
Managing and Writing Windows services with
Delphi

Michaël Van Canneyt

March 16, 2014

1 Introduction

Services are special applications which run in the background and which don’t usually
interact with the user. Most often, they are started when the computer is switched on, and
stop when the computer is switched off. Drivers for peripherals can also operate as services,
providing access to these peripherals for the operating system for for user programs. Some
services can also be started and stopped manually by the user, for instance to perform
periodic tasks. The Apache web-server is a service. Core components of Windows NT,
2000 or higher are also services: Indeed, the server capabilities of Windows 2000 Server
are implemented as a service.

Services are managed by the Service Control Manager (SCM): It takes care of starting,
stopping and generally managing services on the Windows platform; Part of it’s functional-
ity is exposed through the ’Services’ applet in the control panel: It offers a limited interface
to the service control manager.

Microsoft has provided a rich API to interact with the Service Control Manager: services
themselves have to use this API to report to the SCM, but it can also be used to manage all
services; the Control Panel applet is a simple frontend to the provided API. The definitions
of the services API are in the unit WinSvc, provided standard in the VCL.

In the first sections of this article, the part of the services API used to manage services will
be discussed. Since this API is oriented towards C programmers, and not very convenient
for use in Delphi, a component that wraps the API in an easy-to-use class will be developed,
and demonstrated in a Services Control program, similar to the one provided in Windows
itself. The techniques demonstrated here can be used when writing an application to control
a self-written service.

In the second part of the article, the calls in the services API that are needed for implement-
ing a service are discussed: Two services will be discussed. The first service is very simple,
using a straightforward pascal approach, to demonstrate how a service application works:
A service which accepts client connections on a named pipe and gives them the current
time. The second service is written using the components provided in Delphi: Borland has
created a wrapper around the services API which makes writing services in Delphi quite
easy. A service will be written which periodically cleans the harddisks by zipping files it
finds below certain directories and which match certain criteria (size, extension). A control
program to manage the service’s configuration is also provided.

1

2 The TServiceManager component

The component TServiceManager can be dropped on a form to implement a service
controller, or simply to provide a simple means of installing a service: it supports many of
the service API calls and wraps them in more Object Pascal-like interface: Instead of null-
terminated strings, normal ansistrings are used, in case of an error, exceptions are raised.

To be able to interact with the SCM, a connection handle must be obtained via the Win-
dows OpenSCManager call. This handle must be used in all calls to the SCM. The
TServiceManager component publishes a boolean ’Connected’ property: Setting it to
True will connect to the SCM. The obtained handle is then available through the (public)
Handle property. If needed, it can be used to implement extra calls not implemented in
the TServiceManager component itself. Setting the Connected property to False
will disconnect from the SCM.

To be able to control services, one must know which services are installed. For this, the
TServiceManager has a wrapper around the windows EnumServicesStatus call:
this call returns a list of all installed services, and their current status. The call is defined as
follows:

function EnumServicesStatus(hSCManager: SC_HANDLE; dwServiceType,
dwServiceState: DWORD; var lpServices: TEnumServiceStatus; cbBufSize: DWORD;
var pcbBytesNeeded, lpServicesReturned, lpResumeHandle: DWORD): BOOL; stdcall;

This call has a lot of arguments, the most important being the lpServices argument:
When the function returns successfully, this variable will point to an array of TEnumServiceStatus
records, which contain the definitions and states of the installed services.

The TServiceManager component wraps this functionality in a ’Refresh’ method: This
method will collect the information returned by this call, and store it in the Services
property: The Services property is a descendent of TCollection which manages a
series of TServiceEntry collection items. The TServiceEntry contains the infor-
mation about a service, and is defined as follows:

TServiceEntry = Class(TCollectionItem)
Public

Property ServiceName : String;
Property DisplayName : String;
Property ServiceType : DWord;
Property CurrentState : DWord;
Property ControlsAccepted : DWord;
Property Win32ExitCode : DWord;
Property ServiceSpecificExitCode;
Property CheckPoint : DWord;
Property WaitHint: DWORD;

end;

For each installed service, the TServices collection will have an item. The main prop-
erties of this collection item are:

ServiceName an internal (unique) name for the service.

DisplayName The name of the service as it is displayed on screen.

ServiceType an integer describing the type of service. There are 4 possible values for this
property:

2

• SERVICE_FILE_SYSTEM_DRIVER for filesystem drivers.

• SERVICE_KERNEL_DRIVER for other kernel drivers.

• SERVICE_WIN32_OWN_PROCESS for an executable which offers a single
service.

• SERVICE_WIN32_SHARE_PROCESS for an executable which offers several
services (more about this later)

In this article, only the latter two types will be discussed.

CurrentState describes the current state of the service. This can be one of the following
7 values:

• SERVICE_STOPPED when the service is not running.

• SERVICE_START_PENDING when the service is starting up.

• SERVICE_STOP_PENDING: The service is in the process of shutting down.

• SERVICE_RUNNING: The service is running normally.

• SERVICE_CONTINUE_PENDING: The service is about to resume its opera-
tions.

• SERVICE_PAUSE_PENDING: The service is about to suspend its operations.

• SERVICE_PAUSED: The service has suspended it operations, but is still run-
ning and in memory.

ControlsAccepted This is a bitmask of various control commands to which the service
will respond. The following values can be included:

• SERVICE_ACCEPT_STOP The service can be stopped.

• SERVICE_ACCEPT_PAUSE_CONTINUE The service can be paused and/or
continued.

• SERVICE_ACCEPT_SHUTDOWN the service can be shut down.

The other properties are less important, for more information, the Windows API reference
contains the complete explaination of all available fields.

The Services property is of type TServiceEntries, a TCollection descendent,
which additionally implements the following interface:

TServiceEntries = Class(TOwnedCollection)
Public

Function FindService(ServiceName : String) : TServiceEntry;
Function ServiceByName(ServiceName : String) : TServiceEntry;
Property Items [index : Integer] : TServiceEntry;default;

end;

Note the default property. The Refresh method of the TServiceManager compo-
nent will clear the list of service entries, and refill it with current information. The list can
be cleared using the ClearServices method.

To refresh the status of a single service in the collection, the RefreshServiceStatus
method is implemented in TServiceManager:

RefreshServiceStatus(ServiceName: String);

The servicename argument should match the property of the same name in TServiceEntry.
It invokes the QueryServiceStatus call of the services API to get the needed status
information.

3

3 Service definitions

With the above properties, a list of installed services and their current status can be ob-
tained. It is also possible to get more detailed information about a service: Windows pro-
vides the QueryServiceConfig call to obtain the configuration details of any installed
service; It is defined as follows:

function QueryServiceConfig(hService: SC_HANDLE;
lpServiceConfig: PQueryServiceConfig; cbBufSize: DWORD;
var pcbBytesNeeded: DWORD): BOOL; stdcall;

The lpServiceConfig must point to a buffer in memory, large enough to receive all
configuration information about the service. The initial part of this memory block will be a
structure of type TQueryServiceConfig. To make this call a bit more pascal-like, the
QueryServiceConfig call was wrapped in a method of the same name. It is defined
as follows:

Procedure QueryServiceConfig(ServiceName : String;
Var Config : TServiceDescriptor);

Upon return, the TServiceDescriptor record - defined in the ServiceManager unit
- will be filled with all configuration data for the service. It is defined as follows:

TServiceDescriptor = Record
Name : ShortString;
DisplayName : ShortString;
DesiredAccess : DWord;
ServiceType : DWord;
StartType : DWord;
ErrorControl : DWord;
CommandLine : String;
LoadOrderGroup : String;
TagID : DWord;
Dependencies : String;
UserName : String;
Password : String;

end;

The meaning of the various fields partially overlaps with the various properties of the same
name in the TServiceEntry item. The meaning of the other fields is as follows:

DesiredAccess The desired access rights to the service. This field is not used by the
QueryServiceConfig call, but is used by the RegisterService call, de-
scribed below.

StartType The startup type of the service. This can be one of the following values:

• SERVICE_AUTO_START The service will be started automatically by the ser-
vice controller at boot.

• SERVICE_BOOT_START The service will be started by the system loader.
This should only be used for drivers.

• SERVICE_DEMAND_START The service should be started manually.

• SERVICE_SYSTEM_START The service is started by the driver manager (only
for drivers).

4

• SERVICE_DISABLED The service is temporarily disabled, any attempts to
start will result in a failure.

ErrorControl Indicates what action should be taken by the service controller when the
service fails to start. It can have one of the following values:

• SERVICE_ERROR_IGNORE The error is logged, but ignored.

• SERVICE_ERROR_NORMAL The error is logged, and a message is shown on
the screen, but the system continues to boot.

• SERVICE_ERROR_SEVERE The error is logged, but the boot process will
fail, unless the boot was started in safe mode.

• SERVICE_ERROR_CRITICAL The error is logged, and the boot process will
fail, even in safe mode.

CommandLine The command-line used to start the binary that contains the service. If
the path to the binary contains spaces, it should be enclosed in double quotes (").
Options may be appended to the command-line.

LoadOrderGroup The load order group. When the service is started at boot, it will be
started as part of the name group. The list of available groups can be found in the
registry, under HKEY_LOCAL_MACHINE entries under key:

\System\CurrentControlSet\Control\ServiceGroupOrder

The binary value named List contains a null-separated list of strings that list the
names of load groups.

TagID Here a numerical ID is returned that identifies the order of loading within the load
group.

Dependencies A list of slash-separated (/) names of services or service groups that must
be running before the service can be started. A service group has a ’+’ character
prepended to its name.

UserName The username the service should be started as. This must be a username of the
form

Domain\UserName

The domainname may be a signle dot (.) to indicate the local machine. If the
UserName is empty, the LocalSystem account is used.

Password The password to be used for the username. For the LocalSystem account,
the password should be empty

The same structure can be used to register a new service in the system. To register a new
service, Windows implements the CreateService call. It is defined as follows:

function CreateService(hSCManager: SC_HANDLE;
lpServiceName, lpDisplayName: PChar;
dwDesiredAccess, dwServiceType, dwStartType, dwErrorControl: DWORD;
lpBinaryPathName, lpLoadOrderGroup: PChar; lpdwTagId: LPDWORD;
lpDependencies, lpServiceStartName, lpPassword: PChar): SC_HANDLE; stdcall;

The arguments for this call correspond to the various fields in the TServiceDescriptor
record. The CreateService call has been wrapped in the RegisterServicemethod
of TServiceManager:

5

Function RegisterService(Var Desc: TServiceDescriptor) : THandle;

If succesful, the function returns a handle to the newly created service. The handle will be
created with the access rights specified in the DesiredAccess field. More information
about access rights is given below.

The service may be reconfigured at any later time using the ConfigService method,
which is much like the RegisterService method:

Procedure ConfigService(ServiceName : string; Config: TServiceDescriptor);

Calling this service will change the configuration of the service ServiceName with the
values supplied in the Config record. To leave a string value unchanged, specify an empty
string. To leave a DWORD value unchanged, the predefined constant SERVICE_NO_CHANGE
must be supplied.

Obviously, a registered service can also be unregistered. For this, the UnregisterService
call is implemented:

Procedure UnregisterService(ServiceName : String);

This will unregister the service and delete all configuration data from the list of installed
services. If the service is still running and cannot be stopped, then the data will be marked
for deletion, and the service will be deleted at the next boot of Windows.

A common task is to change the startup-type of a service. This could be done with the
ConfigService call, but this is rather cumbersome. Therefore, the startup type of a
service can be set in a more convenient way with the SetStartUpType method, defined
as follows:

procedure SetStartupType(ServiceName: String; StartupType: DWord);

4 Controlling services

The methods presented in the previous section show or change the configuration informa-
tion of a service. Once a service is running, it can also be controlled: It can be stopped,
shut down or paused and restarted. The windows API call to control a service is defined as
follows:

function ControlService(hService: SC_HANDLE;
dwControl: DWORD;
var lpServiceStatus: TServiceStatus): BOOL;

When the ControlService returns, the last reported state of the service is reported in
the buffer pointed to by lpServiceStatus. The dwControl parameter specifies the
kind of action that should be performed on the service. It can be one of the following
values:

SERVICE_CONTROL_STOP The service should stop its activities and exit.

SERVICE_CONTROL_PAUSE The service should cease its activities, but remain stand-
by (pause).

SERVICE_CONTROL_CONTINUE Tells a previously paused service that it can re-
sume its activities.

6

SERVICE_CONTROL_INTERROGATE Tells the service that it should report its status
as soon as possible.

The ControlsAccepted property of TServiceEntry contains a bitmask indicating
which control codes can be sent to the service. It is also possible to send service-specific
control codes. They must have a value in the range [128..255]. The meaning of these
codes depend on the implementation of the service: They can be sent to a running service
to perform certain actions immediatly, or to notify the service that some configuration has
changed. The TServiceManager component implements a call for this:

procedure CustomControlService(ServiceName : String; ControlCode : DWord);

The call will check whether the controlcode is in the allowed range before ending it to the
service.

The pre-defined control codes are wrapped in a series of calls:

procedure ContinueService(ServiceName : String);
procedure StopService(ServiceName: String; StopDependent: Boolean);
procedure PauseService(ServiceName: String);

The StopService call accepts an additional argument: StopDependent, a boolean
indicating whether services that depend on the service to be stopped, should be stopped
first. The method will attempt to stop these services first.

The list of services that depend on a given service can be obtained using the ListDependentServices
method, given as

Procedure ListDependentServices(ServiceName : String;
ServiceState : DWord;
List : TStrings);

The list of dependent services can be filtered on their state by specifying a state bit-
mask in the ServiceState argument; Allowed values are the same ones as in the
CurrentState property of TServiceEntry.

Starting a stopped service is not done using the ControlService call. There is a sepa-
rate call for this, defined as follows:

procedure StartService(ServiceName : String; Args: TStrings);

The StartService call accepts list of arguments, which will be passed on to the service.
This list may be empty (A value of Nil for Args).

It is important to note that the list of arguments given here is not the same as the options
passed on to the binary containing the service - as specified in the CommandLine field
in the TServiceDescriptor record. More on this will be said later in the section on
writing a service.

5 TServiceManager odds and ends

The methods and structures presented in the previous sections constitute the bulk of the
TServiceManager class. There are some extra calls implemented, which are less often
needed. The first pair of these calls can be used when changing configuration information
for a group of services. In order to prevent services from being started or stopped during
this period, the service manager can be told to lock the services database. There are 2 calls
for this:

7

Procedure LockServiceDatabase;
Procedure UnlockServiceDatabase;

In order to prevent lock-up of the database, it is best to put the UnlockServiceDatabase
in the Finally part of a Try...Finally construction.

Most operations on a service require a handle to the service. A handle can be obtained
using the GetServiceHandle method:

function GetServiceHandle(ServiceName: String; SAccess: DWord): THandle;

The methods of the TServiceManager class obtain and free handles as needed. Each
of the methods that has a ServiceName argument has also an overloaded variant which
accepts a handle to the service instead: If a lot of operations must be done on a service, a
handle can be obtained manually, and passed on to the various overloaded calls.

The GetServiceHandle call has an SAccess argument: it is used to specify the de-
sired access rights to the service: Each operation has its own access right, and the correct
access rights must have been requested for an operation to succeed. Rights can be com-
bined: they are a set of bitmasks. Discussing the various possible access rights would lead
too far; the Microsoft API documentation states the needed rights for each call, so they
will not be documented here. The various methods of the TServiceManager always
request exactly enough rights to be able to perform their task. When obtaining a handle
to do a group of operations on a service, enough rights should be requested to perform all
operations.

Indeed, to access the service manager itself, certain access rights are needed. The needed
rights can be set in the Access property of the TServiceManager component. It
should be set before connecting to the service controller. If the service controller to which
a connection should be made resides on a remoe machine (this is possible) then the name of
that machine may be indicated in the MachineName property of TServiceManager.
The list of services can be automatically refreshed after connecting if the RefreshOnConnect
property is set to true.

Finally, three events have been implemented to react on changes in the list of services:

Property AfterRefresh : TNotifyEvent;
Property AfterConnect : TNotifyEvent;
Property BeforeDisConnect : TNotifyEvent;

Their meaning should be obvious.

Most of the methods described in the above sections are demonstrated in a small application
- a Delphi implementation of the Control Panel ’services’ applet. It has slightly more
functionality: A new service can be registered as well; This will come in handy for the
service written in the next section. The application can be seen running in figure 1 on page
9.

6 A simple service

Writing a service is not so different from writing a normal application, with the proviso
that there are a number of things that must be done:

1. The implemented service (or services) must be registered with the SCM. This means
registering a service entry point: A procedure which will be used by the control
manager to start the service. This should be done at progam startup.

8

Figure 1: Service control application

2. Each service must register a control entry point. This is a procedure which will be
called by the control manager to send control commands (pause,continue,stop) to the
service. This should be done as soon as the service starts.

3. At regular intervals in the service start procedure (or on demand) the service must
report its state to the SCM. It is important that this be done as soon as possible, since
the SCM will decide that the service failed to start properly if it doesn’t receive status
information after a reasonable time.

After these tasks are completed, the service can perform it’s action in the service entry
point: This is the function which will do the actual work, and when it returns, the service
is stopped.

To illustrate this, a simple service will be implemented: A service that opens a named pipe,
and listens on the pipe for client connections. As soon as a client program connects, the
current time is written to the pipe, and the connection is closed.

To write this program, a new ’console application’ is started, which will open the project
file. The {$APPTYPE CONSOLE} directive which Delphi automatically inserts in the
must be removed, or a console will be opened each time the service is run.

The main pogram block is very simple:

begin
RunAsService:=(ParamCount=1) and (Paramstr(1)=’/RUN’);
If RunAsService then

RegisterServiceLoop
else

SimpleServiceMain(0,Nil);
end.

9

To run the program as a service, the /RUN command-line parameter must be given: this
parameter should be specified when the service is registered. If the parameter is not spec-
ified, then the service’s main function is executed by the program itself: this wil run the
application as a normal application. If the /RUN parameter is given, then the service main
function is registered with the SCM in the RegisterServiceLoop procedure. This is
a simple procedure that looks as follows:

Var
ServiceTable : Array[0..1] of TServiceTableEntry = (
(lpServiceName: ’SimpleService’;lpServiceProc:@SimpleServiceMain),
(lpServiceName: Nil;lpServiceProc:Nil)
);

Procedure RegisterServiceLoop;

begin
If not StartServiceCtrlDispatcher(ServiceTable[0]) then

ReportOSError(SErrRegistering);
end;

The StartServiceCtrlDispatcher call takes as an argument an array of TServiceTableEntry
records, ended by a dummy record filled with Nil value. For each service provided by the
application, there must be a record of type TServiceTableEntry which looks as fol-
lows:

TServiceTableEntry = record
lpServiceName: PAnsiChar;
lpServiceProc: TServiceMainFunctionA;

end;

The first field is the name of the service, and the second field is the service entry point
(SimpleServiceMain for the simple service).

When the service must be started, the SCM will call the service entry point. The simple
service application calls this procedure itself when it is not run as a service). The service
entry point must be of type TServiceMainFunctionA, which means it must accept 2
arguments:

argc A DWORD that will contain the number of arguments to the function, i.e. the number
of entries in the second argument.

Argsv A PPChar pointer that points to a null-terminated array of null-terminated strings.
There is always at least 1 null-terminated string in the list: the first entry contains
the name of the service. This can be used to provide a single entry point for sev-
eral services: from the first argument, the name of the service to be started can be
determined.

These parameters are similar to the command-line arguments passed to a program when
it starts. However, they are not the same as the command-line arguments passed to to the
application when it is initially run. The arguments passed to the service entry point are
given by the StartService call of the SCM.

Since it will be called by the SCM, care must be taken that the calling convention of the
service entry point is StdCall.

For the simple service, the service entry point looks as follows:

10

Procedure SimpleServiceMain (Argc : DWord; Argsv :PPChar);stdcall;

Var
BytesTransferred : DWord;
Command : Dword;

begin
ControlPort:=CreateIoCompletionPort(INVALID_HANDLE_VALUE, 0, cmdPipe, 0);
If (ControlPort=0) then

ReportOSError(SErrControlPort);
If RunAsService then

begin
// Initialize status record.
FillChar(CurrentStatus,SizeOf(CurrentStatus),0);
With CurrentStatus do

begin
dwServiceType:=SERVICE_WIN32_OWN_PROCESS;
dwCurrentState:=SERVICE_START_PENDING;
dwControlsAccepted:=SERVICE_ACCEPT_STOP or

SERVICE_ACCEPT_PAUSE_CONTINUE;
end;

ServiceStatusHandle:=RegisterServiceCtrlHandler(’SimpleService’,
@SimpleServiceCtrlHandler);

SetServiceStatus(ServiceStatusHandle,CurrentStatus);
end;

CreatePipe;
If RunAsService then

begin
CurrentStatus.dwCurrentState:=SERVICE_RUNNING;
SetServiceStatus(ServiceStatusHandle,CurrentStatus);
end;

PO:=Nil;
Repeat

// Wait for either control code notification or client connect
GetQueuedCompletionStatus(ControlPort,BytesTransferred,Command,po,INFINITE)
If Command=cmdPipe then

HandlePipe;
// otherwise a Control code received, do nothing, wait for new command

Until RunAsService and (CurrentStatus.dwCurrentState=SERVICE_STOPPED);
end;

The function starts out by creating a control port; More about this follows. If the program
is run as a service, the first thing that is done is reporting the service status to the SCM.
This is done by filling a TServiceStatus record with appropriat values:

1. The service type must be passed.

2. The current state: SERVICE_START_PENDING.

3. The control codes that will be accepted by the services. For the simple service, the
stop, pause and continue control commands are accepted.

The record will then be passed to the SCM with the SetServiceStatus call. To be able
to send it to the SCM, a handle to the service must be obtained. This is done by registering
the control entry point: the RegisterServiceCtrlHandler call registers the control

11

entry point for the service (it is called SimpleServiceCtrlHandler). It will return a handle
to the service, which can be used in the SetServiceStatus call.

After this is done, the named pipe is created on which clients can connect to the service. If
the application is running as a service, the status will subsequently be set to running, and
reported to the SCM.

After this is done, the actual work of the application is started. It enters a loop, in which
it waits for clients to connect to the named pipe. It does does this using a IOComple-
tionPort: This is a special port which an application can request from windows, and by
which windows can notify the application that a certain IO operation is completed. In our
case, the operation is a client which makes a connection on the named pipe. The port
was created with the CreateIoCompletionPort at the start of the service entry. The
cmdPipe constant used in that call tells windows that when someone connects to the pipe,
the GetQueuedCompletionStatus call should receive the cmdPipe value in the
Command argument:

GetQueuedCompletionStatus(ControlPort,BytesTransferred,Command,po,INFINITE);
If Command=cmdPipe then

HandlePipe;

The INFINITE argument tells Windows that the GetQueuedCompletionStatus
call should wait forever before returning. When the call returns, the value stored in Command
is checked: if it is cmdPipe, a client has connected to the named pipe, and the connection
to the pipe is handled in the HandlePipe call.

The loop is run until the service is stopped, or forever if the application is run as a normal
application. More information about the CreateIoCompletionPort and GetQueuedCompletionStatus
will not be given here, as that would lead too far. The interested reader can consult the Mi-
crosoft API documentation for more information.

When the service needs to be stopped or paused, the SCM will send a control code to the
control entry point that was registered by the service. The service control entry procedure
should accept a single argument: A DWord value, which is the control code being sent by
the SCM. As the control entry point is called by the SCM, it should have stdcall calling
conventions. The control entry point should do whatever is necessary for the received
control code, and report the service status as soon as possible with the SCM. Note that since
there is only one argument to the control entry point, there is no way to know for which
service the control code is sent, in case multiple services are provided by the application:
each service must have its own control entry point.

The control entry point for the simple service looks as follows:

Procedure SimpleServiceCtrlHandler (Opcode : DWord); StdCall;

begin
Case Opcode of

SERVICE_CONTROL_PAUSE :
begin
ClosePipe;
CurrentStatus.dwCurrentState:=SERVICE_PAUSED;
end;

SERVICE_CONTROL_STOP :
begin
ClosePipe;
CurrentStatus.dwCurrentState:=SERVICE_STOPPED;
end;

12

SERVICE_CONTROL_CONTINUE :
begin
CreatePipe;
CurrentStatus.dwCurrentState:=SERVICE_RUNNING;
end;

SERVICE_CONTROL_INTERROGATE : ;
else

ServiceError(SErrUnknownCode,[Opcode]);
end;
SetServiceStatus(ServiceStatusHandle,CurrentStatus);
// Notify main thread that control code came in, so it can take action.
PostQueuedCompletionStatus(ControlPort,0,cmdControl,NiL);

end;

As can be seen, it is a simple routine: Depending on the control code received, the pipe is
closed or created, and the new status of the service is stored in the global CurrentStatus
record, after which the status is reported to the SCM. Then, the main loop is notified that
there was a change in status: the PostQueuedCompletionStatus will queue a IO
completion event to the IOCompletionPort, with code cmdControl. This will cause the
GetQueuedCompletionStatus call in the main program loop to return. If the service
is being stopped, the main loop will then exit, and the service will stop. In any other case,
the main loop will simply repeat the GetQueuedCompletionStatus, waiting for a
connection on the pipe or till another control code arrives.

The rest of the code in the simple service is simply concerned with the handling of the pipe:
creating a pipe, closing it down or handling a client connection on the pipe. The code is
quite simple, and the interested reader is referred to the source code which is available on
the CD-ROM accompagnying this issue.

To test the simple service, it can be installed with the service manager program developed
above, using the name ’SimpleService’, and giving it the /RUN command-line option. The
CD-ROM also contains a simpleclient client program which will connect to the service
and show the time it received from the service.

7 Services in Delphi

Borland has wrapped the API calls and functionality to write services in 2 classes, shipped
with Delphi’s VCL. They are contained in the SvcMgr unit. The classes are:

TServiceApplication is a class which performs the same function as the TApplication
provides for a normal GUI application. It has all functionality to register services,
start services and respond to control codes. A global instance of this type is instanti-
ated in the SvcMgr initialization code, just as is done for its GUI counterpart in the
Forms unit.

TService is a TDataModule descendent which implements a service: it corresponds to
the TForm class in a normal GUI application. Each service application must contain
one or more descendents of the TService Class. It implements all functionality of
a single service: the main loop, events corresponding to the control codes that can be
sent by the SCM.

To create a service application, select ’New service Application’ from the ’New’ menu.
Delphi will then create a new project which contains 1 service. Looking at the project
source, something similar to the following can be seen:

13

program diskclean;

uses
SvcMgr,
svcClean in ’svcClean.pas’ {CleanService: TService};

begin
Application.Initialize;
Application.Title := ’Disk cleaning service’;
Application.CreateForm(TCleanService, CleanService);
Application.Run;

end.

Which looks a lot like the code for a normal GUI application, with the exception that the
Application object lives in the SvcMgr unit. Choosing New service from the New
menu in Delphi will add new services to this list.

The Run method takes care of registering the services, unregistering them, or running the
services. Only services registered with the Application.CreateForm method will
be installed or run.

A Delphi service application can install itself: supplying the /INSTALL command-line
option will register all available services and exit after displaying a messagebox announc-
ing that the services have been installed. The /SILENT option suppresses the message.
Likewise, the /UNINSTALL command-line option will unregister the services. The service
class has some handlers which can be used to respond to these events:

BeforeInstall

AfterInstall

BeforeUninstall

AfterUninstall

The meaning of these events should be clear from their name. The various other properties
such as Name, DisplayName,ServiceType and StartType of the TService class
should be set to an appropriate value, as they will be used when registering the service.

Giving other command-line options to the service application will actually run the service
application: In that case the Run method of the TServiceApplication class will start
a thread which registers the main entry point for all services using the StartServiceCtrlDispatcher
call discussed in the previous section. One entry point is used for all services, and the op-
tions passed to the entry point are used to dispatch the call to the correct TService class
so it can do its work. After all service entry points were registered an event loop is started,
waiting for windows events to arrive. As soon as the thread stops, the application stops.

When the SCM starts a service, the call to the service entry point is dispatched to the Main
method of the appropriate service instance. Which service instance to use is determined
from the arguments to the entry point.

The Main method of the service is once more a big event loop, started in a separate thread
(available in the ServiceThread property of the service). The loop is interspiced with
some event handlers and status reporting events. The following events exist:

OnStart This method is called once when the service is started. The Started parameter
should be set to True if the service can be started succesfully. Setting it to False
will abort the service.

14

OnExecute This is the main method of the service: here the service should do whatever it
is designed to do. It should regularly call ServiceThread.ProcessRequests:
this will process any windows events or incoming control codes.

When the SCM sends some control commands to the service, the service thread will call
one of the following event handlers:

OnPause When the pause command was received. The service should stop what it is
doing, but should not exit.

OnContinue When the continue command was received.

OnShutdown When the service is being shut down.

OnStop When the service is stopped. It is the

Each of these handlers is passed a boolean variable which should be set to True (default),
indicating that the command was correctly processed, or False to indicate that the com-
mand failed. The service thread will then report the status (using the ReportStatus
method) to the SCM.

As pointed out in the previous section, the service control entry point has only one argument
(the control code), making it impossible to use a single entry point for all services in the
application. For this reason, the Delphi IDE inserts a control entry point for each service
that is created. The control entry point is inserted at the start of the implementation section
of the unit containing the service and looks similar to this:

procedure ServiceController(CtrlCode: DWord); stdcall;
begin

CleanService.Controller(CtrlCode);
end;

function TCleanService.GetServiceController: TServiceController;
begin

Result := ServiceController;
end;

The GetServiceController function is used by the Main function of the service to
obtain the control entry point which it registers with the SCM. The service entry point sim-
ply calls the CleanService.Controller method: Note that this makes dynamically
creating and running multiple instances of the same service class in code is not possible, as
the CleanService variable is then not valid. Obviously, this code should not be deleted
as the service will not be able to receive any control events.

8 A Disk cleaning service

To illustrate the concepts of a service application, a disk cleaning service application is
developed: The service will sit in the background, and at a certain time will scan specified
directories on the hard disks for files matching certain extensions, and if they exceed a
certain size, it will compress them and remove the original. The time to perform the scan,
as well as the minimum size and extension of the files to be processed can be configured:
Global values and per-directory values can be specified. As with all services created with
Delphi, it can be installed by running it once with the /INSTALL command-line option.

The service can be compiled using TurboPower’s (freely available) Abbrevia: it will then
create a zip file for each file it must process. By default it will use the ZLIb unit which can

15

be found on the Delphi installation CD: this will create a simple compressed file. Setting
the USEABBREVIA conditional define will compile using Abbrevia.

The TCleanService class in the svcClean implements the service. It contains a timer
(TClean) and event logging class ELClean, discussed in an earlier edition of Toolbox.
The TService class itself has a logging method, but it doesn’t offer the functionality of
the TEventLog class, hence it is not used.

When the service is started, it gets the time when it should clean the disk from the registry:

procedure TCleanService.ServiceStart(Sender: TService;
var Started: Boolean);

begin
Started:=InitTimer;
If Not Started then
PostError(SErrFailedToInitTimer);

end;

The PostError uses the ELClean component to log an error message. The InitTimer
method retrieves the time to run from the registry, and activates the timer so a timing event
will arrive when it is time to clean the disk.

The Execute handler contains a simple loop:

procedure TCleanService.ServiceExecute(Sender: TService);
begin

While not Terminated do
ServiceThread.ProcessRequests(True);

end;

The ServiceThread.ProcessRequests call will wait for windows event messages
and control commands; This ensures that when the timer event occurs, the associated
OnTimer event handler will be executed:

procedure TCleanService.TCleanTimer(Sender: TObject);

begin
If Assigned(FCleanThread) then

PostError(SErrCleanThreadRunning);
StartCleanThread;
// Reset timer.
If Not InitTimer then

PostError(SErrFailedToInitTimer);
end;

The actual cleaning will be done in a separate thread: It is created in the StartCleanThread
method. After that, the timer is re-initialised to deliver an event on the next day, same time.

The StartCleanThread operation simply starts a thread, and assigns some status re-
porting callbacks:

procedure TCleanService.StartCleanThread;

begin
FCleanThread:=TCleanThread.Create(True);
FCleanThread.OnTerminate:=Self.CleanThreadFinished;
(FCleanThread as TCleanThread).OnErrorMessage:=PostError;

16

(FCleanThread as TCleanThread).OnInfoMessage:=PostInfo;
FCleanThread.Resume;

end;

The TCleanThread is implemented in the thrClean unit, and is discussed below. Note
that the OnTerminate event of the service is assigned. It serves to set the FCleanThread
to Nil when the service finished its job:

procedure TCleanService.CleanThreadFinished(Sender : TObject);

begin
With FCleanThread as TCleanThread do
PostInfo(Format(SFinishedClean,[FTotalFiles,FormatDateTime(’hh:nn:ss’,FTotalTime)]));

FCleanThread:=Nil;
end;

At the same time, some cleaning statistics are logged: the FTotalTime and FTotalFiles
fields of the CleanThread contain the total time the thread was working and the number of
cleaned files, respectively.

When the service is stopped, the OnStop event handler is called:

procedure TCleanService.ServiceStop(Sender: TService;var Stopped: Boolean);
begin

TClean.Enabled:=False;
If Assigned(FCleanThread) then

With FCleanThread do
begin
If Suspended then

Resume;
Terminate;
WaitFor;
end;

Stopped:=True;
end;

The timer is stopped, and if the clining thread happens to be running, it is terminated. After
the thread stopped executing, the handler reports success and exits.

This is everything that is needed to implement our service. In order to support pause/continue
commands, the OnPause/OnContinue handlers can be used:

procedure TCleanService.ServicePause(Sender: TService;
var Paused: Boolean);

begin
TClean.Enabled:=False;
If Assigned(FCleanThread) then

FCleanThread.Suspend;
end;

procedure TCleanService.ServiceContinue(Sender: TService;
var Continued: Boolean);

begin
If Assigned(FCleanThread) then

FCleanThread.Resume

17

else
InitTimer;

end;

The code of the event handlers speaks for itself.

When the user changes the time on which the service should clean the disk, and the service
is running, it should be notified of this, so it can reset the timer. To do this, a custom control
code can be sent to the service. Strangely enough, Borland has not implemented an event
to deal with custom control codes: there is no TService event associated with such a
command. Instead, the DoControlCode method must be explicitly overridden. For the
cleaning service, it would be implemented as follows:

function TCleanService.DoCustomControl(CtrlCode: DWord): Boolean;
begin

Result:=(CtrlCode=ConfigControlCode);
If Result and TClean.Enabled then

begin
InitTimer;
PostInfo(SConfigChanged);
end;

end;

The ConfigControlCode constant is defined in the cfgClean unit. As can be seen,
when this code is received, the timer is simply re-initialised, and a message recording this
fact is logged.

The cleaning thread (implemented in unit thrClean is actually a simple loop. It contains
the following methods (among others):

Execute The main function of the thread. It initializes some variables, and then loops over
the list of directories listed in the registry.

RecursivelyCleanDir Called for each directory. It will clean all files in the directory, and
recursively call itself to handle subdirectorie.

CleanDir Called for each directory, it scans all files in the directory, and if the file matches
the search criteria, it is cleaned.

CleanFile Called for each file that matches the search criteria. It determines whether the
file needs to be cleaned and cleans it if needed.

CompressFile This method actually compresses the file. Two implementations exist: one
using Abbrevia, one using an internal method, based on the ZLib unit, delivered on
the Delphi CD-ROM.

The interested reader is referred to the unit itself. The service can easily be adapted by
changing the CleanFile and CompressFile methods. For instance, the files could be
moved to a special directory instead of compressing them. They could also be archived in
1 big archive file, instead of creating a zip file per file. They could be simply deleted. It is
simple code, easily adapted to suit a particular need.

The CD-ROM contains also the code for a managing application (called dkmngr): it
allows to set the needed registry entries, and to start or stop the service. It uses the
TServiceManager component introduced at the beginning of this article to do this.
A screenshot of the application can be seen in figure figure 2 on page 19.

18

Figure 2: Disk cleaning service control application

9 Creating a dual application

There may be occasions when a dual application should be made; or one which should also
run on Windows 95,98 or millenium, operating systems which do not allow for services.
For instance, it would be good to be able to run the disk cleaning service manually, and see
the output on the screen. The simple service presented earlier in this article also could be
run as a service, or normally. This explains why the disk cleaning code was implemented
separate thread instead of directly in the service object: The thread can be started from the
service, or from the main form of the ’normal’ application.

Implementing a dual application is not so hard, it involves some simple changes to the
project source code. To demonstrate it, a form (TManualCleanForm, in unit frmManualClean)
was added to the the diskclean application, which contains a simple memo and a start but-
ton. Pressing the start button will start the cleaning thread, and the progress of the cleaning
progress will be shown in the memo. The form in action is also visible in figure figure 2 on
page 19.

The main program code of the project file must be changed as follows:

begin
Installing:=IsInstalling;
if Installing or StartService then

begin
SvcMgr.Application.Initialize;
SvcMgr.Application.Title := ’Disk cleaning service’;
svcMgr.Application.CreateForm(TCleanService, CleanService);
svcMgr.Application.Run;

19

end
else

begin
Forms.Application.ShowMainForm := True;
Forms.Application.Title:=’Manual Disk cleaning service run’;
Forms.Application.Initialize;
Forms.Application.CreateForm(TManualCleanForm, ManualCleanForm);
Forms.Application.Run;
end;

end.

The installing Flag is set from a function IsInstalling which scans the command-line
for the /INSTALL or /UNINSTALL options. The StartService is discussed below:
it decides whether or not the application is run normally, or as a service. If the application
is run as a service, the code inserted by Delphi is used, but the application object of the
SvcMgr unit is explicitly specified: The Forms unit was added to the Uses clause of the
program, and this unit also contains an instance of the Application object.

If the StartService routine decided that the application is not started as a service, then
the code that would be inserted in a normal GUI application is run: It looks similar to the
one for a service application, only instead of the Application object from the SvcMgr
unit, the application object of the Forms unit is used. And, of course, the main form is
instantiated instead of the service.

The implementation of the StartService routine is not straighforward, and some-
what of a kludge: Unfortunately, Borland’s implementation of the service registration rou-
tine does not allow to specify command-line parameters when registering the service. It
uses simply the binary name, without command-line options. The simple service pro-
gram presented earlier, expected a /RUN command-line option to run as a service. The
TApplication implementation of the registration routine does not allow this. There are
several solutions to this problem:

1. Register the service manually, (or with an install program) and specify the /RUN (or
some other) command-line option explicitly. The StartService function then
just has to detect the presence of this command-line option.

2. Require a command-line option to start the program normally. This command-line
can then be added to the shortcut for the program in the start menu. The disadvantage
of this approach is that if the user uses the Windows Explorer and double-clicks
on the program binary itself to start it, the application will be started (falsely) as a
service.

3. Detect the username with which the application is being started. If this matches
the username specified in the service registration (default the LocalSystem user),
then the application is being started as a service. If the current username is not
equal to the service user name, then the application is started manually. This is the
approach used for instance in Borland’s own socket server service. The disadvantage
of this approach is that an application which must be run as an existing user (e.g.
Administrator) will always decide to run as a service when it is started by this user.
This should not be underestimated, because the Administrator is free to change the
startup username after the service was installed.

Obviously, the first option is unambiguous and simple, and hence preferrable, but this re-
quires ’external’ registration of the service. The StartService function would then
look as follows:

20

function StartService: Boolean;
begin

Result := FindCmdLineSwitch(’RUN’,[’-’,’/’], True);
end;

To show how it can be done using Borland’s default implementation, the last option is used
in the diskclean application. It can be done quite simply using the TServiceManager
class presented earlier:

function StartService: Boolean;

Var
Info : TServiceDescriptor;
Buf : Array[0..255] of char;
N : String;
Size : DWord;
F : TExt;

begin
Result := False;
Try

With TServiceManager.Create(Nil) do
try

Connected:=True;
QueryServiceConfig(SCleanService,Info);
If CompareText(Info.UserName,’LocalSystem’)=0 then

Info.UserName:=’System’;
finally

Connected:=False;
Free;

end;
Size:=256;
GetUserName(@Buf[0],Size);
N:=Buf;
Result:=CompareText(N, Info.UserName)=0;

Except
end;

end;

As can be seen, the servicemanager class is used to fetch the username with which the appli-
cation should run as a service. If the username is ’LocalSystem’ (the default) then the name
is changed to ’System’, as that will be the name that is reported by the GetUserName call
(a nice anomaly in itself). After this, the actual username is fetched using the GetUserName
Windows API call, and the two values are compared. If they match, the application will
start as a service.

10 Conclusion

Writing a complete service application is not hard to do. Using Delphi it is even more
easily accomplished. Service applications can be used in a variety of tasks: the application
presented here has its use - downloaded files and documents tend to clutter harddisks after
some time - but can easily be changed to perform its task a little different - or to perform
other tasks as well.

21

	Introduction
	The TServiceManager component
	Service definitions
	Controlling services
	TServiceManager odds and ends
	A simple service
	Services in Delphi
	A Disk cleaning service
	Creating a dual application
	Conclusion

