
Getting started with Lazarus: Common controls

Michaël Van Canneyt

May 1, 2007

Abstract

In this next article on Getting started with Lazarus, more controls are investigated:
editing controls, and (dropdown)list controls such as listboxes and comboboxes.

1 Introduction

In the previous article on working with Lazarus, simple controls were presented: Passive
layouting controls such as panels and bevels. Simple active controls such as checkboxes,
radiobuttons and groups of these controls were also covered.

In this article, some more active controls are discussed: edit controls and list controls.
The edit controls allow users to enter texts - either a single line of text (in a TEdit
control) or multiple lines of text (in a TMemo control). Both controls are descendents
of TCustomEdit, which introduces some common behaviour for both types of controls.

Some specialized forms of the TEdit control exist: The TSpinEdit and TFloatSpinEdit
controls, which allow editing of numerical values. The TEditButton control displays
a speedbutton next to the control, which can be used for popping up some dialog: The
TFileNameEdit, TDirectoryEdit, TDateEdit and TCalcEdit are specialized
descendents of this control, which introduce specialized actions for the button. (the com-
plete dependency tree is in figure 1 on page 1.)

The list controls introduced by Lazarus are the well-known TComboBox, TListbox
and TCheckListBox controls, with some specialized descendents such as TColorBox,
TColorListBox and TFileListBox. They allow to select one or more items from a
scrollable list of items.

Figure 1: Edit controls hierarchy

1



2 Basic edit controls

The most common input action for a user is probably typing some text in some field. This
is done with the TEdit and TMemo controls. The difference between the 2 controls is that
the former can only contain a single line of text, and the latter can handle more than one
line of text. Both are descendents of TCustomEdit

The TEdit control has the following relevant properties:

AutoSelect if set to True, the whole text in the edit control will be selected when the
control receives focus. This means that as soon as the user types some text in the
edit control, any previous text will be completely overwritten with the newly typed
text. If set to False (the default) then newly typed text will simply be inserted at
the cursor position.

Charcase determines the case of typed text: ecNormal will leave any typed letters as-is.
ecLowercasewill translate any text to lowercase characters. ecUppercasewill
transform any typed letters to uppercase letters.

EchoMode Determines how typed characters are shown in the edit control: emNormal
means they are shown exactly as they are typed by the user. A value of emNone
means the user is typing blind: no characters are echoed to the screen. Lastly,
emPassword means that the password character is substituted for all characters
which the user types in the box.

MaxLength If set to a value larger than zero, this value will be used as the maximum
length of the text the user can enter. If the maximum length is reached, any characters
the user types will be discarded. (this includes copy and paste actions)

PasswordChar If EchoMode is set to emPassword then all letters in the Text property
will be substituted by this character prior to displaying the text. Note that the Text
property retains it’s original value (i.e. what the user typed).

Read-Only If set to True, the edit control is read-only. This means the user cannot type
anything in the control. In difference with setting the Enabled property to False,
the control is still active, and the user can still give focus to the control, and can for
example select the text in the control.

SelLength this run-time property returns the length of the selection in characters. It can
also be set.

SelStart this run-time property returns the position of start of the the selection. It can also
be set, and will cause the cursor to move. Note that the position is zero-based.

SelText this is the selected text in the edit control. It can be retrieved, but can also be set.
Any previous selection will be replaced by the new value of this property, regardless
of whether the control is in insert or overwrite mode.

Text This is the actual text displayed in the control.

The following events are important:

OnChange Fired whenever the text is changed in the edit box - it is e.g. fired for each
typed character.

OnKeyPress is fired whenever a key is pressed: this event can be used to disable certain
keys when typing in the control.

2



OnEditingDone is fired when the user has finished editing the contents in the edit control.
Currently, 2 actions will trigger this event: the focus leaves the control, or the ENTER
key is pressed. Using this event to check for changes is preferred if a time-consuming
check must be done: the event is fired less often than the OnChange event.

The meaning of all these properties and events is demonstrated in the first application
(editdemo). It has a simple main form, which allows to set most properties of a TEdit
instance (called ETest) with the help of some specialized editors.

The use of the OnKeyPress event is demonstrated with a second edit control: if the text
of this second control is not empty, the text is used to determine which characters can be
entered in the test edit control. The OnKeyPress event is coded as follows:

procedure TMainForm.ETestKeyPress(Sender: TObject;
var Key: char);

Var
S : String;

begin
// Only check alphanumerical characters.
if Upcase(Key) in [’A’..’Z’,’0’..’9’] then

begin
S:=EAllowedChars.Text;
If (S<>’’) and (Pos(Key,S)=0) then

Key:=#0;
end;

end;

If the key is a alphanumerical characters, the event handler checks if it appears in the text
entered in the edit control EAllowedChars. If it is not, the key is set to #0, causing it to
be ignored.

The SelStart and SelLength properties are demonstrated using 2 spinedit controls
and a button: As soon as the button is clicked, it reads the begin and end position for the
selection from the 2 spinedit controls, and if these positions are valid, sets the SelStart
and SelLength properties:

procedure TMainForm.BSelectClick(Sender: TObject);
begin

If SEFrom.Value>=Length(ETest.Text) then
Raise Exception.Create(SErrSelStartTooBig);

If SETill.Value>=Length(ETest.Text) then
Raise Exception.Create(SErrSelEndTooBig);

If SETill.Value<SEFrom.Value then
Raise Exception.Create(SErrTillSmallerThanFrom);

ETest.SelStart:=SEFrom.Value;
ETest.SelLength:=(SEtill.Value-SEFrom.Value);

end;

Similarly, the SelText property can be demonstrated with an edit control (ESel) and a
button (BSetSelection). As soon as the button is clicked, the selection in the ETest
edit control is replaced with the text in the ESel edit control:

procedure TMainForm.BSetSelectionClick(Sender: TObject);

3



Table 1: Scrollbars
Value Visible scrollbars
ssNone No scrollbars are ever shown
ssBoth Both scrollbars are always shown
ssHorizontal Always show a horizontal scrollbar
ssVertical Always show a vertical scrollbar
ssAutoBoth Show both scrollbars when needed
ssAutoHorizontal Show a horizontal scrollbar when needed
ssAutoVertical Show a vertical scrollbar when needed

begin
ETest.SelText:=ESel.Text;

end;

The selection can be cleared with a single method call: ClearSelection. The whole
text of the control can be cleared with the Clear method of TEdit. 2 buttons have been
dropped on the form to demonstrate these methods.

The TMemo control has the same function as the TEdit control, but allows to enter mul-
tiple lines of text: the number of lines is not really limited. The control has the possibility
to display scrollbars if the length of the lines is too long, or if the number of lines is big-
ger than the number of lines that can be displayed at once. Because of these features, the
TMemo control has quite different properties than the TEdit control:

Lines this is the main property of the memo control: the lines of text that are displayed
in the control: a TStrings instance. Any changes to the stringlist are immediatly
displayed in the control.

ReadOnly As in TEdit - the contents of the control can be seen but not edited.

ScrollBars This property determines when horizontal or vertical scrollbars are shown. The
allowed values are shown in table 1.

WantTabs if set to True, the TAB key is used by the memo control: it will display a tab
character. The normal behaviour (when this value is False) is to switch focus to
the next control.

WordWrap if set to True, when text is typed which is longer than the length of a visible
line, the text will be wrapped to the next line.

The SelText, SelStart and SelLength properties function as in the TEdit control,
which is not entirely convenient: the position origin is relative to the first character of the
first line in the control.

Likewise, the Clear and ClearSelection methods of TMemo do the same as the
methods in TEdit.

All this is demonstrated in the second demo application: memodemo. The application is
not that different from the edit application. An extra button exists (BFill), which fills the
memo with a lot of data (standard 50.000 lines). Depending on the operating system, this
operation can be very slow, since the addition of each line can cause the control to repaint
itself. Obviously, this is a time-consuming operation, which should be avoided if possible.
Luckily, there is a way to do this:

Under the BFill button is a CBOptimize checkbox. When checked, the filling routine
calls the BeginUpdate at the start of the filling routine, and calls EndUpdate at the end
of the filling routine. Both are methods of the Lines property of the memo. The effect

4



of this is that the memo will only update itself once, at the EndUpdate call. The routine
FillMemo looks like this:

procedure TMainForm.FillMemo(B : Boolean);

Const
LineCount = 50000;

Var
I : Integer;
Start : TDateTime;
S : String;

begin
Start:=Now;
With MTest.Lines do

begin
If B then

BeginUpdate;
try

Clear;
For I:=1 to LineCount do

Add(’This is line ’+IntToStr(I));
Finally

If B then EndUpdate;
end;
S:=FormatDateTime(’hh:nn:ss.zzz’,Now-Start);
S:=Format(SFillTime,[LineCount,S]);
ShowMessage(S);
end;

end;

At the end of the routine, the time it took to fill the memo with 50.000 lines is displayed.
On some widget sets, the difference between the optimized routine and the ’normal’ routine
is not big, but on others it can be very big: it is therefore recommended always to surround
heavy modifications of the lines property with calls to BeginUpdate and EndUpdate,
best in a Try...Finally block to avoid errors (lockup) in case of an exception.

3 Specialized edit controls

The TEdit and TMemo controls are the basic editing controls. As shown in figure 1 on
page 1, there are quite some more edit controls, descendent from the TCustomEditButton
control. This control is an ordinary edit control, but has a speedbutton control attached to
it, which can be clicked. In the controls delivered with Lazarus, the button is used to pop
up a dialog. The result of the dialog (in some form) is then stored as the edit text.

The TEditButton control is a TCustomEditButton descendent which simply pub-
lished the newly introduced properties and events. The following properties are published:

ButtonWidth Width of the speedbutton. The height is always equal to the height of the
edit control.

ButtonOnlyWhenFocused If set to True, the speedbutton is only visible when the edit
control has focus.

5



DirectInput if set to True, the user can type a value in the edit control. If it is set to
False, the only way to enter something in the edit control is by clicking the speed-
button, thus allowing more control over the entered values.

Flat if set to True, the speedbutton has a flat look.

Glyph Contains the image shown in the button.

NumGlyphs Number of images in the glyph.

OnButtonClick Event triggered when the user clicks the speedbutton.

The effect of the various properties can be tested in the editbuttondemo application.
The OnButtonClick event is coded as follows:

procedure TMainForm.ETestButtonClick(Sender: TObject);

Var
S: String;

begin
S:=ETest.Text;
If InputQuery(SPromptCaption,SPrompt,S) then

ETest.Text:=S;
end;

The InputQuery call is a standard call in the LCL, declared as follows:

Function InputQuery(Const ACaption, APrompt : String;
Var AValue : String) : Boolean;

It shows a dialog with caption ACaption and prompts the user with message APrompt
to enter a string. The string is returnedin AValue. If AValue is not empty when the
function is called, it is set as the default value. The function returns True if the user ended
the dialog with the ’OK’ button, it returns False otherwise.

Several controls are descended from TCustomEditButton:

TFileNameEdit the dialog popped up is one of the filename dialogs. When the dialog is
closed, the selected filename is set as the text of the edit control. The control has
some extra properties which control the kind of dialog that is shown, plus all the
common properties of the file dialogs. It has an extra event OnAcceptFileName,
which can be used to verify and possibly change the selected filename.

TDirectoryEdit the dialog popped up is the directory selection dialog. When the dialog
is closed, the selected directory is set as the text of the edit control. The control has
some extra properties which control the appearance of the directory dialog.

TDateEdit when the speedbutton is clicked, a small calendar pops op, and the user can
select a date. The selected date is set as the text of the edit control.

TCalcEdit when the speedbutton is clicked, a small calculator pops op, and the user can
perform some calculation. The calculated value is set as the text of the edit control.

All these controls are demonstrated in the various demo applications. In figure figure 2 on
page 7, some of the demo applications are shown.

6



Figure 2: Edit control demos

2 edit controls do not appear on the class hierarchy chart: TSpinEdit and TFloatSpinEdit.
These controls are useful for editing an integer or floating-point value: they have up and
down arrows attached to them, which can be used to increment or decrement the value
shown in the edit control. They are not on the list because they do not descend from
TCustomEdit. Instead, they descend directly from TWinControl. Nevertheless, these
controls have roughly the same properties as a TCustomEdit control, and have some
extra properties which control their appearance.

Decimals The number of decimal places shown in the control - this property is only present
in the TFloatSpinEdit control.

Increment The amount by which the value shown in the control is incremented or decre-
mented when one of the up/down arrows is clicked.

Maxvalue The maximum value that can be shown in the control.

MinValue The minimum value that can be shown in the control.

These values and their impact can be tested in the provided test applications.

4 Listboxes

Listboxes can be used to select one or more items from a list. The list of is always visible
in a TListBox control. The function of this control (to select one or more items from a
list of items) is similar to that of the radiogroup or checkgroup. However, the radiogroup
or checkgroup are not scrollable, which makes them unsuitable for large lists: the listbox
shows as many items as possible, but allows to scroll in the complete list.

7



The list of items consists of a list of strings - a TStrings instance, but both controls
have support for drawing the items, so it’s possible to represent the items in a graphically
attractive way.

The listbox is the more simple control of the 2. It simply shows the list of items, and the
user can select one of the items by clicking on it. The behaviour of the listbox is controlled
by the following properties:

ExtendedSelect if set to True (the default) then extended selection mechanisms become
available when the control is in multiselect mode: CTRL-Clicking to add an item
to a selection, or Shift-Click to add an item. If set to False, items must be
selected (or deselected) by double-clicking them.

IntegralHeight If True, an item won’t be drawn unless it fits completely in the listbox.

ItemIndex the index of the selected item in the list if the list is not in multiselect mode.
This is a run-time property. The index is zero-based.

Itemheight The height of an item (in pixels).

Items the list of strings that is shown in the list.

Multiselect If set to True, multiple items can be selected from the list.

Selected a boolean array property: for each item in the list, the array indicates whether it
is selected (True) or not (False). This property can be used only when the list is
in multiselect mode.

Sorted if True, the items in the list are kept sorted.

Style determines whether the listbox is an ordinary listbox (lbStandard), an owner-
drawn listbox with fixed height for the items (lbOwnerDrawFixed) or with vari-
able height (lbOwnerDrawVariable). In both cases, the OnDrawItem event
must be used to draw the items in the list.

TopIndex The (zero based) index of the item that is shown at the top of the list.

All these properties are demonstrated in the listboxdemo application. The Delete
button shows how to use the Selected property to determine which items are selected:

procedure TMainForm.BDeleteClick(Sender: TObject);

Var
I : Integer;

begin
With LBTest do

if MultiSelect then
begin
For I:=Items.Count-1 downto 0 do

If Selected[i] then
Items.Delete(I);

end
else

Items.Delete(ItemIndex);
end;

8



Note that the list is traversed in reverse order.

The remark made for the memo control - about adding a lot of items to the list - is also
valid for listboxes: when doing a long list of changes to the Items property, it’s best to
enclose this operation in a BeginUpdate/EndUpdate pair of statements. This is again
demonstrated by the fill button in the demo application.

The fact that the Items property of a TListbox is of type TStrings is quite useful:
the Objects property can be used to associate an object with each of the items in the
list: this can be useful for OwnerDraw listboxes, or for small database objects. This can be
easily demonstrated. Assume a small database application, which manages a collection of
songs (e.g. for a playlist). Each song (TSong) is an item in a collection (TSongs), which
forms the playlist. The classes could look as follows:

Type
TGenre = (gUnknown,gRock,gClassic,gSoul,gPop,gHouse,gFolk,gBlues);

{ TSong }
TSong = Class(TCollectionItem)
Published

Property Author : String Read FAuthor Write FAuthor;
Property Title : String Read FTitle Write FTitle;
Property Duration : TDateTime Read FDuration Write FDuration;
Property Genre : TGenre Read FGenre Write FGenre;
Property Album : String Read FAlbum Write FAlBum;

end;

{ TSongs }

TSongs = Class(TCollection)
Public

Procedure Populate;
Property Songs[Index : Integer] : TSong Read GetSong

Write SetSong; Default;
end;

The playlist TSongs can be shown in a TListBox component on a form using the title
and optionally the author. As soon as the user selects one of the items in the listbox, the rest
of the data can be shown in edit controls, allowing the user to edit them. The application
can look as in figure 3 on page 10. Assuming the form has an instance FSongs of type
TSongs, the filling routine for the listbox on the left side can be coded as follows:

procedure TMainForm.ShowSongs;

Var
I : Integer;

begin
For i:=0 to FSongs.Count-1 do

AddSong(FSongs[i]);
If FSongs.Count>0 then

begin
LBSongs.ItemIndex:=0;
ShowSong;
end;

end;

9



Figure 3: Playlist application

10



The actual work is done by the AddSong procedure. The second part of the ShowSongs
procedure is simply making sure that a song is selected, and showing the details of this
song. The AddSong routine is coded as follows:

function TMainForm.AddSong(S : TSong) : Integer;

begin
Result:=LBSongs.Items.AddObject(SongCaption(S),S);

end;

As can be seen, the AddObject procedure is used to add both a description of the song
as well as the song object itself to the Items property of the listbox. The SongCaption
function constructs a display text from a song object:

function TMainForm.SongCaption(S : TSong) : string;

begin
Result:=S.Title;
If CBAuthor.Checked then

Result:=S.Author+’ - ’+Result;
end;

It takes into account the setting of the ’Authors’ checkbox.

The AddSong function above returns also the Index property of the newly added item
(as returned by AddObject) This is used to set the current item when a new song is added:

procedure TMainForm.BaddClick(Sender: TObject);

Var
S : TSong;

begin
S:=FSongs.Add as TSong;
S.Author:=’New author’;
S.Title:=’New song’;
LBSongs.ItemIndex:=AddSong(S);
ShowSong;

end;

More methods deal with the listbox objects, but the interested reader is referred to the
sources of the demo application (listboxobjects).

The MultiSelect property of a TListBox determines whether a user can select more
than one item in the listbox. From a user’s point of view, it may be preferrable to have a
checkbox next to the items he wants selected, such as in a TCheckGroup control. The
TCheckListBox shows all it’s items with a checkbox in front of it. The state of each
checkbox can be verified using the Checked array property. The demo application check-
listboxdemo has a button which, when clicked, executes the following code:

procedure TMainForm.BShowClick(Sender: TObject);

Var
I : Integer;
S : String;

11



begin
S:=SCheckedItems;
For I:=0 to LBTest.Items.Count-1 do

If LBTest.Checked[i] then
S:=S+sLinebreak+LBTest.Items[i];

ShowMessage(S);
end;

It simply loops over all items, and saves the ones that are checked. Note that the TCheckListBox
still has the MultiSelect property, and the Selected array such as they exist in
TListbox. The Checked and Selected properties are independent of each other
and can both be used.

Another descendent of the TListBox control is the TFileListBox. It can be used to
show a list of files from a directory, allowing the user can select some files. There are 2
properties which determine which list of files is shown:

Directory The directory from which files should be shown. This property currently is not
published, and should be set run-time.

FileName is the name of the currently selected file.

FileType The attributes which a file should have to be shown in the listbox. The values
are equivalent to the values used in the FindFirst/FindNext calls found in the
sysutils unit.

Mask A file mask specification, as used in FindFirst call of the sysutils unit. Do not
specify a path here.

The UpdateFileList method can be used to update the list of files. It’s called auto-
matically when one of the above properties is changed. The filelistboxdemo application
shows how to use this component.

The TColorListbox control is a descendent of TListbox which allows to select a set
of colors in a list of pre-defined system colors (the number of items in the list is determined
by the Palette property). Each color is shown as a name with a small square in front
of it, colored in the appropriate color. The shown colors are available in the Colors
array property - this is useful when determining which colors are selected when the listbox
allows to select multiple colors. If only a single color can be selected, the selected color is
available in the Selection property - it can be both read and set.

5 Combobox

The TComboBox control can be used for the same purposes as a listbox. In difference with
a TListbox control, the list of items to select from is always hidden and can be shown
using a button, which will cause the list to drop down. As a result, the TCombobox control
uses less room than a listbox or a radiogroup.

Additionally, an item which is not present in the list of items can be entered in the com-
bobox by simply typing the text in the editable part of the control: in this case the com-
bobox acts as a normal edit control, with a list of predefined values from which the text can
quickly be set, much like a histroy list. This behaviour is customizable.

The TCombobox control has a lot of properties controlling it’s behaviour:

12



ArrowKeysTraverseList if set to True, using the Up and Down arrows while the control
has focus, will select the previous or next item in the list. If False, the mouse must
be used to select an item.

AutoComplete If set to True, when typing text in the control, the text will be completed
with the first matching text in the items. A match is found when the item starts with
the same characters as the already typed text. Much like an ’incremental search’ kind
of behaviour.

AutoCompleteText can be used to fine-tune the autocomplete option. It is a set with vari-
ous values, which are self-explaining. Including the first item in the set (cbActEnabled)
is equivalent to setting the AutoComplete property.

AutoDropDown if set to True, then the list will be made visible as soon as a character is
typed in the combobox.

AutoSelect is the same as for the TEdit control: if set to True, the whole text is selected
when the combobox gets control.

CharCase is also the same as for the TEdit control: it determines the case (upper/lowercase)
of the typed characters.

Dropdowncount Determines how many items are shown when the dropdown list is shown.
If more items are in the list than the value set here, scrollbars will be shown to allow
scrolling in the list.

ItemHeight The height of the items in the list.

ItemIndex The index of the currently selected item. It can also be set: it has only a
meaning if the style is one of csDropDownList or one of the ownerdraw styles

ItemWidth The width of the dropdown list - in pixels

MaxLength The maximum length of text that can be shown. Note that if the text of an
item in the list is longer than the value specified here, the text will be clipped.

Sorted Determines whether the items in the list appear sorted.

Style can be used to specify the style of the combobox.

The Style property can have several values:

csDropDown the user can enter text freely, and can use the list to set the text to a prede-
fined value. Newly entered texts are not automatically added to the list.

csDropDownList The user can only select a value which appears in the list.

csOwnerDrawFixed Like csDropDownList, but the items are drawn in the OnDrawItem
event, with fixed heights.

csOwnerDrawVariable Like csDropDownList, but the items are drawn in the OnDrawItem
event, with variable heights.

csSimple On Windows, this gives the combobox the appearance of an edit control with a
listbox under it (i.e. the list is always visible). Other than that the control acts like a
csDropDown combobox. On other platforms, this value equals the csDropDown
style.

13



Figure 4: The combobox demo

14



The combobox is demonstrated in the comboboxdemo application, as in figure 4 on page
14.

As for the Listbox, the Items property is of type TStrings, and objects can again be
associated with it. The songs application demonstrated above, can be adapted to use this:
Instead of making the author a string in the TSong class, a separate TAuthor class is
introduced which introduces some new properties:

TAuthor = Class(TCollectionItem)
Published

Property Name : String Read FName write FName;
Property FirstName : String Read FFirstName Write FFirstName;
property IsGroup : Boolean Read FIsGroup Write FIsGroup;

end;

The simple edit control to edit the author can now be replaced with a combobox (CBAuthor),
which shows the name of the author, but keeps a reference to the TAuthor instances of the
list of authors in the Objects property. This instance can then be used to set the Author
property of the TSong instance when the user selects an author. Likewise, when showing
the details of an author, the ItemIndex property of the combobox can be set to the index
of the TAuthor instance in the items:

procedure TMainForm.SetAuthor(const AValue: TAuthor);

begin
With CBAuthor do

if (AValue=Nil) then
ItemIndex:=-1

else
Itemindex:=Items.IndexOfObject(AValue);

end;

The rest of the code can be found in the comboboxobjects demo application.

The TColorBox control is a descendent of TComboBox which allows to select a color
in a list of pre-defined system colors (the number of items in the list is determined by
the Palette property). Each color is shown as a name with a small square in front of
it, colored in the appropriate color. The selected color is available in the Selection
property - it can be both read and set; Like the TColorListbox, the shown colors are
available in the Colors array property.

6 Conclusion

In this article, 16 controls available by default in the LCL were discussed. While these are
considered to be more simple controls, they offer a wealth of possibilities: all of them are
very customizable, simply by setting a few properties. Their versatility is demonstrated
further by the fact that they in fact descend from 4 basic controls: the Edit control, the
Memo control, the Listbox and Combobox. By slightly changing the behaviour of one
out of these basic controls, a wealth of new controls can be created, making common
programming tasks easy and freeing the time of the programmer for the real challenge:
creating a good-looking user application.

15


	Introduction
	Basic edit controls
	Specialized edit controls
	Listboxes
	Combobox

