
Remobjects for Webservices

Michaël Van Canneyt

December 6, 2008

Abstract

The RemObjects SDK is a versatile tool which is likely to provide a solution for all
your remoting needs: it implements a complete RPC (Remote Procedure Call) mech-
anism in pure Object Pascal. Using this toolkit, it is easy to write publicly available
webservices, or to write high-performance RPC mechanism for use in all kinds of ap-
plications.

1 Introduction

Remobjects has been around for quite a while now, and has meanwhile - currently at version
5 named ’Vinci’ - grown to a robust toolkit for implementation of client/server communi-
cations and implementation or use of web-services. It is available for pretty much any
platform out there: Windows, Linux, Mac and the web. It can use native code or .NET
assemblies, and objective C on Mac OS X.

It allows to create new services, i.e., server applications that provide an API to any client
that needs them, or it can be used to consume existing services, i.e. it translates the API of
a third-party service to something the client can work with (Object Pascal, for Delphi).

The website where this product can be downloaded is:

http://www.remobjects.com/

The Delphi version of the Remobjects SDK installs itself in the Delphi IDE - any version
as of Delphi 6 will work. It creates a menu item ’Remobjects SDK’, registers some new
project types in the ’File|New’ menu, and adds a lot of components to the ’Remobjects
SDK’ tab of the component palette.

2 Getting started

To get started with Remobjects, the first thing one needs to get acquainted with is the
Remobjects Service Builder. This stand-alone application is used to define the service one
wishes to implement or access: it is the starting point for any RemObjects-based project.
The Remobjects service builder can be started from the ’Remobjects SDK’ menu in the
Delphi IDE.

There are 2 options:

• One imports an existing service description: this can be a RemObjects service, or a
service created by a third party: a webservice or an ActiveX server. In the first case,
a RODL file is needed. For webservices, a WSDL file describing the webservice is
needed. For the ActiveX server the type library or OCX is needed.

1



Figure 1: The service builder at work

• It is also possible to define a complete new service.

In figure 1 on page 2, the service builder is shown after it has succesfully imported a third-
party WSDL file.

The end product of the service builder - regardless of the fact if it is a new or imported
service - is a series of files:

• A RODL (RemObjects Data Language) file that describes the service.

• If the new service will be accessible as a web service, the service builder can create
a WSDL file, describing the service.

• It can create a skeleton implementation in Object Pascal for the new service: this is
needed if the new service will be implemented with Remobjects. The skeleton must
then be filled with code.

• It creates an invoker: the invoker code translates the remoting messages to calls to
the implementation generated in the previous point.

• It creates a pascal source containing all needed data structures and a series of inter-
face definitions. This file also contains the proxy implementation which can be used
to call the service. It is used both on the client and server side.

To demonstrate this, a small service will be implemented which returns the contents of a
directory.

2



Figure 2: The toolboxdemo library

4 things are needed:

TDirEntry A record (called a Struct in the service builder) describing an item in a direc-
tory: It has 4 fields: FileName, Hidden, Directory, TimeStamp.

TDirEntries An array of TDirEntry records: The service will return the directory con-
tents in a TDirEntries array.

DirectoryService This is the actual service definition. It can be compared with an inter-
face specification. It contains the various public calls of the service.

GetDirectory This is the only operation in the service: it is the only actual call in the ser-
vice. It has 2 parameters: Path, a string with the name of the directory whose
contents must be returned. The second - out - parameter is Content, of type
TDirEntries. Finally the function result is an integer, which will return the num-
ber of entries or a negative number in case of an error.

All this is collected in a library which will be named ’ToolboxDemo’.

Defining all this in the service builder is straightforward: the GUI speaks for itself and is
quite intuitive: for each of the elements that can be added to a service, a button is available
in the toolbar. The finished service description can be seen in figure 2 on page 3.

The library must now be saved as a .RODL file (name it toolboxdemo), and then the ’Code-
gen’ menu can be used to create the Pascal definition (and possibly the implementation) of
the service. 3 files must be produced:

1. The library interface definition. The service builder proposes toolboxdemo_intf.pas.
It contains the interface and all data structures defined in the service.

3



2. The service implementation: DirectoryService_impl.pas is proposed. In case there
are more than 1 service in the library, multiple implementation files must be created.
These files must be filled with code in the Delphi IDE.

3. The service invoked: toolboxdemo_invk.pas. This file is needed on the server and
will call the implementation based on the incoming request: the skeleton implemen-
tation file uses this unit.

Normally, only the implementation file must be edited: the two other must be added to the
program, but will normally never be edited.

3 The server

When this is done, the files can be used in a Delphi server application. There are various
ways of doing this: either one starts a new RemObjects service application (the ’New’ menu
contains a ’Remobjects SDK’ section where many kinds of applications can be chosen
from) and defines the service starting from there, or an existing application can be turned
into a RemObjects server. This can be done using the ’Remobjects SDK’ menu in the IDE.
The toolboxdemo.rodl file can then be imported into the server application, using the same
menu.

For the demo, the latter approach is used, and the 3 server-side files are added to a new
VCL forms project. The DirectoryService_impl.pas must be opened and the
implementation of the IDirectoryService server must be implemented in this file.
The generated file is very simple, and looks like this:

TDirectoryService=class(TRORemotable,IDirectoryService)
protected

function GetDirectory(const Path: String;
out Content: TDirEntries): Integer;

end;

The implementation of GetDirectory – an empty procedure was already generated –
can be filled as follows:

function TDirectoryService.GetDirectory(const Path: String;
out Content: TDirEntries): Integer;

Var
Info : TSearchRec;
E : TDirEntry;
P : String;

begin
P:=IncludeTrailingPathDelimiter(Path)+’*.*’;
Result:=FindFirst(P,faAnyFile,Info);
If (Result=0) then

try
Content:=TDirEntries.Create;
Repeat

E:=Content.Add;
E.FileName:=Info.Name;
E.Hidden:=(info.Attr and faHidden)<>0;
E.Directory:=(Info.Attr and faDirectory)<>0;

4



E.TimeStamp:=FileDateToDateTime(Info.Time);
inc(Result);

Until (FindNext(Info)<>0);
finally

FindClose(Info);
end

else if (Result>0) then
Result:=-Result;

end;

Which is a very simple routine. Note that the TDirEntries array from the service
description is implemented as a class, which must be instantiated. The RemObjects frame-
work code will free this array, after the result was sent back to the client. The Add function
to add a new element to the array is generated by the RemObjects service builder.

Note the initialization code of the implementation unit. It has been filled by the service
builder with the following code:

Initialization
TROClassFactory.Create(’DirectoryService’,

Create_DirectoryService,
TDirectoryService_Invoker);

This line tells the RemObjects message dispatcher mechanism that it should use a TDirectoryService_Invoker
class to process messages for the DirectoryService service, and that the Create_DirectoryService
function (which is also generated by the service builder) must be used to create a new in-
stance of the TDirectoryServce implementation.

To finish the server application, it must be given 2 more components, which will be dropped
on the main form:

1. A Server component.

2. A message component.

The server component represents the transport channel by which the server receives mes-
sages from the client and sends messages back to the client. This can be HTTP, SMTP, plain
TCP/IP, named pipes, windows messages or plain DLL calls. For each of these transport
mechanisms, a server component is available, each with it’s own properties that describe
how the server listens for messages from the client.

It is possible to make a server that listens to many transport channels at once. For instance,
it is possible to create a server application that listens on a HTTP port and on a windows
message channel at the same time.

For the purpose of the demo, a windows message server is used (named ROServer); This
channel uses a window handle and the (very fast) Windows message copying mechanism.
The only property that must be set is the ServerID property: this should be a unique
string that can be used to reach the window handle used by the server (It is usually a good
idea to use a GUID for this property). For the demo ’DirectoryServer’ is used as a ServerID.

The message component determines how the client message must be formatted and how
the serves formats its response to a request. Messages can be encoded in binary form (very
fast) or as SOAP messages (required for webservices), or XMLRPC formatted messages.
For each of these formats, a component must be dropped and optionally configured, and
the channel component must be told to use this message in it’s Dispatchers property.
For the purpose of the demo, a binary message is dropped on the main form (ROMessage)

5



and the DisPatchers property editor of the ROServer component is used to tell the
server that it should use binary messages in its communication with the client.

With this, the server part is nearly ready. All that needs to be done is to activate the server
component. This is done in the ’OnCreate’ handler of the server’s main form:

procedure TServerForm.FormCreate(Sender: TObject);
begin

ROServer.Active := true;
end;

And with this, the server is ready to be used: As soon as the application is started, the
ROServer component will start listening for client requests. It will decode the requests
using the ROMessage component, and feed it to the dispatching mechanism of RemOb-
jects: that will use the invoker class TDirectoryService_Invoker to transform the
message to a call to the TDirectoryService class.

4 The client

Now that the server is ready, a client can be created. The client is also easily created using
the RemObjects toolkit: Any project can be used as a RemObjects client.

3 components are needed to make a project a RemObjects client:

1. A transport channel component

2. A message component

3. A TRORemoteService component.

Only one instance of the two first components is needed in any client, so it may be a good
idea to drop them on a TDataModule that is shared by all forms that need RemObjects
functionality.

The meaning of the first 2 components should be clear: the transport channel component
is used to transport the message from the client to the server: it should obviously match
the transport mechanism that the server uses to listen for messages. Similarly, the message
component should be set up identically as the one on the server. There are many transport
channels available: some channels (e.g. HTTP) are even implemented in several ways,
using different TCP/IP toolkits such as Indy, Synapse or native windows using the wininet
DLL.

For the demo application, a binary message is used, and a TWinMessageChannel in-
stance for the windows message transport channel. It’s ServerID property must be set to
DirectoryServer, so it knows where the server is listening.

The third component (TRORemoteService) represents the server service. It needs to
be pointed to the used channel and message components by it’s Channel and Message
properties: it then knows how to connect to the server and send a message. The ServiceName
property tells the service which service on the server it should contact, because a server can
implement more than one service at once. From this it follows that one TRORemoteService
component per accessed service on the server is needed.

With all this, everything is ready to show the directory structure on the server in a treeview.
To call the server, it is sufficient to typecast the TRORemoteService component to the
service interface that one wishes to call, for instance:

6



Res:=(RORemoteService
as IDirectoryService).GetDirectory(Apath,E);

IDirectoryService is the service that was defined and implemented on the server.

This can now be used to display the directory structure on the server in a treeview: So,
an edit control (EPath) and a button BExecute are dropped on the form, as well as a
treeview (TVDirs). In the OnClick event of the button, the following code is executed:

procedure TClientForm.BExecuteClick(Sender: TObject);
begin

TVDir.Clear;
FillTreeFromPath(Nil,Epath.Text);

end;

The FillTreeFromPath method is a recursive method:

procedure TClientForm.FillTreeFromPath(AParent : TTreeNode;
APath : String);

Var
E : TDirEntries;
Res : integer;
N : TTreeNode;
S : String;
I : integer;

begin
Apath:=IncludeTrailingPathDelimiter(Apath);
Res:=(RORemoteService as

IDirectoryService).GetDirectory(Apath,E);
if Res>0 then

begin
for I:=0 to E.Count - 1 do

begin
S:=E[i].FileName;
if (S<>’.’) and (s<>’..’) then

begin
N:=TVDir.Items.AddChild(AParent,S);
if E[i].Directory then

FillTreeFromPath(N,APath+E[i].FileName);
end;

end;
FreeAndNil(E);
end;

end;

The first line executes the actual server call; it returns a list of filenames in the specified
path: Then a loop is executed in which all filenames are added to the treenode which was
passed as the parent node. If a directory entry is encountered, the FillTreeFromPath
is called again with the newly added directory node as the parent.

That is all. As can be seen, no extra code is needed to use the service on the server from a
remobjects client: everything is handled transparently by remobjects: the server interface
can be called as if the server object was present in the client.

7



Figure 3: The client in action

To test all this, the server must be run first and then the client can be started. A push on the
’Show’ button should then result in something like in figure 3 on page 8.

5 Conclusion

Remobjects makes client/server communication via webservices or using a private protocol
quite easy: it completely hides the communication details from the application program-
mer, presenting him with an way of operation as if he was programming using standard
Delphi interfaces. This article has barely scratched the surface of what is possible: there is
more to remobjects than was presented here. Maybe a future contribution can explore the
possibilities more in depth than the first meeting in this article.

8


	Introduction
	Getting started
	The server
	The client
	Conclusion

