
Using regular expressions

Michaël Van Canneyt

February 23, 2021

Abstract

Regular expressions should be a part of every programmer’s toolbox. Once grasped,
they are easy to use and can accomplish otherwise difficult or time-consuming tasks for
you. A short introduction in Regular Expressions.

1 Introduction

Regular expressions have been around for almost 70 years, and are commonly used to
perform search and replace operations. They can be found in most IDEs or text editors.
Still, surprisingly many people do not know how to use them. Therefor we give a simple
introduction on how to use them. I

n what follows, the POSIX conventions for regular expressions are described. Some editors
and IDEs use slightly different conventions.

A good overview of all possibilities (and in particular the Perl Compatible Regular Expres-
sions (PCRE)) can be found on the wikipedia page:

https://en.wikipedia.org/wiki/Regular_expression

Many programmers will be familiar with pattern matching for filenames:
A mechanism used in the FindFirst/Findnext calls: They allow for simple wildcard
matching, where * stands for an arbitrary sequence of characters, and ? stands for a single
character.

Thus ?.pas will match all filenames of 1 character long with extension .pas, and Sys-
tem.*.pas will match all filenames that start with the System namespace.

Similarly, many programmers fluent in SQL will know the LIKE operator that allows the
use of % and _ wildcards.

So, how to match these filenames with regular expressions ? Like in filename wildcard
matching, letters and digits (and many symbols) in a regular expressions match only that
letter or digit. But a regular expression can contain some special characters. Here are some
of them:

ˆ The ˆ matches the beginning of the input string (usually a line of text).

. The dot matches any single character. It is equivalent to the ? wildcard in filename
matching.

* The asterisk matches the previous element any number of times (also zero).

$ The $ matches the end of a search string (usually a line of text).

1

If you want to include a literal dot or asterisk in your regular expression, you must escape
them with a backslash.

With these 2 characters, we can already emulate the filename pattern matching. The fol-
lowing regular expression:

^.\.pas$

This will match all filenames with a name of 1 character long, and extension .pas. Like-
wise, the following:

^System\..*\.pas$

will match all filenames that start with the System namespace.

However, you can do more with Regular expressions than just emulate file name wildcard
matching.

For instance, you might want to search for files that are either a .pas file or a .dcu file. To
be able to do this, we need 2 more concepts in Regular expressions:

() The brackets mark a subexpression.

| The vertical bar matches the element before or the element after.

To find either a .pas file or a .dcu file, we can combine these two with

^.*\.pas|dcu$

If you want to find files that end on -1, -2 or -3, then you can use the following operator:

[] This will match any letter between the brackets.

[ˆ] This will match any letter not between the brackets

You can specify a range of characters by separating them with a dash, for example a-z or
0-9, just as you specify a range in Pascal.

Thus, the following expression will match all .txt filenames that end on -1, -2 or -3:

^.*-[123]\.txt$

The following will also do:

^.*-[1-3]\.txt$

The POSIX standard specifies also several named ranges of character sets. For example
[:alpha:] denotes all alphanumerical characters, whereas [:digit:] denotes all digits and
[:space:] denotes whitespace. Some languages (notably, Perl) or editors use escaped char-
acters for this: \w means words, \s means spaces etc..

Note that there are no operators to specify case-insensitive or case sensitive match: this
kind of property of a search must be specified separately.

2 Search and replace

The Delphi IDE and the Lazarus IDE both allow you to use regular expressions: the search
(and replace) dialog has a checkbox ’Regular expression’. When checked, the IDE will
interpret the text in the search box as a regular expression.

For example

2

Figure 1: Search and replace in an Assign method

^ *F.* : .*;$

Will match all field or variable definitions starting with an F. (they must have a space before
and after the colon)

Items\[.*\]:=

will find all assignments to an Items array element.

In the IDE you will usually want to use the replace functionality when using regular ex-
pressions. When you want to replace the found matches with something else, you will most
likely want to refer to part of the matched term in your replacement text. In order to do so,
you can use the { } brackets to group particular parts in your expression. You can refer in
your replacement text to these groups by \0 to \9.

A good example where this can be useful is the Assign method, which must be im-
plemented in descendants of TPersistent to copy all properties from one to another
instance.

The text and the search and replace dialog to do so are shown in figure figure 1 on page 3.

When implementing such a method you start by copying all private fields that make up
your persistent class to the body of your Assign method.

Keep the list selected, and in the search and replace dialog, you can enter the following:

F{.*} : {.*};

This will match all field definitions in the selection. Because we used the grouping opera-
tors, we can use the group in the replace text:

3

Figure 2: The completed Assign method

\0 := Src.\0;

This will replace something like

FFirstName : String;

With:

FirstName := Src.FirstName;

When we hit ’Replace all’ the IDE will do all replacements, and the result can be seen in
figure figure 2 on page 4.

3 Using regular expressions in Delphi or Lazarus

Newer versions of Delphi come with the RegularExpressionsCore unit which con-
tains the TPerlRegEx class. It uses an external library which contains the actual imple-
mentation of the regular expression engine. The commercial tool RegexBuddy is a GUI

4

Figure 3: RE Studio in action

program that assists you in creating a regular expression and can generate the necessary
Delphi code for handling the regular expresssion.

There is also an open source all-native Object Pascal implementation of regular expres-
sions:

https://github.com/andgineer/TRegExpr

It is implemented by Andrey V. Sorokin, has been around for a long time, works for all
versions of Delphi, and also for Lazarus/Free Pascal.

In fact, Free Pascal ships with a version of TRegexpr. Therefor, we’ll use this implemen-
tation to demonstrate how regular expressions can be used.

The TRegexpr source code comes with a demo application REStudio, which is similar
in purpose to RegexBuddy. It needs some care, but after some small fixes it can be made
to work in Delphi. The necessary fixes to let it compile in Lazarus and Delphi Rio (and
newer) have been pushed to the following repository:

https://github.com/mvancanneyt/TRegExpr

When started, it looks like figure 3 on page 5. The working is quite simple: in the top
memo, you can enter a regular expression. The program will give you feedback, so you
will immediately see if the expression is valid. The bottom memo allows you to enter a

5

text, and with the Exec.../ExecNext buttons you can let the regular expression execute it’s
action.

4 Using search and replace in your program

The TRegExpr class is not a component. It must be created in code, and has the following
properties:

Expression The regular expression.

ModifierStr (string) set the regular expression modifier options as a string (as one would
in Perl or Javascript). The string consists of a concatenation of the uppercase letter
of the next properties.

ModifierI (boolean) The I modifier, for case insensitive search.

ModifierR (boolean) The R modifier: enables some extented Russian characters.

ModifierS (boolean) The S modifier: when True, the . character also matches a newline.

ModifierG (boolean) The G modifier: turn on greedy matching.

ModifierM (boolean) The M modifier: enables multiline mode. In that mode, the ˆ and $
characters match the beginning and end of each line in the search text, not just the
beginning and end of the whole search text.

ModifierX (boolean) The X modifier: Allows you to use comments in your regex using
the # character.

SubExprMatchCount (integer) the amount of sub expression matches after an Exec or
ExecNext.

MatchPos (array of integer) a 0-based array giving you the position of the subexpressions
in the search string. The 0-th entry is the position of the whole regular expression
match.

MatchLen (array of integer) a 0-based array giving you the lengths of the subexpressions
in the search string. The 0-th entry is the length of the whole regular expression
match.

Match (array of string) a 0-based array giving you the actual matches of the subexpres-
sions in the search string. The 0-th entry is the text of the whole regular expression
match.

CompilerErrorPos if an error occured during compilation of your regular expresion, this
gives the position of the error.

There are many more propertyies, but the above ones are the main properties.

The class also has the following important methods:

function Exec(const AInputString: RegExprString): boolean;
function ExecNext: boolean; overload;
function ExecNext(ABackward: boolean): boolean; overload;
function Substitute(const ATemplate: RegExprString): RegExprString;
procedure Split(const AInputStr: RegExprString; APieces: TStrings);
function Replace(const AInputStr: RegExprString;

6

const AReplaceStr: RegExprString;
AUseSubstitution: boolean = False) // ###0.946
: RegExprString; overload;

function ReplaceEx(const AInputStr: RegExprString;
AReplaceFunc: TRegExprReplaceFunction): RegExprString;

Exec Starts a search for matches on aInputString. Returns true if a match was
found.

ExecNext Will search for the next occurence. If aBackWard is true, the search is done
backwards. Returns true if a match was found.

Substitute will replace the text in ATemplate with the currently found matches: The
template can contain placeholders for the subexpressions: $& or $0 is replaced by
the whole match, and $1 till $n are replaced by their respective subexpression.

Split will split aInputStr into various items split by the regular expression matches,
and put all found items in aPieces.

Replace will replace aInputStr all the matches with the AReplaceStr term. If
AUseSubstitution is true, the replacement term is not treated as a regular text,
instead it is used as a pattern for the Substitute to replace all items. The function
returns the input string with all matches replaced.

ReplaceEx will replace aInputStr all the matches with the result of the AReplaceFunc
callback; the callback is called for each match in the input string, and the result of
the allback is then used to replace that particular match in the input string. This is a
very powerful mechanism.

So, how can we use this class to implement search and replace ? To demonstrate how to
search, we create a small application in Lazarus with a memo (mdemo), a button (bsearch)
and a TFindDialog (FDRE). The OnClick handler of the button shows the find dialog:

procedure TMainForm.btnSearchClick(Sender: TObject);
begin

FDRE.Execute;
end;

This is nothing special.

The OnFind event handler of the find dialog is called every time the user clicks the Find
button in the find dialog. Here we implement the logic for searching.

Because the TRegexpr has 2 methods to search, depending on whether it is the first time
you search (Exec) or it is a next search (NextExec), we must keep track of whether it is
a new search or the next time a search is done.

To do so, we store the regular expression in a variable, and if the regular expression has
changed, we assume it is a new search:

procedure TMainForm.FDREFind(Sender: TObject);

var
Found : Boolean;

begin
If FDRE.FindText<>FLastRE then

7

Figure 4: Search in action

begin
FreeAndNil(FRE);
FRE:=TRegexpr.Create;
FLastRE:=FDRE.FindText;
FRE.Expression:=FLastRE;
Found:=FRE.Exec(MDemo.Lines.text);
end

else
Found:=FRE.ExecNext;

if Found then
begin
MDemo.SelStart:=FRE.MatchPos[0]-1;
MDemo.SelLength:=FRE.MatchLen[0];
end

else
ShowMessage(’Search term not found’);

end;

When we fiind a match, we use the MatchPos and MatchLen properties to set the se-
lection of the memo. (note that Matchpos is 1-based, and SelStart is 0-based) If no
match is found, we show a message, but we don’t close the dialog. Note that if the user
changes the text between searches, the matches will no longer correspond to actual posi-
tions, so in a real program, it would be best to make the memo readonly while the search is
active.

The result of this can be seen in figure figure 4 on page 8.

To demonstrate the power of the TRegexpr class, we’ll also implement a small algorithm
that transforms a template text with some data placeholders to a ready-to-read text: a kind of
mailmerge, or the kind of functionality often found in templating engines such as Mustache.

A template engine such as Mustache will replace a template

{{SomeVariable}}

8

with the value of SomeVariable. Usually more complex logic is also available, but for
this example, we limit ourselves to simple variables, which are kept in a Key=Value list.

This time we use a Delphi program. We drop 2 TMemoÒ components on it, one for the tem-
plate (MTemplate), one for the result (MResult). We also drop a TValueListEditor
on the form. Here the user can enter the values for the template variables. Last item is a
button (Generate) to generate the final text based on the template and the user-provided
variables and their values.

The OnClick event of the button is implemented with the ReplaceEx call:

procedure TMainForm.GenerateClick(Sender: TObject);

Var
Regex : TRegexpr;

begin
Regex:=TRegexpr.Create;
try

Regex.Expression:=’\{\{[^{}]*\}\}’;
MResult.Lines.Text:=Regex.ReplaceEx(MTemplate.lines.Text,

ReplaceCallback);
finally

Regex.Free;
end;

end;

As you can see, the code is almost disappointingly simple. A regexp instance is created,
the regular expression to find template names is entered, and the ReplaceEx is called
with the MTemplate text as input. The result of the function is assigned to the text in
MResult.

The real magic happens in the ReplaceCallback callback:

function TMainForm.ReplaceCallBack(Sender: TRegexpr): String;

Var
aMatch,aName : String;

begin
aMatch:=Sender.Match[0];
aName:=Copy(aMatch,3,Length(aMatch)-4);
Result:=vleKeys.Strings.Values[aName];

end;

Again, the function is simple. It could be implemented as a one-liner, but for clarity, it is
split out in 3 lines: First the regular expression match is taken, then the curly braces are
stripped off to get the variable name, and the last line uses the variable name to look up the
replacement value in the value list editor.

That’s it. It is so simple to create a simple templating engine. The result can be seen in
figure 5 on page 10

9

Figure 5: A simple template engine in action

5 Conclusion

Being able to use regular expressions can make life a lot easier, both when coding in the IDE
as in an actual program: The examples presented here hopefully demonstrated that using
simple regular expression is really not difficult and that they can easily be implemented in
a Delphi or Lazarus program.

10

	Introduction
	Search and replace
	Using regular expressions in Delphi or Lazarus
	Using search and replace in your program
	Conclusion

