once to the underlying database.

Cancel If the dataset is in edit or append mode, then the Cancel command will revert
any changes and return the dataset to the state it was in prior to the Edit, Insert
or Append command.

Delete This command deletes the current record from the record buffer and - depending
on the particular TDataset being used - from the underlying database. No Post is
needed to commit this action to the database. It follows that this action is irreversible,
and cannot be undone with Cancel.

7



Note that while the dataset is in editing mode, any navigation command will attempt to post
the data prior to executing the navigation method itself.

In general, modifying data is then done by putting the dataset in the appropriate editing
mode and setting the field properties. The following code could be a DoSomeOperation
implementation that modifies the data in a dataset:

Procedure DoSomeOperation(D : TDataset);

Var
I : Integer;
F : TField;

begin
If D.FieldByName(’NeedsCheck’).AsBoolean then

begin
Edit;
I:=FieldByName(’CheckField’).AsInteger;
FieldByName(’CheckField’).AsInteger:=I+1;
FieldByName(’NeedsCheck’).AsBoolean:=False;
Post;
end;

end;

The above code will check the boolean field NeedsCheck. If it is True, it will augment
the value of the CheckField field with 1, and set the CheckField to False. In case
DoSomeOperation is called for all records in a table called CheckTable, then the
above operation would be equivalent to the following SQL statement:

UPDATE CheckTable SET
CheckField=CheckField+1,
NeedsCheck=False

WHERE
NeedsCheck=True;

6 Errors when manipulating data

Note that various things can go wrong when editing data in a dataset. Errors are reported
through exceptions: the TDataset class and it’s helper classes do a lot of checking and re-
port any error they find. The usual class used when reporting errors is EDatabaseError.

The first error is editing data when the dataset is not in edit mode. The following code will
result in a EDatabaseError exception:

With MyDataset do
begin
Open;
FieldByName(’MyField’).AsString:=’Some string’;
Post;
end;

The Post operation will never be reached.

An often encountered error is writing the wrong kind of data to a field. Supposing the
MyField field is of SQL type INT (this will normally correspond to a TIntegerField
class, and DataType value ftInteger), then the following code will raise an EConvertError:

8



With MyDataset do
begin
Open;
Append;
FieldByName(’MyField’).AsString:=’Some string’;
Post;
end;

The error is raised because the dataset expects an integer value, and ’Some String’ is
not a valid integer.

A third kind of error is not supplying all required fields for a record. In case a dataset
has 2 string fields, MyField and MyRequiredField, then the following will raise an
exception when the Post command is executed:

With MyDataset do
begin
Open;
Append;
FieldByName(’MyField’).AsString:=’Some string’;
Post;
end;

This will cause an EDatabaseError error saying that MyRequiredField needs a
value.

The same error can also occur when editing data, when a field is cleared:

With MyDataset do
begin
Open;
Edit;
FieldByName(’MyField’).AsString:=’Some string’;
FieldByName(’MyRequiredField’).Clear;
Post;
end;

The Clear method of TField clears the contents of the field - corresponding to the SQL
value NULL. It is possible to check if a field is null with the IsNull property:

Var
F : TField;

begin
With MyDataset do

begin
Open;
Edit;
// Do some other things.
F:=FieldByName(’MyRequiredField’);
If F.IsNull then

F.AsString:=’Some Default’;
Post;
end;

It is important to be aware of the errors that can occur, because the dataset will be left in
an inconsistent state after the error occurred, and actions to correct the situation will be

9



required. If an error occurs in the Post operation (e.g. when no value for a required field
is given), then the dataset will be left in the edit state. The following code for instance will
result in an exception:

With MyDataset do
While Not EOF do

begin
Try

Edit;
FieldByName(’MyRequiredField’).Clear;
Post;

Except
// Silently ignore any errors.

end;
Next;
end;

Even though it looks like the code takes care of errors, it does not: if an exception is raised,
then the exception is caught by the Try..Except block, but the dataset is left in edit
mode. The Next statement that follows will try to post the pending changes anyway, and
an exception will be raised again - but this time not caught by the Try..Except block.

The correct way of handling the error is by canceling the pending changes:

With MyDataset do
While Not EOF do

begin
Try

Edit;
FieldByName(’MyRequiredField’).Clear;
Post;

Except
// Silently ignore any errors.
Cancel;

end;
Next;
end;

In case of an error, the Cancel will cancel the changes, and put the dataset back in browse
state. The Next statement will then simply move to the next record.

7 Dataset events

The errors in the previous section make it clear that it is necessary to do some error check-
ing. This is easy when doing everything in linear code as in the examples, but if the data
is edited in a GUI and the actions are driven by user-generated events, then error checking
is not so easy. Luckily, TDataset offers a lot of events to cater for this. For almost all
methods discussed in the previous sections, there are 2 events. The events are consistently
named:

BeforeXYZ which happens before the method XYZ is actually executed. If an exception
is raised inside the event handler, the method will not be executed. It can be used to
perform checking if all necessary conditions to succesfully execute the method have
been fulfilled.

10



AfterXYZ which happens after the method was actually executed. It can be used to re-
spond on various conditions, such as displaying additional information after a change
in the data. If an error occurred during the execution of the method XYZ, then this
event will be skipped. For instance, AfterOpen will not be fired if a SQL-based
dataset is opened which has a syntax error in it’s SQL statement: the Open method
will raise an exception, and the AfterOpen event will not be called.

The navigation events are an exception to the naming rule: The events related to scrolling
through the data are named AfterScroll and BeforeScroll.

Some of the events will be explained in the following sections.

8 Creating a GUI to display and manipulate data

In order to display data in a GUI, a set of so-called DB-Aware controls exist: these are
descendents of standard controls, which communicate with a TDatasource instance:
They have usually 2 properties:

DataSource the TDatasource instance from which data and event notifications should
be accepted.

DataField the name of the field in which the control is interested. The control will display
and manipulate the value of this field only, for the current record.

Some controls - notably, the Grid and DBNavigator control - do not have a DataField
property, because they do not act on a single field but on the data as a whole.

In general, the following steps should be taken in order to display and/or manipulate data
in a form:

• Drop one or more TDataset descendents on the form, and connect them to a
database connection component if the descendent requires this. Set the needed prop-
erties to select the data one wishes to access (this can be a filename or an SQL query).

• If the datasets will always display the same data, it is good practice to create persis-
tent fields: This defines all fields in the dataset as components, owned by the form.
This will allow to set some display properties for the fields, and these display prop-
erties will stored and used in the form at runtime. Additionally, the persistent fields
provide easy access to the fields: supposing a field ItemCount exists in a dataset,
then creating persistent fields, and renaming the field component to ItemCount,
allows to access it’s content as follows:

Procedur TMyForm.MyMethod;

begin
ItemCount.AsInteger:=0;

end;

The field (in the data sense) of the dataset is available as a field (in the Object Pascal
sense) of the form class.

• Drop one or more TDatasource components on the form, and connect them to the
TDataset descendent.

• Drop as many DB-Aware controls on the form as needed to edit the data, and connect
them to the TDatasource components.

11



If everything is set up correctly, then setting the Active property of the TDataset in-
stances to True will actually display the data in the form while it is being designed in the
Lazarus IDE. Most of this can be accomplished without a single line of code.

The following data-aware controls are available by default in the Lazarus IDE:

TDBLabel a simple label control that shows the text of any field.

TDBEdit a simple edit control to edit the contents of a single field.

TDBMemo a simple memo control to edit the contents of a single field as multi-line text.
It knows about BLOB fields, and can show them.

TDBImage an image showing control. It shows an image which it can load from a BLOB
field.

TDBListBox a listbox control. It allows to select the value of a field from an item in the
listbox.

TDBComboBox a combobox control. It allows to select the value of a field from an item
in the combobox list.

TDBCheckBox a checkbox control. It allows to show and set a boolean field: the values
for the checked and unchecked state can be specified.

TDBRadioGroup a radiogroup control. It allows to show the contents of an integer field,
and represents them in the radiogroup by checking the item whose itemindex corre-
sponds to the value of the field.

TDBCalendar a calendar control to show the value of a TDateTime field.

TDBNavigator is a specialized control: it shows a series of buttons. Each button corre-
sponds to a TDataset navigation method, or to one of the data manipulation methods.
Clicking the appropriate button will execute the corresponding action on the dataset.
The control keeps track of the state of the dataset, and disables the buttons that cannot
be used in the current state of the dataset.

TDBGrid shows the contents of the dataset in a grid: not only the current record is shown,
but all records that fit in the grid are shown. The data in the grid is editable: clicking
any cell will edit the data in the cell.

When compared to their non-data aware ancestors, most of these controls do not have addi-
tional properties except the Datasource and Datafield properties. The components
will be demonstrated in some simple applications further on.

9 The simplest dataset: an In-Memory dataset

Till now, only abstract ideas have been discussed. In the subsequent, some actual imple-
mentations of TDataset will be discussed, and the most simple example is an in-memory
dataset.

The LazMemds package registers in the Lazarus IDE the TMemDataset dataset: this is
a Memory Dataset which keeps any data that is written to it in memory. It has methods to
load and save the data to disk, and a method to define a new dataset. In real applications,
it’s not really recommended to use TMemDataset for anything else than lookup lists, but
it can nevertheless be used as a persistent data store. The ability to store data on disk will
be used to write a small address book application, which will demonstrate how to create a
dataset in memory or load one from disk.

12



To do this, a new project is created, with a single form TMainForm. On the form, a menu
is created with 4 items:

New to create a new address book.

Save to save an address book to file.

Open to load an address book from file.

Quit to quit the application.

After this, a TMemDataset component is dropped on the form (namedMDAdresses),
together with a TDatasource component (DSAddresses), and the Dataset property
of the TDatasource is set to the memdataset component. All is now in place for the form
to start showing data.

In the OnClick event handles of the New menu, the following code is created:

procedure TMainForm.MINewClick(Sender: TObject);
begin

NewBook;
end;

procedure TMainForm.NewBook;

begin
With MDAddresses do

begin
Close;
FieldDefs.Clear;
FieldDefs.Add(’FirstName’,ftString,50);
FieldDefs.Add(’LastName’,ftString,50);
FieldDefs.Add(’Email’,ftString,100);
FieldDefs.Add(’Mobile’,ftString,20);
FieldDefs.Add(’Private’,ftBoolean,20);
FieldDefs.Add(’Comment’,ftString,1024);
CreateTable;
FileName:=’’;
Open;
end;

end;

The NewBook procedure first closes the dataset. If the dataset was already closed, this
action does nothing, so it is safe to call. After that the FieldDefs collection is cleared,
and definitions for the fields needed in the application are added to it. Based on these defi-
nitions, the CreateTable method of TMemDataset will then create the internal struc-
tures needed to maintain data corresponding to the field definitions. Finally, the FileName
property is cleared, and the dataset is opened. The filename must be cleared, because if it
is set, the Open method will attempt to locate the file and load the data from the file -
overwriting the newly-created structures.

The OnClick handler of the Open menu item does just this:

Procedure TMainForm.MIOpenClick(Sender: TObject);
begin

With ODAddr do

13



If Execute then
LoadFromFile(FileName);

end;

procedure TMainForm.LoadFromFile(AFileName : String);

begin
With MDAddresses do

begin
LoadFromFile(AFileName);
FileName:=AFileName;
Open;
end;

end;

The ODAddr component is a TOpenDialog, and will present the user with a dialog to
choose a file. If the user chose a file, then the LoadFromFile method of the form is
called, and this will simply call the LoadFromFile method of TMemDataset. This
method loads the fielddefs from the file as well as the data to be maintained in memory, but
it does not open the dataset. Only after Open was called, the dataset will be opened and
the data will be available for editing.

The Save menuitem will do something similar:

procedure TMainForm.MISaveClick(Sender: TObject);
begin

With SDAddr do
if Execute then

SaveToFile(FileName);
end;

procedure TMainForm.SaveToFile(AFileName : String);

begin
With MDAddresses do

begin
SaveToFile(AFileName);
FileName:=AFileName;
end;

end;

Setting the FileName property ensures that the data is saved to the filename when the
dataset is closed.

Now all is ready to actually display and edit the data. To display the data, a top-aligned
panel with a TDBNavigator component is dropped on the form, and the DataSource
property of the navigator is set to the DSAddresses datasource. A second panel is
dropped, (bottom aligned) and on it, 4 TDBedit controls, a TDBCheckBox control and a
TDBMemo control are dropped. Like for the navigatore control, the Datasource property
of all these edits is set to the DSAddresses datasource. The DataField property of the
4 edit controls are set to the fieldnames FirstName, LastName, EMail and Mobile.
The checkbox is set to point to the Private field, and the TDBMemo will contain the
Comment field.

Last but not least, a TDBGrid is dropped between the 2 panels, and it’s alignment set to
alClient so it fills the space between the 2 panels. Its Datasource property is set to

14



Figure 2: The memory dataset at work

DSAddresses.

Now the application is completely ready to go. Some more cosmetic changes (adding
labels, setting alignments) may be applied. When running the finished application, after
adding some data, it will look something like figure 2 on page 15.

10 Adding some structure: CSV data

A common format to transport data is in a CSV format: Comma Separated Values. Lazarus
offers a TSDFDataset descendent of TDataset to deal with this. It is contained in the
LazSDF package.

This TDataset descendent does not differ a lot from TMemDataset in it’s use. It has 3
important properties:

Delimiter The character used to delimit records in a line. By default this is the comma (,).

FirstLineAsSchema This tells TSDFDataset to treat the first line as a line containing
the fieldnames.

FileName The name of the file to read when ’Open’ is called.

To demonstrate the use of this component, a small application will be created that can be
used as a CSV viewer.

It’s beginnings are much the same as the memdataset demo application:

• A TSDFDataset instance (named CSV).

15



• A main menu with New, Open, Save and ’Save as’ menu items under the file menu.

• A panel with a checkbox (CBFirstLineAsSchema) and a DB navigator control.

• A grid, which fills the whole form.

• TOpenDialog and TSaveDialog components, named ODCSV and SDCSV.

The menu event handlers look much the same as in the previous application:

procedure TMainForm.SaveToFile(ForceRename : Boolean);

begin
If ForceRename or (CSV.FileName=’’) then

With SDCSV do
If Not Execute then

Exit
else

CSV.FileName:=FileName;
CSV.SaveFileAs(CSV.FileName);

end;

The ForceRename parameter will be set to True if the method is called from the Save
Asmenu item. If so, the SDCSV dialog will be used to get a value for the Filename prop-
erty of the CSV component. After this the SaveFileAs method of the CSV component
is used to actually save the data.

To load a file is slightly more complicated:

procedure TMainForm.LoadFromFile(AFileName : string);

Var
B : Boolean;
C : Char;

begin
C:=DetermineSeparator(AFileName,B);
If (C=#0) then

exit;
With CSV do

begin
Delimiter:=C;
FirstLineAsSchema:=B;
CBFirstLineAsSchema.Checked:=B;
FileName:=AFileName;
Open;
end;

end;

The first thing to do is take an educated guess at the values for the Delimiter and
FirstLineAsSchema properties. This is done in the DetermineSeparator rou-
tine. After the values have been obtained, the properties are set, as well as the FileName
property. Finally, the dataset is opened.

The DetermineSeparator routine takes a straightforward approach to guessing the
delimiter character:

16



Function TMainForm.DetermineSeparator(AFileName : string;
var HasFieldNames : boolean) : Char;

Const
Seps : Array[1..5] of char = (’,’,’;’,#9,’@’,’#’);

Var
F : TextFile;
S,S2,T : String;
I : Integer;

begin
AssignFile(F,AFileName);
Reset(F);
Try

ReadLn(F,S);
Finally

CloseFile(F);
end;
Result:=#0;
I:=0;
While (Result=#0) and (I<5) do

begin
Inc(I);
If (Pos(Seps[i],S)<>0) then

Result:=Seps[i]
end;

If (Result=#0) then
begin
S2:=Format(SDelimiterChar,[Copy(S,1,40)]);
If InputQuery(SDelimiter,S2,T) then

if Length(T)=1 then
Result:=T[1]

else
begin
T:=Format(SErrInvalidSeparator,[T,Length(T)]);
MessageDLG(T,mtError,[mbOK],0);
end;

end;
If (Result<>#0) then

HasFieldNames:=(Pos(’ ’,S)=0) and (Pos(Result+Result,S)=0);
end;

It simply reads the first line of the file, and then tests for the presence of some well-known
separator characters. If none is found, the user is prompted for a character. After this, the
HasFieldNames parameter is determined by checking whether the first line contains no
spaces or empty fields.

If the routine didn’t guess the FirstLineAsSchema parameter correct, it can be set by
the user by checking or unchecking the checkbox at the top of the main window. In it’s
OnChange handler, the following code is executed:

procedure TMainForm.CBFirstLineAsSchemaChange(Sender: TObject);

Var

17



B : Boolean;

begin
With CSV do

begin
B:=Active;
Close;
FirstLineAsSchema:=CBFirstLineAsSchema.Checked;
If B then

Open;
end;

end;

Note that the dataset is closed prior to setting the FirstLineAsSchema property. Set-
ting this property while the dataset is open will result in an exception. If the dataset was
open to start with, it is reopened again after setting the property.

The TDBGrid grid in which the data is shown has quite some options controlling it’s
appearance and behaviour. The most important properties are:

AutoFillColumns Will resize the columns so they fit the grid.

AutoEdit will automatically set the dataset in edit mode if the user starts

Options a set property with a lot of visual options;

TitleStyle The style of the title columns.

To demonstrate the effect of these options, a small second form is created which can
be shown alongside. The RTTI controls on this form are linked to the properties of the
TDBGrid. The View|Grid options menu item can be used to show this form. When
shown, it looks like figure figure 3 on page 19. The effect of the various elements in the
Options property can be examined by setting them in the options form. Obviously, the
TSDFDataset component can also be used to create a new CSV file. This is done quite
simple in the OnClick event handler of the ’New’ menu item:

procedure TMainForm.MINewClick(Sender: TObject);
begin

With SDCSV do
If Execute then

NewCSV(FileName);
end;

To create a new file, a filename is needed, so the handler starts by asking for a filename.
If the user didn’t cancel, then the NewCSV method is called, passing the filename as a
parameter:

procedure TMainForm.NewCSV(AFileName : String);

begin
With TNewCSVForm.Create(Self) do

Try
If (ShowModal=mrOK) then

begin
CSV.Close;
CSV.Schema.Assign(Schema);

18



Figure 3: The CSV viewer with options dialog

19



CSV.FirstlineAsSchema:=False;
CSV.FileName:=AFileName;
CSV.FileMustExist:=False;
CSV.Open;
end;

Finally
Free;

end;
end;

This method uses a small auxiliary form, which has a Schema property of type TStrings.
Each string item in the stringlist will be treated as a fieldname for the dataset. After assign-
ing the stringlist to the Schema property of the TSDFDataset, the FileName and
FirstLineAsSchema must be set. To create a new dataset, the FileMustExist
property should be set to False, and then Open should be called to actually create and
open the dataset.

11 Conclusion

In this article, the architecture of the data access mechanism in Free Pascal/Lazarus has
been presented, and demonstrated with 2 specific examples that operate on data in memory
or in simple flat files with comma-separated values. In addition to comma-delimited
files, there is also a TFixedFormatDataSet component available. It works exactly the
same as the TSDFDataset, except that it expects a file with fixed-length data instead of
comma-separated data.

In the next and last article, the components for accessing SQL-Based databases and DBF
files will be examined in more detail. They offer more possibilities than the simple compo-
nents presented here.

20


	Introduction
	Architecture
	Navigating through data
	Accessing data in the fields
	Manipulating data
	Errors when manipulating data
	Dataset events
	Creating a GUI to display and manipulate data
	The simplest dataset: an In-Memory dataset
	Adding some structure: CSV data
	Conclusion

