Reducing code with scoped objects

Michaél Van Canneyt

May 18, 2025

Abstract

With the ability to create custom managed records, it is now possible to
reduce the number of try..finally blocks in your code.

1 Introduction

Pascal is not a garbage collected language. That means that you are responsible
for memory management. Any resource (or memory) that you allocate, must also
be freed. Avoiding memory leaks can take some work.

Luckily, there are some ways to reduce the work that this manual memory manage-
ment requires:

e Using interfaces: an interface is reference counted. When the last reference
to an interface goes out of scope, the underlying object is freed.

e Using dynamic arrays: similar to interfaces, dynamic arrays are reference
counted. When the last reference to the dynamic array goes out of scope, the
memory occupied by the array. If the array contains objects, the objects are
not freed, however.

e Strings (unicode and ansi strings) are also reference counted, similar to dy-
namic arrays.

e Using TComponent to construct trees of objects. A parent component owns
all its children: when the parent is freed, automatically all children are freed.
This is traditionally how Delphi cleans up forms and datamodules.

e For lists of objects, the TObjectList and TDictionary can be told that they
own the objects contained in them, and they will free them when the list or
dictionary is freed.

If the object you are using is not one of the above, then you are responsible for freeing
the object. This means that you’ll typically encounter code like the following:

Procedure DoSomeWork;

var
ListA,ListB : TStrings;

begin
ListA:=TStringlist.Create;
try

// Do something with ListA
ListB:=TstringlList.Create;



try
// Do something with ListA and ListB
finally
ListB.Free;
end;
finally
ListA.Free;
end;
end;

The experienced programmer will reduce this to the following:

Procedure DoSomeWork;

var
ListA,ListB : TStrings;
begin
ListB:=nil;
ListA:=TStringlist.Create;
try

// Do something with ListA
ListB:=TstringlList.Create;
// Do something with ListA and ListB
finally
ListB.Free;
ListA.Free;
end;
end;

Because Free checks whether the object is not Nil before calling Destroy, this is
perfectly safe in case an exception happens before B is created.

Is there a way to remove these try..finally blocks from the code ? Fortunately,
there is: management operators.

2 Management operators

Both Delphi and Free Pascal have added management operators to the list of oper-
ators that can be defined on a record type. Interfaces, dynamic arrays and strings
are managed types: this means that Delphi under the hood adds code to manage
their lifecycle: they are initialized empty when they come into scope, and they are
finalized when they go out of scope. When copying, the reference counts are ad-
justed. This is also done for arrays of these types or records that contain a managed

type.
Management operators allow one to perform this task implicitly on records. The
definition of a management operator is as follows in Delphi:

Type
TMyRecord = record
Obj: TMyObject;
class operator Initialize (out Dest: TMyRecord);
class operator Finalize (var Dest: TMyRecord);
end;



the Obj field can be anything, but we choose this for a reason which will become ap-
parent soon. The Initialize operator is called when a variable of type TMyRecord
comes into scope, passing it the new variable in Dest. The Finalize operator will
be called called when the variable goes out of scope, again passing it the variable
that goes out of scope.

In Free Pascal, the definition is slightly different:

Type
TMyRecord = record
Obj: TMyObject;
class operator Initialize (var Dest: TMyRecord) ;
class operator Finalize (var Dest: TMyRecord);
end;

The out parameter for the initialize record must be a var parameter instead.

One way to use this would be to create and destroy the object:

class operator TMyRecord.Initialize (out Dest: TMyRecord) ;
begin

Dest.0Obj:=TMyObject.Create;
end;

class operator TMyRecord.Finalize (var Dest: TMyRecord);
begin

FreeAndNil (Dest.0bj);
end;

This means that the following will work:

procedure DoTest;

var
Rec : TMyRecord;

begin
Writeln(Rec.obj.classname)

end;

When the procedure is called, Delphi or Free Pascal will call the Initialize oper-
ator on Rec, which will create the TMyObject instance and store it in the 0bj field.
When the procedure exits, it will call the Free method.

The nice thing about this is that the compiler will create an implicit try..finally
block around the procedure body, and calls the Finalize operator in the finally
block, just as it does this for interfaces, strings and dynamic arrays: the record will
always be properly finalized, without the need for try..finally blocks.

3 Introducing TScoped

With the above management operators, we have done away with the try finally
block and the need to explicitly free the object TMyObject whenever it is used. Of
course, it would not be practical to have to define a record for every object type
that is about to be used in a program. Luckily, this is not necessary. Using generics,
we can create a record definition that handles any kind of TObject.

In the development version of Free Pascal, TScoped has been defined as follows:



generic TScoped<T:class> = record

private
obj: T;

public
class operator Initialize(var hdl: TScoped);
class operator Finalize(var hdl: TScoped);
class operator :=(a0bj : T) : TScoped;
class operator :=(const alObj : TScoped) : T;
procedure Assign(aObj : T); inline;
function Swap(AObj: T): T;
function Get : T;

end;

The implementation of this record is quite simple:
class operator TScoped.Initialize(var hdl: TScoped) ;
begin

hdl.obj := nil;

end;

class operator TScoped.Finalize(var hdl: TScoped);

begin
hdl.obj.free;
hdl.obj:=nil;
end;

procedure TScoped.Assign(aObj : T);
begin

Self.0bj:=albj;
end;

function TScoped.Swap(AObj:T):T;
var
LCurrent:T;
begin
LCurrent := self.obj;
Assign(AQObj);
Result := LCurrent;
end;

function TScoped.Get() : T;
begin
Result := self.obj;
end;
class operator TScoped.:=(al0bj : T) : TScoped;
begin
result.assign(albj);
end;

class operator TScoped.:=(const albj : TScoped) : T;

begin



Result:=albj.Get();
end;

In Delphi, the definition looks as follows:

TScoped<T:class> = record

Private
obj: T;

Public
class operator Initialize(out hdl: TScoped<T>);
class operator Finalize(var hdl: TScoped<T>);
class operator Implicit(const aObj : TScoped<T>) : T;
class operator Implicit(const albj : T) : TScoped<T>;
class operator Assign (var Dest: TScoped<T>; const [ref] Src: TScoped<T>);
procedure Assign(AObj: T);
function Swap(AObj: T): T;
function Get() : T;

end;

Using this generic record, it means we can now do the following;:

Procedure DoSomeWork;
var
ListA,ListB : TScoped<TStringList>;
begin
ListA.Assign(TStringlList.Create);
ListB.Assign(TStringlist.Create);
// Do something with ListA and ListB
end;

Since we overloaded the assignment operator (:= or implicit), we can also write the
following:

Procedure DoSomeWork;

var
ListA,ListB : TScoped<TStringList>;
I . Integer;

begin
ListA:=TStringlList.Create;
ListB:=TStringlist.Create;
for I:=ListA.Get.Count-1 downto O do

ListB.Get.Add(ListA.Get[i])
end;

Note that to get to the actual object, you need to use the Get function. This can
get quite cumbersome, so one can do this:

Procedure DoSomeWork;

var
ListA,ListB : TScoped<TStringList>;
A,B : TStringlist;
I : Integer;

begin
ListA.Assign(TStringList.Create);



A:=ListA;
ListB:=TStringlist.Create;
B:=ListB;
for I:=A.Count-1 downto O do
B.Add(A[i]);
end;

It is tempting to add the Explicit operator to the TScoped definition, and allow
the object to be typecasted to the TScoped record:

class operator TScoped<T>Explicit(const aObj : T) : TScoped<T>;
begin

Result.Assign(aObj);
end;

This would allow to write the following:

Procedure DoSomeWork;

var
A,B : TStringlist;
I : Integer;

begin
// typecast !
A:=TScoped<TStringList>(TStringlList.Create);
B:=TScoped<TStringlist>(TStringlist.Create) ;
for I:=A.Count-1 downto O do

B.Add(A[i]);
end;

However, this would lead to errors. To understand why, let us examine what hap-
pens when we write this:

A:=TScoped<TStringList>(TStringlList.Create);

For the right-hand side of the assignment, the compiler will create a temporary
variable, typecast the created stringlist to it, and then uses the Implicit operator
to assign it to A. In effect, something akin to the following would be executed
(assume the variable is called tmp):

var
Tmp: TScoped<TStringlList>;

begin
// Translation of explicit typecast operator
Tmp:=TStringlist.Create;
// Use of implicit operator to assign to A
A:=Tmp;

All seems to be in order, except that the lifetime or scope of this temporary variable
(tmp) is not well-defined: the compiler may decide to use it to assign B as well, or
may decide to reuse it later on. In that case, it will finalize the tmp variable before
the end of the procedure, and A would be left pointing to a non-existent instance of
TStringList.

It is also possible to use the TScoped definition in classes. See the following example:



TChild = class

private

FStr : String;
public

class var InstanceCount : Integer;
public

constructor Create(const AStr:String);
destructor Destroy(); override;
procedure Display();

end;

//type
TParent = class
private
FStr : String;
ScopedChild: specialize TScoped<TChild>;
public
class var InstanceCount : Integer;
public
constructor Create(const AStr:String);
destructor Destroy(); override;
procedure Display();
end;

With the following implementation for the child:

constructor TChild.Create(const AStr:String);

begin
FStr := AStr;
Inc(InstanceCount);
end;

destructor TChild.Destroy();
begin

Dec(InstanceCount) ;
end;

procedure TChild.Display();
begin

writeln(’ChildStr = ’> + FStr);
end;

And the following implementation for the parent class:

constructor TParent.Create(const AStr:String);
begin
FStr := AStr;
inc(InstanceCount);
ScopedChild.Assign(TChild.Create(’"ChildStr - ’ + AStr+’"’));
end;

destructor TParent.Destroy();
begin
Dec(InstanceCount) ;



end;

procedure TParent.Display();
begin

ScopedChild.Get.Display();
end;

Note that the TParent destructor does not destroy the child instance. This is done
automatically because when the parent is freed, the ScopedChild field goes out of
scope and is finalized.

We can test this in the following routine:

procedure DoTest;

var
P: TScoped<TParent>;

begin
P.Assign(TParent.Create(’Hello’));
P.Get () .Display();

end;

begin

DoTest;

Writeln(’Counts: ’,TParent.InstanceCount,’-’,TChild.InstanceCount);
end;

This will display a count of zero for both objects: all objects are freed automatically
without the need to have lots of try..finally blocks or Free statements.

Under usual circumstances, a TScoped is not copied: it just serves as a container
for another class. However, there may be circumstances in which you want to
copy a TScoped. In Free Pascal, do not assign one TScoped to another by direct
assignment:

Procedure DoSomeWork;

var
A,B : TScoped<TStringList>;

begin
A.Assign(TStringList.Create);
B:=A;

end;

It will compile, but in this case, both A and B will hold a reference to the stringlist,
and will free them both at the end of the procedure, resulting in a double free. In
Delphi it is OK to do so, because delphi allows to override the assign operator for
two TScoped variables.

If you really need to copy the TScoped, this is the correct way to do it in Free
Pascal:

Procedure DoSomeWork;
var
A,B : TScoped<TStringList>;
begin
A . Assign(TStringList.Create);
B.Assign(A.Swap(nil);
end;



4 Locking

When making multithreaded applications, it is common to protect access to shared
resources with a TMutex or TCriticalSection: these synchronization objects allow
to control access to resources that are shared between various threads.

This means you’ll see lots of code like the following:

procedure TMyObject.ChangeSomeResource;

begin
FLock.Enter;
try
// Do some things.
finally
FLock.Leave;
end;
end;

Only one thread at a time can execute the code between the try. .finally block.
This block is needed to make sure that in case of exception, the lock (or mutex) is
released.

The TScoped cannot be used for this:

procedure TMyObject.ChangeSomeResource;
var

1Lock:TScoped<TCriticalSection>;
begin

1Lock.Assign(Flock);

1Lock.Get .Enter;

// Do some things.
end;

At the end, the lock would be destroyed, instead of simply unlocked.

Fortunately, we don’t have to actually destroy the lock in the finalization of our
record. We can simply release the lock. A record that does just that has been
implemented in the syncobjs unit of free pascal:

generic TLockGuard<T:TSynchroObject> = record
obj: T;
class operator Initialize(var hdl: TLockGuard);
class operator Finalize(var hdl: TLockGuard);
procedure Init(AObj: T);

end;

Its implementation is quite simple:

class operator TLockGuard.Initialize(var hdl: TLockGuard) ;
begin

hdl.obj := nil;
end;

class operator TLockGuard.Finalize(var hdl: TLockGuard);
begin



if (hdl.obj=nil) then
exit;
hdl.obj.Release();
end;

procedure TLockGuard.Init(AObj:T);
begin
self.obj := ADbj;
self.obj.Acquire();
end;

As you can see, in the finalization call, we simply call the Release method of the
synchronization object.

So now we can do without an explicit try..finally block and write:

procedure TMyObject.ChangeSomeResource;
var

1Lock:TLockGuard<TCriticalSection>;
begin

1Lock.Init (Flock);

// Do some things.
end;

To demonstrate this, we’ll create a small demo program that demonstrates this.
We’ll create a thread that calculates a fibonacci number, and we’ll protect the
calculation using a lock, so only one thread at the time performs the calculation.

Here is the fibonacci routine:

Function Fibonacci(TN,N : Integer) : Int64;
Var

Next,Last : Int64;

I : Integer;

begin
if N=0 then
exit (0);
Result:=1;
Last:=0;
for I:=1 to N-1 do
begin
Next:=Result+last;
Last:=Result;
Result:=Next;
Writeln(’Thread[’+IntToStr(TN)+’] ’+IntToStr(Result));
end;
end;

The TN parameter is there for display purposes only, to make it clear in the output
which thread is performing the calculation.

We then define our thread object, together with some count objects:

Type
TCalcThread = Class(TThread)

10



Public
class var
ExecutelLock : TCriticalSection;
ThreadCount : Integer;
ExecuteCount : Integer;
Private
FNo : Integer;
Public
constructor create(aNo : Integer);
destructor destroy; override;
Procedure Execute; override;
end;

Each thread gets a number, to be able to identifiy it. The operating system’s thread
id could be used for this, obviously, but a simple integer reads more easily. The
ExecuteLock critical section will be used to synchronize the execution.

The constructor and destructor increment and decrement the thread count, and
display a diagnostic message:

constructor TCalcThread.create(aNo : Integer);
begin
Inherited Create(False);
InterlockedIncrement (ThreadCount) ;
FNo:=aNo;
Writeln(’Creating thread ’,FNo);
FreeOnTerminate:=True;
end;

destructor TCalcThread.destroy;
begin
InterlockedDecrement (ThreadCount) ;
Inherited;
end;

Note that we set the thread to free itself when it is finished executing.

Finally, in the execute method, we use our TLockGuard (the example below uses
FPC’s syntax for specializing a generic). For display purposes, at the beginning
and end of the routine, we also do a check that no more than 1 thread is calculating
the fibonacci number .

procedure TCalcThread.Execute;
var
lock : specialize TLockGuard<TCriticalSection>;
Res : Integer;
begin
lock.Init (ExecuteLock);
InterlockedIncrement (ExecuteCount) ;
if ExecuteCount<>1 then
Writeln(’Error : multiple threads are executing (start)’);
Res:=Fibonacci(FNo,10);
writeln(’Thread[’+IntTostr(FNo),’] Fibonacci(10) = ’+IntToStr(Res));
InterlockedDecrement (ExecuteCount) ;
if ExecuteCount<>0 then

11



Writeln(’Error : multiple threads are executing (stop)’);
end;

In the main program we initialize the lock and start a number of threads. After
that we wait till the threads are all done:

var
I : integer;
begin
TCalcThread.ExecuteLock:=TCriticalSection.Create;
for I:=1 to 10 do
TCalcThread.Create(i);
repeat
sleep(10);
CheckSynchronize;
until (ThreadCount=0);
TCalcThread.ExecuteLock.Free;
end.

When you run this program, you’ll see from the output messages that only one
thread at a time is calculating the fibonacci number. Naturally, this is not something
you would normally do, as it defeats the purpose of running a calculation in a thread
in the first place.

The lock must be created (and destroyed) outside the routines that use them. The
following will not work for obvious reasons:

procedure TCalcThread.Execute;
var
lock : specialize TLockGuard<TCriticalSection>;
Res : Integer;
begin
lock.Init(TCriticalSection.Create);
Res:=Fibonacci(FNo,10);
writeln(’Thread[’+IntTostr(FNo),’] Fibonacci(10) = ’+IntToStr(Res));
end;

The syncobjs unit already specializes the TLockGuard generic with the 3 synchro-
nization objects defined in the SyncObjs unit:

TCriticalSectionGuard = specialize TLockGuard<TCriticalSection>;
TSemaphoreGuard = specialize TLockGuard<TSemaphore>;
TMutexGuard = specialize TLockGuard<TMutex>;

Using these pre-defined types saves you some typing and makes compilation slightly

faster.

5 conclusion

In this article we’ve shown how you can use the management operators to make
your life easier by reducing the number of try..finally blocks that you must
write. It’s likely that at the same time it makes execution slightly faster: chances
are that your code already causes the compiler to insert an invisible try..finally

12



block, for instance when using ansistrings or unicodestrings. If so, the compiler
can simply reuse this block to handle the finalization of the records. The code
for the TLockGuard and TScoped generics is integrated in Free Pascal. For Delphi
users, units with their definitions are includes with the code for this article. No
doubt, more such techniques can be conceived, and the 2 records introduced here
can serve as inspiration. The author wishes to thank Loic Touraine for his initial
implementation of these 2 useful records.

13



	Introduction
	Management operators
	Introducing TScoped
	Locking
	conclusion

