Getting started with Lazarus
Forms and Controls

Michaél Van Canneyt

July 2, 2006

Abstract

Lazarus is a cross-platform 2-way RAD tool which can be used to develop almost
any kind of program for Windows, Linux, Solaris or some of the BSD distributions.
The focus is on GUI applications. In this second article, the basics of GUI design will
be explained.

1 Introduction

Basically, all lazarus GUI projects have 2 things in common: they use a TF o rm descendent,
and many descendents from TControl.

In this article, a broad overview of the hierarchy of components is presented, ending with
TForm, which is the basis for all program. After this, the workings of TForm are ex-
plained.

Basically, all controls and non-visual components used in Lazarus descend from the fol-
lowing 4 types:

TComponent this is the parent of all objects which can be manipulated in the Lazarus
IDE: The streaming system (i.e. the process of writing all published properties of a
class to a stream) of Lazarus starts at TComponent. TComponent introduces the
idea of ownership: a component owns’ it’s children: when a component is freed,
it’s children are freed as well. This is a rudimentary form of automatic memory
management. In Lazarus, all components dropped on a form are owned by the form.

TControl All visual components descend from this. TControl descends from TComponent
introduces the idea of position and size, plus the "parent’ relation, which is a visual
relation: a control can be dropped on a parent control, meaning that it’s visual po-
sition is measured relative to the parent control. When a parent control is hidden
(made invisible), it’s visual children are hidden as well. Ultimately, all controls are
parented on a form. Note that the parent-child relation is different from the owner-
owned relation, although they coincide for control dropped directly on the form.

TWinControl This is a descendent from TControl which has an own window handle
associated with it. The window handle is an object which is obtained from the under-
lying GUI system (Windows, X-Windows). A TControl descendent which is not a
TWinControl (i.e. has no window handle) will draw itself on the TWinControl
which is it’s parent.

TForm This is a descendent from TWinControl. Itis the basis for all forms made in the
Lazarus IDE. It owns all controls that are dropped on it, directly or indirectly, and is
the starting point of the streaming system: Lazarus always streams a complete form.

Figure 1: Main items in hierarchy of components

TConponent
[
TControl
I
TWwinContool
[
TForm

The relation between these 4 components is depicted in figure[T]on page 2]

Since TForm is the basic of all GUI programs, this will be discussed first.

2 TForm: The foundation of GUI programs

All Lazarus programs consist of one or more TForm descendents. In difference with all
other GUI controls commonly used in Lazarus programs, TForm is the only class which
is actually subclassed for each type of window: One will never instantiate an instance
of TForm itself, but always a descendent. For all other controls (buttons and so on) an
instance of the standard class (TButton) is instantiated.

However, all this is managed for the developer, by the Lazarus IDE.

For each window in the application, Lazarus creates a TForm descendent, which is the
form that is designed in the IDE. It also creates a global variable with the same name as
the form. Each form is in it’s own unit (the name of the unit can be chosen). By default,
instances of all forms are created when the program starts: this means that all global form
variables point to a valid instance of a form. Only the main form is shown initially, however.
All other forms are hidden. The main form form is the first form that is created. When the
main form closes, the program exits.

It is possible to tell Lazarus for which forms it should create an instance at project startup.
This is done in the "Project Options’ dialog (menu item ’project/Project options’). There,
a choice can be made which forms should be auto-created. See figure [2] on page[3] The
topmost form in the list of forms to be auto-created will be the main form of the application.
(from this it follows that at least 1 form must be auto-created)

Creating the forms is done in the main program file. The options as set in figure [on page
will lead to the following code:
program formsdemo;

{Smode obijfpc} {SH+}

uses
Interfaces, Forms
frmmain,
frmdialog;

begin
Application.Initialize;

Figure 2: Project options dialog - which forms to create

[Project Options (5] (el [
Application |Forms|| kiscellaneous | LazDoc | SESSI0N |
Suto-create forms: Svailable forms:
kdainForm DialogForm
- ‘When creating nesy forms, add them to auto-created forms
Ok, Cancel

Application.CreateForm(TMainForm, MainForm);
Application.Run;
end.

The Run method of the Application class will start the message loop, and will only
exit when the MainForm form is closed.

3 Showing other forms

So, if an application has multiple forms, how to display a second form to the user ? This
depends on whether the form is auto-created by Lazarus or not. To illustrate this, an appli-
cation with 2 forms is created: TMainForm and TDialogForm. Both forms will be by
default autocreated, but only the TMa inForm instance is shown. The former is obviously
the main form, and the second is the one which will be shown additionally to the user.
On the first form, a button is dropped (let’s call it BDefault), and it’s ’OnClick’ event
handler is filled with the following code:

procedure TMainForm.BDefaultClick (Sender: TObject);
begin

DialogForm.Show;
end;

That’s it. For this code to compile, the unit of the DialogForm must be included in the
uses clause of the main form unit. Note that the Show call returns immediatly, i.e. there

After compiling and running the application, the main form is shown. When the BDefault
button is clicked, the dialog form is shown.

Now, obviously, this way, it is not possible to create multiple instances of a form. For this,
a separate technique is needed. The multiple instances must be created on an as-needed
basis. To demonstrate this, a second button is placed on the mainform (BPrivate). It’s
OnC1lick method is filled with the following code:

procedure TMainForm.BPrivateClick (Sender: TObject);

begin
With TDialogForm.Create (Application) do
Show;
end;

Here, a new instance of the TDialogForm is created, and it’s Show method is called.
The Application component is given as the owning component of the dialog form. If
the application stops executing, the application component is removed from memory, and
so are all dialog instances.

The BPrivate button can be clicked as often as needed: each time the button is clicked,
a new dialog form will be shown.

The Show method returns at once. This means that the main form is again in a waiting
state (waiting for GUI events), while the dialog is also being shown.

Supposing that the dialog should be shown, and the main form should not process any
events any more, or accept any input? In that case the ShowModal function should be
used. The ShowModal does the same as Show, but does not return until the user has
closed the form. What is more, ShowModal is a function that returns an exit code similar
to the one of the standard Me s sageDLG function (described in the previous article).

To demonstrate this, a checkbox is dropped on the main form (CBShowModal). If checked,
clicking the buttons will show the dialog form using ShowModal instead of Show. The
OnClick handlers of the buttons would look like this:

procedure TMainForm.BDefaultClick (Sender: TObject);
begin
If CBShowModal.Checked then
DialogForm.ShowModal
else
DialogForm. Show;
end;

procedure TMainForm.BPrivateClick (Sender: TObject);
begin
With TDialogForm.Create (Application) do
If CBShowModal.Checked then
ShowModal
else
Show;
end;

To verify that the ShowModal function actually returns only after the dialog form is
closed, a call ShowMessage could be inserted after the ShowModal call.

4 Closing a form

Closing a form can be done programatically (calling the C1ose method), but can also be
done by the user if he/she clicks the ’close window’ icon of the window manager. In both
cases, two events are fired:

OnCloseQuery This event can be used to prevent the form from closing. For this, it has a
parameter (CanClose) which can be used to signal to the LCL that the form should
not be closed:

procedure TDialogForm.FormCloseQuery (Sender: TObject;
var CanClose: boolean);
begin
ShowMessage (' OnCloseQuery’) ;
CanClose:=True;
end;

If CanClose is set to false, then the form will not be closed, even if closed progra-
matically.

OnClose This event is fired after the OnCloseQuery event, and only if CanClose was
True. The OnClose event can be used to control what happens to the form when it
is closed.

The CloseAction parameter of the OnClose event handler determines what happens
to the form when it is closed. It can be set to any of the following values:

caNone The default action is executed. What this action is depends on the kind of form.

caHide The form is simply hidden (made invisible). This is the default action for most
forms which are not the main form.

caMinimize The form is minimized.

caFree The form is destroyed and removed from memory. This is the default action for
the main form.

If the form was the default form instance created by lazarus, it is inadvisable to use the
caFree result: after the form was destroyed, the reference to the form in the global vari-
able is no longer valid.

To show what happens, the DialogForm is equipped with a radio group component,
which allows to choose between these 4 possibilities: in the OnClose event, the chosen
CloseActionis set:

procedure TDialogForm.FormClose (Sender: TObject;
var CloseAction: TCloseAction);
begin
ShowMessage (' OnClose’) ;
Case RGOnClose.ItemIndex of

0 : CloseAction:=calNone;
1 : CloseAction:=caHide;
2 : CloseAction:=caFree;
3 : CloseAction:=caMinimize;

To show the order of events, the OnClose, OnCloseQuery, OnDestroy and OnHide
events also get an event handler, which simply shows which handler is being called:

procedure TDialogForm.FormDestroy (Sender: TObject);
begin

ShowMessage (' Destroying Dialog Instance’);
end;

procedure TDialogForm.FormCloseQuery (Sender: TObject;
var CanClose: boolean);
begin
ShowMessage (' OnCloseQuery for dialog’);
CanClose:=True;
end;

procedure TDialogForm.FormHide (Sender: TObject);
begin

ShowMessage (' Hiding Dialog Instance’);
end;

Experimenting with the dialog and the various settings will give insight in what events are
called, and in which order they are called, depending on the settings.

S Closing a modal form

If a modal form is closed by the Close method or using the close icon of the window
manager, the ShowModal call which was used to show the form, will return mrNone as

result.

To return an other result than mrNone, the ModalResult property of the form can be
set. If the form is shown modally, setting the property will close the form, and will set the
result of the ShowModal function which was used to show the form.

To illustrate this, a new form (TModalForm) is made with a radiogroup which allows
to select the value for the ModalResult property of the form. The value is set in the
OnC1ick method of a button (BClose):

procedure TModalForm.BCloseClick (Sender: TObject);
begin

ModalResult :=RGModalResult.ItemIndex;
end;

The code makes use of the fact that mrNone equals 0.

In the main form, a button is dropped which executes the following code when clicked:

procedure TMainForm.BTestModalClick (Sender: TObject);
Var
S : String;

begin
With TModalForm.Create (Application) do
If CBShowModal.Checked then

begin

case ShowModal of
mrNone S:="mrNone’ ;
mrOK S:="mrOK’;
mrCancel S:="mrCancel’;
mrAbort S:="mrAbort’;
mrRetry S:="mrRetry’;
mrIgnore S:="mrIgnore’;
mrYes S:="mrYes’;
mrNo s:="mrNo’;
mrAll S:="mrAll’;
mrNoToAll S:="mrNoToAll’;
mrYesToAll S:="mrYesToAll’;

end;

ShowMessage (' Modalresult = ’'+S);

end

else
Show;

end;
Experimenting with this button and the various possibilities will show that if the Show

method is used, setting ModalResult does not close the form at all: the form is only
closed when it was shown using ShowModal.

6 Positioning a form

When a form is created, it will be positioned on screen by default on the position where
it was designed. Obviously, this is not always what is desirable: screen sizes differ, other

windows may already be visible, and dialogs should usually be shown in the middle of the
screen, where they attract attention.

To control this, the Position property of TForm can be used. It can have the following
values:

poDesigned The default: the form is positioned where it was designed.
poDefault Lets the window manager decide where to position the form.

poDefaultPosOnly Lets the window manager decide where to position the form, but the
size is as designed.

poDefaultSizeOnly Lets the window manager decide how to size the form, but the posi-
tion is as designed.

poDesktopCenter Positions the form at the center of the desktop.
poMainFormCenter Positions the form at the center of main application form.

poOwnerFormCenter Positions the form at the center of the form that owns it. This is
only useful if the form is created in the following way:

procedure TMainForm.BPrivateClick (Sender: TObject);
begin
With TDialogForm.Create (Self) do
If CBShowModal.Checked then
ShowModal
else
Show;
end;

Here, the dialog would be positioned at the center of the main form, because the
main form owns the dialog form (it is passed as the owner to the constructor)

poScreenCenter The form is positioned at the center of the screen, which can be different
from the center of the desktop.

The main form of the test application is enhanced with a BPosition button, and a radio
group which allows to select one of the above possibilities. In the OnC11ck handler of the

button, the following code is executed:

procedure TMainForm.BTestPositionClick (Sender: TObiject);

begin
With TDialogForm.Create (Self) do

begin

Case RGPosition.ItemIndex of
0 : Position:=poDesigned;
1 Position:=poDefault;
2 Position:=poDefaultPosOnly;
3 Position:=poDefaultSizeOnly;
4 Position:=poScreenCenter;
5 Position:=poDesktopCenter;
6 Position:=poMainFormCenter;
7 Position:=poOwnerFormCenter;

end;

Figure 3: Forms demo project

=

Session

]
On Close

Edit View Bookmarks Seftings Help

home: »>cd lazarus-articles-start # Hide
startls startd/ B
home: »cd lazarusrarticlesrsstart2/forns h
home: >ls « Minimize
fornzdemno= formzdemno. lpr.bak frm
formsdemo.compiled formsdemo.o frm
formsdemno . 1ni frmdialon 1fm Frm
formsdemno. EEE
fornsdeno .
home: >.-f = Show dialogs modal
shone/nich
[WARNING] — —
[MARNTNG T show [El == Dialog Form <3> =—— E|==®
[On Close
{ On Clas: U3 Do nathing special
[| ~Don -~ Hide
[~ Mide « Free
[“ Free « Minitize
w Minir
Close
-« Desktop Center
+ hain Form Center
Close « Onwner Farm Center
ShowModal;
end;

end;

Have a lot of fun...
Directory: shomesmichael « Do nothing special
Sun Jul 2 10:34:42 CEST 2006

E=E

iv

iv

Close ir
I— | |
frmmoda

ier “gtk-alterr

From this code one can also see that setting the position property can be done just before
showing the form, i.e. not just at design time. The final result is shown in figure [on page

)

7 Conclusion

In this second article, the workings of the basic element in all GUI development with
Lazarus was handled: TForm. It was shown how to create modal and modeless windows,
and how to determine how a window was closed. In the next articles, the various controls
that can be used on a form, will be examined in more detail.

	Introduction
	TForm: The foundation of GUI programs
	Showing other forms
	Closing a form
	Closing a modal form
	Positioning a form
	Conclusion

