
Getting started with Lazarus:
Programming actions

Michaël Van Canneyt

November 1, 2006

Abstract

A responsive GUI interface is part of every user-friendly program. Separating GUI
logic from application logic is something which ensures extensibility and good program
design. Actions provide the means to achieve both: they make the user-experience
better, and help in splitting the user interface from the application logic.

1 Introduction

Any program should help the user by providing feedback about what the user can or cannot
do at any moment. Providing this feedback can mean that a button should be enabled or
disabled, an image on a button can be changed, or the action of a button can be changed
depending on the data entered by the user. For example, the ’Login’ button in a login dialog
should not be enabled till at least a user name was entered, and - if a password is required
- a password was entered. Likewise, the ’Save’ button should not be active until there is
something to save: the document was modified or some similar condition.

In an event-driven application, this is usually done by updating the status of the various GUI
elements when something is changed in a screen. Through the appropriate event handlers,
the status of a button can be set. If a lot of data (or controls) needs to be monitored for
changes, this can quickly become a whole lot of event handlers. Further more, the event
handlers will most likely also be used for other things besides updating the status of other
controls.

With Actions, the logic of checking controls and updating the state of other controls can
be separated out: The state of an action is checked (or updated) continuously when the
application is idle, i.e. the user is not doing anything. This obliviates the need for event
handlers in each control that needs to be checked for it’s state: one event handler checks all
controls at regular intervals.

Most applications provide several means of performing the same thing: Saving a document
can be done using a menu entry and a button on a toolbar. Preferably, the menu entry and
the toolbar button show the same image, the same hint, and should be enabled or disabled
at the same time: quite a lot of properties or event handlers will be duplicated - although
the event handlers can be shared.

Here also, actions provide a way to centralize the code: In an action list, all actions that
can be performed by the user are gathered and managed. For instance a ’Save’ action, an
’Open’ action, and so on. The actions can then be associated to several GUI elements:
menus, toolbuttons, normal buttons or checkbuttons. As soon as the user activates one
of the GUI elements, the action is executed: for some pre-defined actions, the action is
performed by the LCL: for example the standard TCutAction will cut the current selection

1



Figure 1: A Login form

and copy it to the clipboard. For other actions (the standard TAction), a user-defined event
is called.

By using actions, the programmer is forced to define clearly what the user actions of a
given form are, independent of the GUI elements to execute this action. By grouping them
in an action list, the programmer has a clear list of well-defined actions. With some extra
coding, the user can be presented with a means of customizing how he wants his actions
presented to him: How the menu is composed, and how the toolbars are layed out, and even
what shortcuts can be used to execute his actions.

2 The actionless approach

To illustrate how actions make programming easier, it is instructive to compare an action-
based form with a form which does not use actions. The example is a simple login form. It
has 2 edit boxes: one for a name, one for a password. A dropdown-list with a role is also
present, plus 2 buttons: a ’Cancel’ and a ’Login’ button. It should look like figure 1 on
page 2

The login button should be active only when the user has provided a username and pass-
word, and has chosen a role. To do this, 4 event handlers must be installed: one for the
OnChange event of each control, and one in the OnCreate event of the form, to initialize
the button. If checking the state of the button was the only thing to be done in these events,
it would be sufficient to write 1 event handler and assign it to all 4 events, and there would
be no gain of using actions. But most event OnChange event handlers do also other things:
for instance clearing the password if the username is changed. The OnCreate handler of
the form also checks the command-line, and copies any username/password options found
on the command-line to the controls.

All this results in the following code in the program:

procedure TLoginForm.ENameChange(Sender: TObject);
begin

EPassword.Text:=’’;
if (EName.Text=’Admin’) then

2



CBRole.ItemIndex:=2;
CheckButton;

end;

procedure TLoginForm.CBRoleChange(Sender: TObject);
begin

CheckButton;
end;

procedure TLoginForm.EPasswordChange(Sender: TObject);
begin

CheckButton;
end;

procedure TLoginForm.FormCreate(Sender: TObject);

Var
I : Integer;

begin
I:=1;
While I<=ParamCount do

begin
If (Paramstr(i)=’-u’) and (I<ParamCount) then

begin
Inc(i);
EName.Text:=ParamStr(I+1);
end

else If (Paramstr(i)=’-p’) and (I<ParamCount) then
begin
Inc(i);
EPassWord.Text:=ParamStr(I);
end;

Inc(I);
end;

CheckButton;
end;

Note the call to CheckButton in each of these event handlers.

The CheckButton code checks whether the Login button can be enabled or not:

procedure TLoginForm.CheckButton;

begin
BLogin.Enabled:=(EName.Text<>’’) and

(EPassword.Text<>’’) and
(CBRole.ItemIndex<>-1)

end;

Obviously, this is a very simple form for demonstration purposes. It could be made even
simpler by re-using the event handler EPasswordChange for the CBRole combobox’
OnChange event handler. This kind of simplifications is exactly why the use of actions is
a good design decision: Supposing that a shared event handler needs to be split up because
for one of the controls an additional check needs to be programmed. In that case, the call to

3



CheckButton can be forgotten or even duplicated to places where it is not needed. What
is more, the call to CheckButton is scattered all over the code. With Actions, this is not
so.

Below, the same form will be programmed using Actions.

3 Actions: Architecture

Actions are non-visible components. They are organized in ActionLists, which are just a
design-time container. Actions have a series of properties, which correspond to properties
often found in visual controls:

Caption The text displayed on the control.

Checked For menus, toolbar- or speedbuttons and checkboxes: whether the item appears
checked.

Enabled If the control is enabled or not.

GroupIndex For menu items, checkbuttons or radiobuttons: the group.

HelpContext, HelpKeyword and HelpType The various help possibilities.

Hint The hint displayed in the tooltip.

ImageIndex The ImageIndex in the image list associated with the control (or action list)

ShortCut, SecondaryShortCuts Shortcut keys associated with the action. The action can
be executed using one of the shortcuts.

Visible Is the control visible or not ?

OnHint Event handler to retrieve the hint for the control.

OnExecute This handler is executed when the action is activated and needs to execute
itself.

OnUpdate This handler is executed in the idle loop of the application: it can be used to
update the status of the action depending on the current state of the form.

As soon as an action is associated with a control - such a control is called a client of the
action - the relevant properties are copied to the control. If any of the properties is changed,
the change is instantly propagated to the client controls.

At least the following controls can be action clients: TForm, TButton, TCheckBox, TRa-
dioButton, TToolButton, TSpeedButton, TMenuItem: They all have an ’Action’ property.
As soon as this property is set, the control is a client of the action. In all cases, as soon as
the control is clicked, the corresponding action is executed, which means the OnExecute
event is executed. Some standard actions perform some well-defined action (copy/cut to
clipboard, etc), and do not need an event handler, although one can be specified.

When an action is executed, the following chain of events is executed:

1. The action list of which the action is part is asked to handle the action.

2. If the actionlist didn’t handle the action, the application is asked to handle the action.

3. If the application did not handle the action, the action tries to execute itself: typically
this means it executes it’s OnExecute event.

4



Figure 2: Execution chain test form

By default, an action disables itself if it cannot execute itself: if no OnExecute event is
set.

To illustrate this, a small test application can be created. It has 3 checkboxes: each of the
checkboxes determines at which level the action is handled. A button is associated with an
action ATest. A log of actions is displayed in a memo. The form is shown in figure 2 on
page 5

The action can be handled at the ActionList level by setting the ActionList OnExecute
handler in the Object Inspector:

procedure TMainForm.ActionList1Execute(AnAction: TBasicAction;
var Handled: Boolean);

begin
Handled:=CBActionList.Checked;
if Handled then

begin
Log(’Action list handling action : ’+AnAction.Name);
DoAction(AnAction);
end

else
Log(’Action list NOT handling action : ’+AnAction.Name);

end;

As can be seen from this code, the Handled parameter can be used to indicate that the
action was handled. If it is not set to True, the action is assumed not to be handled, and is
handed to the application. A similar action can be set at the application level:

5



procedure TMainForm.ApplicationAction(AnAction: TBasicAction;
var Handled: Boolean);

begin
Handled:=CBApplication.Checked;
if Handled then

begin
Log(’Application handling action : ’+AnAction.Name);
DoAction(AnAction);
end

else
Log(’Application NOT handling action : ’+AnAction.Name);

end;

This handler cannot be set in the Object Inspector, it must be set in code, and this is done
in the OnCreate handler of the form:

procedure TMainForm.FormCreate(Sender: TObject);
begin

Application.OnActionExecute:=@ApplicationAction;
ATest.DisableIfNoHandler:=False;

end;

The second line sets the DisableIfNoHandler property of the Action, because cur-
rently it cannot be set in the object inspector. Normally, if a TAction does not have a
OnExecute handler, it disables itself; This is not always desirable, for instance in the ex-
ample application it has no handler. The handler is only set when the ’CBEvent’ checkbox
is clicked:

procedure TMainForm.CBEventChange(Sender: TObject);
begin

If CBEvent.Checked then
ATest.OnExecute:=@DoEventAction

else
ATest.OnExecute:=Nil;

end;

The other methods of the form (Log, DoEventAction) are logging methods, and the
interested reader can consult the application sources to see them.

The 3 stage approach is useful in large applications, when it is necessary to provide a
consistent interface over the various forms. In such cases it makes sense to handle the
actions at the application level, but leave the option to override them at the form level.

4 The login form with actions

Now that the basic structure of actions is clear, the Login form can be re-coded using
actions. To do this, an ActionList is dropped on the form. Using a Right-click, the ac-
tion list editor can be invoked (see figure 3 on page 7). In the editor, a single action can
be added, with caption ’Login’, and name ’ALogin’. Once this is done, the Action
property of the ’BLogin’ button can be set to the ’ALogin’ action in the object inspector.
Now the OnExecute and OnUpdate handlers of the action can be programmed: The
OnExecute handler is implemented with a dummy login:

procedure TLoginForm.ALoginExecute(Sender: TObject);

6



Figure 3: The action list editor

begin
ShowMessage(’Logging in’);

end;

As soon as this is done, one can observe in the Object Inspector that the ’OnClick’ handler
of the button is set to the ALoginExecute method.

The final method to be implemented is the OnUpdate handler of the action. This method
is called when the application enters the idle state, and should always contain very short or
fast code: if too much time is spent updating the action, this will make the application very
unresponsive. For the login form, the handler is simple:

procedure TLoginForm.ALoginUpdate(Sender: TObject);
begin

(Sender as TAction).Enabled:=(EName.Text<>’’) and
(EPassword.Text<>’’) and
(CBRole.ItemIndex<>-1)

end;

Which is almost the CheckButton code. The Enabled property of the action is propa-
gated to the ’Blogin’ button, enabling or disabling it depending on what the user enters.

The CheckButton method can be removed, and the calls to it as well. This makes the
code of the form simpler and less error prone. Indeed, some of the event handlers can now
be removed. For the login form presented here, this is not so much, but for more complex
forms, the gain would be more substantial.

5 Creating new actions

By default, a new action is of type TAction. This is an action which can be used for
all purposes: it’s functionality is provided through event handlers such as OnUpdate and

7



OnExecute. However, there exist some pre-defined classes which execute well-defined
procedures.

There are a lot of pre-defined classes available in Lazarus:

Editing Mostly actions which interact with an edit control: Cut, copy paste the selection,
select the full text, Undo and delete actions.

Help Actions to invoke a help system.

Dialog Actions to open font and color dialogs.

File Actions that fit in a file menu, such as open and save.

Database Actions acting on a TDataset instance (or TDatasource): navigation com-
mands, edit, post, cancel, delete.

For all other actions, either a standard TAction can be used, or an own action class can
be programmed and registered in the IDE.

Programming a custom action is very easy. Only 3 methods need to be overridden. To
demonstrate this, a simple action which clears an edit control will be programmed:

TClearAction = Class(TAction)
Public

function HandlesTarget(Target: TObject): Boolean; override;
procedure UpdateTarget(Target: TObject); override;
procedure ExecuteTarget(Target: TObject); override;

end;

The first method to be programmed is the HandlesTarget method. When updating or
executing an action, first the target of the action is determined. This is done by passing a
series of controls to the HandlesTarget method. The following controls are passed:

1. The currently focused control.

2. The current form.

3. All visible controls on the form.

As soon as an appropriate target is found, the search stops. After a target is found, the
UpdateTarget or ExecuteTarget method is executed. When updating, if no valid
target is found, the action is disabled if the DisableIfNoHandler property is True -
which is the default value for TAction.

So, for the TClearAction, the HandlesTarget should check whether the target is a cus-
tom edit, and whether it has focus. This can be done with the following code:

function TClearAction.HandlesTarget(Target: TObject): Boolean;
begin

Result:=(Target is TCustomEdit) and (TCustomEdit(Target).Focused)
end;

If no target is found, the action will be disabled. If a target is found, it is still possible to
give feedback to the user. In the case of the clear action, the edit control should contain
some text. If no text is present, the action should be disabled:

8



procedure TClearAction.UpdateTarget(Target: TObject);
begin

Enabled:=(TCustomEdit(Target).Text<>’’)
end;

Lastly, when the action is executed, the ExecuteTarget method is called, which should
clear the edit control. This can be done as follows:

procedure TClearAction.ExecuteTarget(Target: TObject);
begin

If (Target is TCustomEdit) then
(Target as TCustomEdit).Clear;

end;

The check to see whether Target is really a TCustomEdit is normally not needed,
since HandlesTarget should have verified this before the Execute method is called.

To register the action in the IDE, a call to RegisterActions can be inserted in the
lazarus package. This should look as follows:

RegisterActions(’Edit’,[TClearAction],Nil);

The first parameter is the category in the Action List Editor. The second is a list of action
classes one wishes to register (just one in the above example), and the last parameter is
a resource component which can contain resources such as images, associated with the
classes. This will not be discussed in this article. Instead, the demo program will create the
action at runtime.

In the example program, some buttons are dropped on a form, as well as a speedbutton, an
edit and memo control. In the OnCreate handler of the form, the action is created:

procedure TMainForm.FormCreate(Sender: TObject);
begin

AClear:=TClearAction.Create(Self);
AClear.Caption:=’&Clear’;
AClear.ActionList:=ALTest;
SBClear.Action:=AClear;

end;

The action is assigned to the speedbutton SBClear. The reason for making it a speedbut-
ton (and not a regular button) is that a speedbutton does not receive focus when it is clicked.
If it were a regular button, the action would never be executed: at the moment of the click,
the HandleTarget would always return False, since the button would have focus, and
therefore the action would never be executed.

When the demo application is run, it should look like figure 4 on page 10. The button will
be active when the focus is on the edit or memo control, and it has some text in it.

6 Conclusion

In this article, it was shown how to work with actions in Lazarus applications. The advan-
tages of actions were explained, and it was shown how to work with them. It was even
shown how to create new custom actions for inclusion in the IDE. One of the benefits of
actions - the ability to customize the toolbars and menu’s of an application by the user - has
not been touched: this may be the subject of an future contribution, as it is a complex topic
which would lead too far for an introduction.

9



Figure 4: The custom action at work

10


	Introduction
	The actionless approach
	Actions: Architecture
	The login form with actions
	Creating new actions
	Conclusion

