RTTI for beginners

Michaél Van Canneyt

December 27, 2021

Abstract

RTTI is a part of Delphi since version 1 of Delphi. What is it, what does it do and
what can you do with it ?A gentle introduction.

1 Introduction

RTTI is a very important part of the Object Pascal language. It has been around as long as
Delphi is around, because Delphi as we know it today would not be able to exist without
RTTI: the IDE’s Form designer is built on top of RTTL

Since the first version of Delphi, RTTI has been expanded to include much more informa-
tion than in the original version. Meanwhile it can be used to e.g. call arbitrary methods
(e.g. in the SOAP implementation), arbitrary attributes can be created, and the way it is
accessed has evolved (the RTTI unit).

Other languages also offer RTTI equivalents: Java and C# have introspection and reflection,
which corresponds to RTTT in Delphi. In Javascript, the feature is more or less built-in in
the language.

2 The need for RTTI

Formally, RTTI stands for Run-Time Type Information. As the name indicates, it is in-
formation about the used types in a Delphi program, which is available at run-time. Here
Run-Time is meant as opposed to Compile-Time.

Since Object Pascal is a strongly typed language, it is only natural that while compiling,
the compiler has all information available about a property of a class.

This means that, given the declaration

TMyClass = class
private
FMyProperty: Integer;
procedure SetM(AValue: Integer);
Public
Property MyProperty : Integer Read FMyProperty Write SetM;
end;

procedure TMyClass.SetM(AValue: Integer);
begin
if FMyProperty=AValue then Exit;
FMyProperty:=AValue;

end;
the compiler can do a lot of things when it encounters code as:

M:=MyClass.Create;
M.MyProperty:=3;

it will know that

1. M indeed has a property MyProperty
2. An integer value can be assigned to MyProperty.
3. it must call SetM to actually set the value.

However, at run-time, the compiler is not available to check such things.

Yet, when a Delphi program is run, the definition of a form is read from the form file and
used to construct the form. This is thanks to the presence of RTTI: The presence of RTTI
makes it possible to create arbitrary objects and assign values to the available properties.

When looking at a form file (to see it, hit Alt-F12). Things like the following can be seen:

object BSet: TButton

Left = 8
Top = 80
Width = 90

Height = 25
Caption = ’Set property’
Default True
TabOrder = 2
OnClick = BSetClick
end

(When done, hit Alt-F12 again to see the actual form)

At run-time, when the form must be created, the above information is read, and the form is
constructed.

This is achieved using RTTI: when the above information is read (using the streaming
mechanism), things like

Height = 25
are translated to the equivalent of Pascal statements like.

BSet:=TButton.Create (Self)
BSet .Height :=25;

The compiler is not available at runtime to evaluate the above instruction. Instead, the
information contained in the RTTI in the binary is queried to know how to create the button,
and how to apply 25 to the Height property of the button.

In essence, RTTI is a large table containing all the classes used in a program, and for each
class, a table with all the published fields, properties and methods of the class, and how to
access them. The information in these tables is then consulted to create the button, and set
its height to 25.

3 Making use of basic RTTI

If constructing forms at run-time was the only use for RTTI, then the makers of Delphi need
not have bothered: it would have been perfectly possible to let the IDE create a (private)
method which was simply full of pascal code like:

BSet :=TButton.Create (Self)
BSet.Height :=25;
BSet.Left:=8;

BSet .Top:=80;

BSet .Width:=90;

BSet .Height :=25;
BSet.Caption:="Set property’;

This method could be called by the constructor, and this would construct the form. Indeed,
this would be faster than the current method which involves parsing a form file, looking up
names in RTTI etc. In fact, IDE plugins exist that do exactly this (e.g. GExperts contains
such a plugin).

Then why use RTTI anyway ? The reason is in the additional flexibility this offers. If the
form was constructed using compiled code, there would be no possibility to change the
definition, once the binary is shipped to the users: the definition is compiled in the binary.

But since the form definition is stored in text in the resources, it is possible to change
the text, or even load 2 form definitions, one after the other. This is in fact what is done
if a form is localized: the original definition is loaded using RTTI, and then it is altered
using a localized definition of the form; (not only the texts can be changed, but also control
positions etc.)

There exist many components that use the RTTI to save and store form positions (and
in fact, any property of any component) at runtime. The JVCL’s TdvFormPlacement
class, for example. The Inspex package from Raize software also makes use of the RTTI to
allow you to alter the properties of classes at runtime.

There are 2 units in the RTL that offer access to the RTTI. The original Typelnfo unit
(which is procedural and very low-level), and the more modern, object-oriented RTTI unit
which uses classes and generics. Both offer the same information, and which one to use is
largely a matter of preference.

4 A simple example

To demonstrate the use of RTTI, we’ll make a small program that allows to enter a property
name, and a value. The program will then attempt to set a form property with the given
name, using the provided value. There are 2 edit boxes: one for the name, one for the value.
A button Set property can be pushed to actually set the property.

The first version of the form uses the typinfo unit. The OnC1lick handler of the button
looks as follows:

procedure TMainForm.BSetClick (Sender: TObject);
begin
SetPropValue (Self, EName.Text,EValue.Text) ;

end;

This is of course very simple. The SetPropValue function is simplicity itself.

procedure SetPropValue (Instance: TObject;
const PropName: string;
const Value: Variant); overload;

It takes 3 arguments. An instance of a class, a property name and the value (as a variant).
It will look up the name of the property, check the type, and attempts to convert the variant
to the appropriate type for the property. If all checks out, the property is set.

Using the RTTT unit, a little more work is needed. This unit lacks the ability to convert a
variant to the appropriate type, so this must be done manually.

Whenever classes of the RTTI unit are used, a context TRTTIContext record must be
used. This record contains the necessary methods to query the RTTI. For our example, the
GetType method must be used to retrieve the type information of the form. This is an
object of type TRTTIType. That object can then be used to get the type information of the
property whose name was entered: for this, the GetProperty method of TRTTIType
must be used. It will result in a object of type TRTTIProperty

Once the property information is available, the actual property can be set:
procedure TMainForm.BSetClick (Sender: TObject);

Var
Ctx : TRTTIContext;
RT : TRTTIType;
P : TRttiProperty;
AValue : String;

begin
AValue:=EValue.Text;
Ctx:=TRTTIContext.Create;
try
RT:=Ctx.GetType (ClassInfo);
P:=rt.GetProperty (EName.Text) ;
if P.IsWritable then
case P.PropertyType.TypeKind of
tkInteger : P.SetValue(Self,StrTolInt (AValue));
tkEnumeration : P.SetValue (Self,StrToInt (AValue));
tkUString : P.SetValue(Self,AValue);
end;
finally
Ctx.free;
end;
end;

To set the property, its type must be known: the RTTI unit does not offer functionality to
automatically convert from a string to the property’s actual type. The type of the property
is available in the P . PropertyType . TypeKind property: this is an enumerated type
which contains an element for all possible pascal types. The code above checks for a
few common types, but in actual code, all possible type kinds should be checked (and an
exception raised if it is not supported). The SetPropValue does all this automatically.

The result of this code can be seen in figure [I]on page 3]

Figure 1: Setting a property

")

= || = & |

@ FTTIDemo — O ot

Property name |wi|:|l:|‘| |

Property walue |3IZIIZI| |

Set properky

S Getting property lists

It is not very interesting to be able to set only properties of the form, so we’ll first extend
the program to fill a combobox with the available components in the form. Additionally,
letting the user guess the names of available properties is also not very conventient, so we’ll
present the user with a list of properties of the selected component.

Showing a list of available components can be done without RTTI, using the methods of
TComponent is sufficient (although RTTI could be used to get the design-time components
of the form). We’ll store a reference to the component in the Items.Objects property of the
combobox.

procedure TMainForm.FormCreate (Sender: TObject);
begin

FillCBComponents;
end;

procedure TMainForm.FillCBComponents;

Var
C : TComponent;
S : String;

begin
S:=CBComponent . Text;
With CBComponent, CBComponent.Items do
begin
beginUpdate;

try
Clear;
Sorted:=False;
AddObject (Name, Self);
for C in self do

AddObject (C.Name, C);

Sorted:=True;
CBComponent .ItemIndex:=CBComponent.Items.IndexOf (S);

finally
EndUpdate;

end;

end;
end;

The BSet OnC1lick handler is now refactored so it will first retrieve the selected compo-
nent, and then calls the SetProperty routine, which simply contains our previous code,
changed to accept 3 arguments: component, property name and value.

procedure TMainForm.BSetClick (Sender: TObject);

Var
IDX : Integer;
C : TComponent;

begin
IDX:=CBCOmponent.ItemIndex;
if (IDX=-1) then
Raise Exception.Create(’Select a component first’);
C:=CBCOmponent .Items.Objects[IDX] as TComponent;
SetProperty (C, EName.Text, EValue.Text) ;
end;

The result looks as in figure 2] on page

Now for the more interesting part: Once the component is selected, we present to the user
a list of published properties that the selected component has.

procedure TMainForm.CBComponentChange (Sender: TObject);

Var
IDX : Integer;
C : TComponent;
begin
IDX:=CBCOmponent.ItemIndex;
if (IDX=-1) then
C:=Nil
else
C:=CBCOmponent.Items.Objects[IDX] as TComponent;
ShowProperties (C);
end;

procedure TMainForm.ShowProperties (C : TComponent);

begin
With CBName, Items do

Figure 2: Setting a property of a selected component

-
) RTTI Derno |':' ”El ”EE|
L1 Component o “ 9 SRORERERI
Y SRR R eIl
oo Froperty neme EEEETE T,
L Propertyvale | SR
| R
@) RTTI Demn - | x

Component | eplame W

Property name [\widkh

Property value |5I:I

Set property

begin

try
BeginUpdate;
Clear;
Sorted:=False;
if Assigned(C) then

GetPropertyNames (C,CBName.Items) ;

Sorted:=True;

finally
EndUpdate;

end;

end;

end;

Using the typinfo unit, the routine to get the property names of the selected component,
looks as this:

procedure TMainForm.GetPropertyNames (C : TComponent;AList : TStrings);

Var
P : PProplList;
I,N : Integer;

begin
N:=TypInfo.GetPropList (C,P);
try
I1:=0;
While I<N do
begin
AList .Add(P"[I] .Name) ;
Inc(I);
end;
finally
FreeMem (P) ;
end;
end;

The GetPropList function of the TypInfo unit returns a list of all properties of an ob-
ject (or a class). The result is a count of properties, and a pointer to an array of PPropInfo
pointers (P). When finished with this array, it must be freed. The varPProplnfo points to a
TPropInfo record. This is one of the central records in the TypInfo unit:

TPropInfo = packed record
PropType: PPTypelnfo;
GetProc: Pointer;
SetProc: Pointer;
StoredProc: Pointer;
Index: Integer;

Default: Integer;

NameIndex: SmallInt;

Name: TSymbolName;
end;

The PropType pointer points to the type information of the property’s type. The Name

is the name of the property, which is what interests us: this is used to add the name of the
property to the list of property names. The other fields tell us how the property is accessed
(getter,setter etc.), and whether has a default value.

Using the RTTT unit, the routine to get the property names is quite simple as well:
procedure TMainForm.GetPropertyNames (C : TComponent;AList : TStrings);

Var
Ctx : TRTTIContext;
P : TRttiProperty;

begin
Ctx:=TRTTIContext.Create;
try
For P in ctx.GetType(C.ClassInfo) .GetProperties do
AList .Add (P.Name) ;
finally
Ctx.free;
end;
end;

The CTX.GetType call is the same as used in the code to set a property name: it returns
a TRTTIType descendent. The GetProperties method of the TRTTIType class
returns an array of TRttiProperty instances: one for each property in the class. This
array is traversed, and the names of each of the properties is added to the list.

The resulting code results in a form that looks as in figure[3|on page

6 Setting a known property on several classes

The code demonstrated till now was informative, but hardly practical. Let’s turn to a more
practical example.

To disable all controls of a form, their ’enabled’ property can be set to false. this can be
done with a simple loop:

Var
I : Integer;
begin
For I:=0 to ControlCount-1 do
Controls[i] .Enabled:=False;
end;

This can be done because all controls on the form descend from TControl and they all
inherit the Enabled property.

But imagine another scenario: only Data-Aware controls must be disabled. Data-Aware
controls have been created as descendants of regular controls which implement Data-
related properties (DataField andDataSource). That means that there is no property
at the TControl level which can be checked to see if the property is data-aware.

Without RTTI, the only method to achieve this would have been to check the type of the
control:

Var

Figure 3: Selecting a property of a selected component

-
@R’I‘I’IDemD |':' ”EI ”E'
- Component vl
N SIS, PP ST
::::::Prnpertyvalue| D

@ RTTI Dermo

Component | —erame

Froperty name | yideh

Property walue | 180

Set property

10

I : Integer;
C : TControl;
begin
For I:=0 to ControlCount-1 do
begin
C:=Controls[i];
if (C is TDBText)
or (C is TDBGrid)
// check all other types
or (C is TDBEdit) then
C.Enabled:=False;
end;
end;

It is clear that this is error-proof and slow.

With RTTI, we can do this a lot easier. When the Data-Aware controls were made, care
was taken that they all use the same property names to link to a datasource and indicate
a field (DataField andDataSource). Using this fact, we can just check whether the
control has the Datasource property to know if it is data aware, and disable it. Using
the typinfo unit, this is done as follows:

Var
I : Integer;
C : TControl;

begin
For I:=0 to ControlCount-1 do
begin
C:=Controls[i];
if isPublishedProp(C,’'DataSource’) then
C.Enabled:=False;

end;

end;

The isPublishedProp function of the TypInfo unit checks if a class (or class in-
stance) has the indicated property.

To do this with the RTTI unit, the following code can be used:

Var
I : Integer;
C : TControl;
Ctx : TRTTIContext;
P : TRttiProperty;

begin
Ctx:=TRTTIContext.Create;
try
For I:=0 to ControlCount-1 do
begin
C:=Controls[i];
for P in Ctx.GetType (C.ClassInfo) .GetDeclaredProperties do
if SameText (P.Name,’'DataSource’) then
begin

11

C.Enabled:=False;
Break;
end;
end;
finally
Ctx.free;
end;
end;

7 Conclusion

The RTTI of Delphi is a powerful tool. For simple projects, it’s mostly hidden in the form
streaming code, but as projects become more advanced, it can be useful to know how RTTI
functions and what can be done with it. In this article, a start has been made, showing
some simple things like how to set an arbitrary property using RTTI, how to get a list of
properties, and how to check if a class has a certain property. RTTI can do many more
things, such as examine attributes or invoke arbitrary methods. These topics will be treated
in a future article.

12

	Introduction
	The need for RTTI
	Making use of basic RTTI
	A simple example
	Getting property lists
	Setting a known property on several classes
	Conclusion

