
A closer look at process control

Michaël Van Canneyt

March 16, 2014

1 Introduction

In the previous article about process control, the TProcess component was introduced,
and an overview of its methods and properties was given, as well as a small test application
which could be used to test most of the properties.

In this article, the TProcess component will be discussed in more detail: The main
methods will be analyzed and explained. Then, the process of porting the component to
Linux (for use with Kylix) will be explained, and some well as some small demo programs
will be presented.

2 A word about pipes

Before examining the TProcess control, it is necessary to have a look at pipes. A pipe
is a pair of file descriptors, which are not associated with a file on disk (not necessarily,
anyway). Things that are written to one file descriptor, can be read from the other file
descriptor, in a FIFO manner. This can be used to communicate between processes: First,
a parent process creates a pipe (say, PP and PC), and then creates a new child process, and
passes one of the file descriptors to the newly created child (PC). When the child writes to
its file descriptor (PC), the parent can read what was written from the other file descriptor
(PP), or vice versa.

Under Windows, the only way to pass this file descriptor to a newly created process, is to
make this file descriptor one of the standard input, output or error output handlers. This
must be done in the CreateProcess call.

Instead of using the pipes to communicate between processes, it would also be possible to
use the pipes to communicate between threads.

To create a pipe, Windows defines the following call

function CreatePipe(var hReadPipe, hWritePipe: THandle;
lpPipeAttributes: PSecurityAttributes; nSize: DWORD): BOOL; stdcall;

This function returns a pair of file descriptors in the hReadPipe,hWritePipe vari-
ables. The lpPipeAttributes is a pointer to a TSecurityAttributes record.
The nSize parameter can be used to specifiy the size of the internal memory buffer that
the pipes will use to transfer data.

Since the idea will be to pass the pipe file descriptor on to a child process, the secirity
attributes of the pipe should be set so that the pipes file descriptors are passed on to a child
process. For this, 2 constant TSecurityAttributes records are defined in the pipes
unit:

1

Const
piInheritablePipe : TSecurityAttributes = (

nlength:SizeOF(TSecurityAttributes);
lpSecurityDescriptor:Nil;
Binherithandle:True);

piNonInheritablePipe : TSecurityAttributes = (
nlength:SizeOF(TSecurityAttributes);
lpSecurityDescriptor:Nil;
Binherithandle:False);

These can be used when creating pipes.

To make handling of pipes easier and more Delphi-oriented, the pipes unit implements 2
TStream descendents:

TPipeStream = Class (THandleStream)
public

Function Seek(Offset : Longint;Origin : Word) : longint;override;
Destructor Destroy; override;

end;

TInputPipeStream = Class(TPipeStream)
public

Function Write(Const Buffer; Count : Longint) :Longint; Override;
end;

TOutputPipeStream = Class(TPipeStream)
Public

Function Read(Var Buffer; Count : Longint) : longint; Override;
end;

These stream objects raise errors when an invalid operation is attempted:

• A seek operation (positioning of the file pointer) is not allowed on pipes. This has
as a consequence that the SIZE of the pipe stream cannot be used, as the size is
calculated by setting the position of stream at the and, and returning then the offset.

• A inputpipestream does not allow writing - a pipe is always one-way.

• Similar, a write pipe does not allow reading.

To create a pair of pipe streams, the following function is defined in the pipes unit:

Procedure CreatePipeStreams (Var InPipe : TInputPipeStream;
Var OutPipe : TOutputPipeStream;
SecAttr : PSecurityAttributes;
BufSize : Longint);

It is a simple wrapper around the Windows CreatePipe call, which instantiates two pipe
streams with the correct handles.

The pipe stream objects will be used to redirect the input and/or output of newly created
processes in the TProcess component.

2

3 A closer look at the methods of TProcess

The TProcess component is not a complicated component. It simply introduces some
pascal-like properties, which will be translated to parameters for the Windows CreateProcess
when the Execute method is called.

Apart from the Execute method (the most important method of TProcess), there are
some other methods such as Suspend, Resume and Terminatewhich are simple meth-
ods to control the newly created process. These methods also are simple wrappers around
Windows API calls.

The methods that set or get various properties will not be discussed, as they are self-
explaining, and serve mostly to do some sanity checks, to avoid setting conflicting proper-
ties.

The first, and most important, method which will be discussed is the Execute method.
The Execute method is a wrapper around the Windows CreateProcess function,
which is defined as follows:

function CreateProcess(lpApplicationName: PChar; lpCommandLine: PChar;
lpProcessAttributes, lpThreadAttributes: PSecurityAttributes;
bInheritHandles: BOOL; dwCreationFlags: DWORD; lpEnvironment: Pointer;
lpCurrentDirectory: PChar; const lpStartupInfo: TStartupInfo;
var lpProcessInformation: TProcessInformation): BOOL; stdcall;

The function takes a lot of arguments, each of which is explained in detail in the Windows
API reference. All arguments have been converted to one or more of the properties of
the TProcess component; 2 methods exist that convert the properties of the TProcess
component to field in the various parameters of the CreateProcess call; In particular
the lpStartupInfo and dwCreationFlags parameters are filled with the results of
the GetStartupFlags and GetCreationFlags calls. They will not be discussed
here, as their functionality is a trivial setting of flags or fields.

The Execute method is implemented as follows:

Procedure TProcess.Execute;

Var
PName,PDir,PCommandLine : PChar;
FEnv : PPChar;
FCreationFlags : Cardinal;

begin
If poUsePipes in FProcessOptions then
CreateStreams;

FCreationFlags:=GetCreationFlags;
FStartupInfo.dwFlags:=GetStartupFlags;
PName:=Nil;
PCommandLine:=Nil;
PDir:=Nil;
If FApplicationName<>’’ then

PName:=Pchar(FApplicationName);
If FCommandLine<>’’ then

PCommandLine:=Pchar(FCommandLine);
If FCurrentDirectory<>’’ then

3

PDir:=Pchar(FCurrentDirectory);
if FEnvironment.Count<>0 then

FEnv:=StringsToPcharList(FEnvironment)
else

FEnv:=Nil;
FInheritHandles:=True;
If Not CreateProcess (PName,PCommandLine,FProcessAttributes,FThreadAttributes,

FInheritHandles,FCreationFlags,FEnv,PDir,FStartupInfo,
fProcessInformation) then

Raise Exception.CreateFmt(’Failed to execute %s : %d’,[FCommandLine,GetLastError]);
if POUsePipes in FProcessOptions then

begin
FileClose(FStartupInfo.hStdInput);
FileClose(FStartupInfo.hStdOutput);
FileClose(FStartupInfo.hStdError);
end;

Fhandle:=fprocessinformation.hProcess;
FRunning:=True;
If FEnv<>Nil then

FreePCharList(FEnv);
if not (csDesigning in ComponentState) and // This would hang the IDE !

(poWaitOnExit in FProcessOptions) and
not (poRunSuspended in FProcessOptions) then

WaitOnExit;
end;

The first thing the Execute method does, is checking whether pipes are needed. If so, the
pipes are created in the CreateStreams method.

Then, the values of the properties are collected and inserted into 2 variables using the
GetCreationFlags and GetStartupFlags methods. The two variables will be
used in the CreateProcess call. After that, some manipulations are done to convert
the ApplicationName, CommandLine and Directory properties to zero-erminated
strings. If an environment was specified, then this is converted to an array of zero-terminated
strings.

After that, the call to CreateProcess is made using the arguments collected from the
various properties. If the call returned correctly, then some cleaning up is done:

• if pipes were requested, then the child end of the pipes is closed. The child has a copy
of the pipe file descriptors, and closing them in the parent process doesn’t affect the
child’s copy of the file descriptors. Failing to do so would keep the pipe open forever,
even of the child has closed them.

• The array of environment strings is freed, if one was allocated.

Finally, f the poWaitOnExit option was specified, then a call to WaitOnExit is made.
The call will not be issued in 2 cases:

1. When the component is being designed; issuing this call would freeze the IDE as
long as the child process is running.

2. If poRunSuspended is specified: This is done as a security precaution, since the
call would potentially never return, as the child process is suspended, and cannot
exit, unless some external process would kill the process.

4

If poUsePipeswas specified in the options, then pipes are created in the CreateStreams
method. The pipes are created with the CreatePipeStreamsmethod of the pipes unit:

Procedure TProcess.CreateStreams;

begin
FreeStreams;
CreatePipeStreams (FChildInputSTream,FParentOutPutStream,@piInheritablePipe,1024);
CreatePipeStreams (FParentInputStream,FChildOutPutStream,@piInheritablePipe,1024);
if Not (poStdErrToOutPut in FProcessOptions) then

CreatePipeStreams (FParentErrorStream,FChildErrorStream,@piInheritablePipe,1024)
else

begin
FChildErrorStream:=FChildOutPutStream;
FParentErrorStream:=FParentInputStream;
end;

FStartupInfo.dwFlags:=FStartupInfo.dwFlags or Startf_UseStdHandles;
FStartupInfo.hStdInput:=FChildInputStream.Handle;
FStartupInfo.hStdOutput:=FChildOutPutStream.Handle;
FStartupInfo.hStdError:=FChildErrorStream.Handle;

end;

Depending on the options, 2 or three pipes are created. Two for the standard input and
output of the new process, and if standard error isn’t redirected to standard output, a third
stream is created for standard error. Note that the pipes are created with the piInheritablePipe
constant of the pipes unit, so the pipe’s handles will be valid in the newly created process
as well.

Then the fields of the FStartupInfo record are filled in with the handles of the child
end of the streams and the Startf_UseStdHandles flag is added to the dwFlags
field. This will cause Windows to use the handles in the hStdInput,hStdOutput and
hStdError as the handles for the standard input, output and error file descriptors of the
new process.

The Suspend and Resume methods work as a pair; The first suspends execution of the
new process, then second lets the process continue its execution. This mechanism works
with a suspend count; Initially the suspend count of a process is zero. With each call
to Suspend, the suspend count is raised with one. Each call to Resume decreases the
suspend count with one; When the count reaches zero, the process continues execution.
Each of the methods returns the new value of the suspend count. Their implementation is
also a simple wrapper to the equivalent Windows calls:

Function TProcess.Suspend : Longint;

begin
Result:=SuspendThread(ThreadHandle);

end;

Function TProcess.Resume : LongInt;

begin
Result:=ResumeThread(ThreadHandle);

end;

The Windows SuspendThread and ResumeThread calls work with a Thread handle;

5

The main thread handle of the process (available through the ThreadHandle property)
is used to stop the process.

To wait for the end of the process, the WaitOnExit call is implemented:

Function TProcess.WaitOnExit : Dword;

begin
Result:=WaitForSingleObject (FprocessInformation.hProcess,Infinite);
If Result<>Wait_Failed then

GetExitStatus;
FRunning:=False;

end;

It uses the WaitForSingleObject call, which can be used to wait on many things, and
one of them is the end of a newly executed process.

Lastly, the Terminate method can be used to terminate the running process. If this call
is succesfull, the progam will have stopped running, and will be removed from memory.
It’s implementation is a simple wrapper around the windows TerminateProcess call.
The function returns True if the call was succesfull, False otherwise.

Function TProcess.Terminate(AExitCode : Integer) : Boolean;

begin
Result:=False;
If ExitStatus=Still_active then

Result:=TerminateProcess(Handle,AexitCode);
end;

With this, the main methods of the TProcess component have been covered. Some more
will be covered when the Linux version of the process is covered.

4 Porting TProcess to Linux

Porting the TProcess component to Linux, so it works with Kylix, is a three-stage pro-
cess:

\item Porting the \file{pipes} unit.
\item Porting the \file{process} unit - the most difficult issue.
\item Porting the test program.

Each of these steps will be discussed in the subsequent.

Porting the pipes unit is quite easy; Pipes existed on Unix before the Win32 api was in-
troduced, and the Microsoft implementation of pipes is quite similar to the Unix one. The
definition of the unix Pipe call resides in the Libc unit. Thus, in the Uses clause of the
pipes unit, the Windows unit must be replaced by the Libc unit.

To keep the interface of the unit the same across platforms, the approach was taken to keep
the existing Windows interface, and just to ignore certain elements that were present in the
Windows implementation, but which don’t exist on windows. Since the TSecurityAttributes
record doesn’t exist on Linux, it’s introduced in the Interface section of the unit:

Type

6

PSecurityAttributes = ^TSecurityAttributes;
TSecurityAttributes = Record

nlength : Integer;
lpSecurityDescriptor : Pointer;
BinheritHandle : Boolean;

end;

The only call that needs to be revised is the CreatePipe call. A version of this call is
implemented for Linux:

Function CreatePipe (Var Inhandle,OutHandle : Integer;
SecAttr : PSecurityAttributes;
BufSize : Longint) : Boolean;

Var
Pipes : Array[1..2] of Integer;

begin
Result:=Libc.Pipe(@Pipes[1])=0;
If Result Then

begin
InHandle:=Pipes[1];
OutHandle:=Pipes[2];
end;

end;

As can be seen, the function is very easy. It just uses the Pipe call provided by the Libc
unit to create the file handles. The bufsize argument is ignored (the size of a pipe buffer
is a kernel parameter which cannot be changed) and the SecAttr argument is ignored
as well. The BinheritHandle flag could be implemented on linux using the fcntl
call to set the CloseOnExec flag of the file descriptors, but that has been omitted from the
implementation, since for pipes this behaviour is not needed. The rest of the pipes unit
remains unchanged.

Porting the process unit requires a little more work, but the same approach was taken as
for the pipes unit: the interface of the Windows version is kept, and emulated on Linux. To
be able to do this, some constants and types from the Windows unit have been declared in
the interface of the process unit. The main types are:

TPoint
TRect
DWord
THandle
TProcessInformation
TStartupInfo

Some constants are also introduced, but these are not presented here as they are not needed
for the understanding of the discussion. The interested reader can consult the unit source
for more details.

Porting the TProcess concentrates mostly around implementing the key methods Execute,
Suspend, Resume and Terminate and WaitOnExit.

The most difficult method to port is undoubtedly the Execute call. The linux implemen-
tation of this call is presented here again, with the modifications made for Linux:

Procedure TProcess.Execute;

7

Var
FEnv : PPChar;
FCreationFlags : Cardinal;

begin
If poUsePipes in FProcessOptions then

CreateStreams;
FCreationFlags:=GetCreationFlags;
FStartupInfo.dwFlags:=GetStartupFlags;
if FEnvironment.Count<>0 then

FEnv:=StringsToPcharList(FEnvironment)
else

FEnv:=Nil;
FInheritHandles:=True;
if Not CreateProcess (FApplicationName,FCommandLine,FCurrentDirectory,FEnv,

FStartupOptions,FProcessOptions,FStartupInfo,
fProcessInformation) then

Raise Exception.CreateFmt(’Failed to execute %s : %d’,[FCommandLine,GetLastError]);
if POUsePipes in FProcessOptions then

begin
FileClose(FStartupInfo.hStdInput);
FileClose(FStartupInfo.hStdOutput);
FileClose(FStartupInfo.hStdError);
end;

Fhandle:=fprocessinformation.hProcess;
FRunning:=True;
If FEnv<>Nil then

FreePCharList(FEnv);
if not (csDesigning in ComponentState) and // This would hang the IDE !

(poWaitOnExit in FProcessOptions) and
not (poRunSuspended in FProcessOptions) then

WaitOnExit;
end;

The call is almost identical to the Windows version. The real work is done in the CreateProcess
call. The interface of this call is almost the same as the Windows version, simply some ar-
guments have been left out. It tries to emulate the Windows version of this call as much as
possible, and used the Linux Fork and Execve calls to do this.

The Fork function call creates a new process, which is an exact copy of the currently
running process; Parent and Child continue executing with this difference that in the child,
the Fork call returns 0, and in the parent process, the call returns the process ID of the
newly created child.

The Execve call replaces the currently running program with a new program; Any file
descriptors that the current process has, are kept intact.

Together these two calls can be used to create a new process: First a fork is executed, and
the child process replaces itself with the program to be executed. The parent program can
decide to wait for the child process or not.

All this is used to implement the CreateProcess call as follows:

Function CreateProcess (PName,PCommandLine,PDir : String;
FEnv : PPChar;

8

StartupOptions : TStartupOptions;
ProcessOptions : TProcessOptions;
const FStartupInfo : TStartupInfo;
Var ProcessInfo : TProcessInformation) : boolean;

Var
PID : Longint;
Argv : PPChar;
fd : Integer;

begin
Result:=True;
Argv:=MakeCommand(Pname,PCommandLine,StartupOptions,ProcessOptions,FStartupInfo);
if (pos(’/’,PName)=0) then

PName:=FileSearch(Pname,GetEnv(’PATH’));
Pid:=fork;
if Pid=0 then
begin
{ We’re in the child }
if (PDir<>’’) then

ChDir(PDir);
if PoUsePipes in ProcessOptions then

begin
dup2(FStartupInfo.hStdInput,0);
dup2(FStartupInfo.hStdOutput,1);
dup2(FStartupInfo.hStdError,2);
end

else if poNoConsole in ProcessOptions then
begin
fd:=FileOpen(’/dev/null’,fmOpenReadWrite);
dup2(fd,0);
dup2(fd,1);
dup2(fd,2);
end;

if (poRunSuspended in ProcessOptions) then
__raise(SIGSTOP);

if FEnv<>Nil then
libc.Execve(PChar(PName),Argv,Fenv)

else
Execv(Pchar(PName),argv);

Halt(127);
end

else
begin
FreePcharList(Argv);
// Copy process information.
ProcessInfo.hProcess:=PID;
ProcessInfo.hThread:=PID;
ProcessInfo.dwProcessId:=PID;
ProcessInfo.dwThreadId:=PID;
end;

end;

9

The MakeCommand call (explained below) constructs an array of zero-terminated string
from various options; This array can then be passed to execve. After that the program
name is searched in the path if it does not contain an absolute pathname. Then the fork
call is executed. In the child, the process changes to the startup-directory, after which the
handling of standard file descriptors is taken care of:

• If poUsePipes is in the process options, then the file handles in the FStartupInfo
record are copied by means of the Dup2 call to the standard input/output/error file
descriptors. The Dup2 call copies one file descriptor to another; It closes the desti-
nation descriptor when necessary. After a call to Dup2, both file descriptors, referred
to in the Dup2 call, point to the same physical file.

• If poNoConsole is specified in the process options, then the standard input/output/error
are redirected to /dev/null; As a result, there will be no access to the console of
the parent process. The effect of this call is an emulation of the poNoConsole
option on Windows.

If the poRunSuspended options is specified, the child process sends itself the SIGSTOP
signal. The result of this is that the child process stops execution before the actual process
is executing. Sending this signal from the parent process would not be safe, as Linux
doesn’t guarantee which of the processes (parent or child) will start executing first, possibly
allowing the child process already to execute before the signal is delivered. To avoid this,
the child process sends itself this signal, before the actual new process is executed.

After that, the call to execve or execv is made, depending on whether an environment
was specified. The Execve call is defined as follows:

function execve(PathName: PChar;Const argv: PPChar;Const envp: PPChar): Integer;

The first argument is the name of the program to be executed. This program will NOT be
searched in the path. The second is a null-terminated array of null-terminated strings which
represent the command-line of the program. The first element in this array is the program
name. The last pointer is a pointer to a null-terminated array of null-terminated strings
which contain the environment strings for the new programm.

When the call succeeds, the function will not return; if it returns, an error has happened, in
which case the child process exits with exit code 127. (This is standard unix practice)

When the Fork call returns in the parent process, the parent process simply does some
cleaning: It frees the argument pointer list, and copies the process ID to the fields in the
ProcessInfo record. Under Windows the fields of this record will contain different
values, but Linux doesn’t have the concept of process or thread handles, so the process ID
value is copied to all fields.

The MakeCommand call is used to construct a command-line for the program to be exe-
cuted. It’s implementation tries to take into account some of the options that exist in the
Windows CreateProcess call:

• If the poNewConsole is specified, a xterm is spawned which will run the actual
command. If the StartupOptions contain settings for the number of rows and
columns of the console, this is passed on to the xterm.

• The ApplicationName is used as a title for the window which will be opened.
(both x-term and application)

• Any options which set the geometry and position of the program (these can be dif-
ferent from the console geometry) they are passed on to the program as well.

10

The construction of a command-line is done using a stringlist: First of all the CommandLine
parameter is split into its various options using the CommandToList function, and the
various arguments are inserted in a stringlist. This function takes into consideration whites-
pace and quotes around arguments (or the filename).

After the construction of the initial command-line some command-line options are added
or inserted in the stringlist depending on the various options, passed to the MakeCommand
call. Finally the stringlist is converted to a null-terminated array of null-terminated strings.

All this is implemented in the MakeCommand function:

Function MakeCommand(Var AppName,CommandLine : String;
StartupOptions : TStartUpOptions;
ProcessOptions : TProcessOptions;
StartupInfo : TStartupInfo) : PPchar;

Const
SNoCommandLine = ’Cannot execute empty command-line’;

Var
S : TStringList;
G : String;

begin
if (AppName=’’) then

begin
If (CommandLine=’’) then

Raise Exception.Create(SNoCommandline)
end

else
begin
If (CommandLine=’’) then

CommandLine:=AppName;
end;

S:=TStringList.Create;
try

CommandToList(CommandLine,S);
if poNewConsole in ProcessOptions then

begin
S.Insert(0,’-e’);
If (AppName<>’’) then

begin
S.Insert(0,AppName);
S.Insert(0,’-title’);
end;

if suoUseCountChars in StartupOptions then
With StartupInfo do

begin
S.Insert(0,Format(’%dx%d’,[dwXCountChars,dwYCountChars]));
S.Insert(0,’-geometry’);
end;

S.Insert(0,’xterm’);
end;

if (AppName<>’’) then
begin
S.Add(TitleOption);

11

S.Add(AppName);
end;

With StartupInfo do
begin
G:=’’;
if (suoUseSize in StartupOptions) then

g:=format(’%dx%d’,[dwXSize,dwYsize]);
if (suoUsePosition in StartupOptions) then

g:=g+Format(’+%d+%d’,[dwX,dwY]);
if G<>’’ then

begin
S.Add(GeometryOption);
S.Add(g);
end;

end;
Result:=StringsToPcharList(S);
AppName:=S[0];

Finally
S.free;

end;
end;

The CommandToList and StringsToPcharList will not be discussed, as they are
not essential to the understanding of the component.

This covers the implementation of the Execute call. The other calls can be translated just
as straightforward:

Function TProcess.WaitOnExit : Dword;

begin
Result:=WaitPid(Handle,@FExitCode,0);
If Result=Handle then

FExitCode:=WexitStatus(FExitCode);
FRunning:=False;

end;

The WaitPid function waits for a process (in this case with process ID Handle) to
terminate and returns the process ID of the terminated process. Exit information for the
terminated process is returned in the FExitCode integer. The exit status of the process
can be extracted using the WExitStatus function.

The Suspend and Resume functions are just as straightforward:

Function TProcess.Suspend : Longint;

begin
If kill(Handle,SIGSTOP)<>0 then
Result:=-1

else
Result:=1;

end;

Function TProcess.Resume : LongInt;

12

begin
If kill(Handle,SIGCONT)<>0 then

Result:=-1
else

Result:=0;
end;

The Kill function sends a signal to a process. The signal SIGSTOP causes a process to be
suspended. The SIGCONT signal causes the process to resume it’s operation. Since there
is no idea of a suspend count, the dummy values 1 and zero are returned by the TProcess
methods.

Finally the Terminate method is also implemented using a signal:

Function TProcess.Terminate(AExitCode : Integer) : Boolean;

begin
Result:=False;
Result:=kill(Handle,SIGTERM)=0;
If Result then
begin
If Running then

Result:=Kill(Handle,SIGKILL)=0;
end;

GetExitStatus;
end;

The TERM signal advises a program to terminate, and gives it the opportunity to clean up
after itself, or even to ignore this signal. The KILL signal cannot be ignored, and will
simply remove the process from memory. That is why both signals are sent, if needed. (a
similar process happens usually for all processes when a Linux machine is shut down on
the command-line)

Finally, a method which wasn’t discussed earlier, but which deserves mentioning is the
GetRunning function (the read method of the Running property). It’s implementation
on linux is slightly different from the Windows one:

Function TProcess.PeekLinuxExitStatus : Boolean;

begin
Result:=WaitPID(Handle,@FExitCode,WNOHANG)=Handle;
If Result then

FExitCode:=wexitstatus(FExitCode)
else

FexitCode:=0;
end;

Function TProcess.GetRunning : Boolean;

begin
IF FRunning then

FRunning:=Not PeekLinuxExitStatus;
Result:=FRunning;

end;

13

To know whether a process is still running, the WaitPid function can be used with the
WNOHANG flag. This flag causes the WaitPid function to return at once when process is
still running (the default behaviour is to wait till the process exits). This is implemented in
the PeekLinuxExitStatus method, which returns True if the process exited. This
result is used for the IsRunning call.

With this, the port of the TProcess call to linux is covered. The Linux code as presented
here is intermixed with the Windows code through use of the conditional compilation di-
rective {$ifdef linux}. What was presented above is a clean-up of this code.

Finally, the port of the test program can be considered: Apart from some invalid property
errors, this didn’t present any difficulties, as it was just necessary to replace the various
units with their CLX counterparts, and adjusting the case of some of the unit names. Some
small issues with the enabling of controls in CLX also had to be dealt with (a bug in CLX
was encountered) but nothing really difficult. The interested reader can consult the code
that comes on the CD-ROM.

One thing that should be noted is that the usage of pipes as it works under Windows does
NOT work on Linux: This has been traced down to synchronization problems with the
various threads used to copy the in and output streams of the process to the various memo’s
on the program’s main window. When the reader and writer thread try to synchronize
with the main window thread the program freezes. As a result, testing the use of the pipes
doesn’t work with the test program.

However, the functionality of pipes is correct. To demonstrate this, two extra examples
were created. The first example is a small command-line program which sends a mail
using the standard sendmail command: It is very simple, and is presented without further
comment:

program testp3;

uses process,Classes;

Var
Demo : TProcess;
C : Char;
S : String;

Procedure StreamWrite(S : TStream; Line : String);

begin
Line:=Line+#10;
S.Write(Line[1],Length(Line));

end;

begin
Demo:=TProcess.Create(Nil);
Demo.CommandLine:=’sendmail michael’;
Demo.Options:=[poUsePipes];
Demo.Execute;
StreamWrite(Demo.Input,’Subject: Mail to michael.’);
StreamWrite(Demo.Input,’Hello !’);
StreamWrite(Demo.input,’’);
StreamWrite(Demo.input,’This mail was sent automatically to demonstrate’);
StreamWrite(Demo.input,’The TProcess component.’);
StreamWrite(Demo.input,’’);

14

StreamWrite(Demo.input,’Sincerely yours,’);
StreamWrite(Demo.input,’Michael.’);
Demo.Free;

end.

This program demonstrates that writing to the input stream of the process works correctly.
Conversely, the second demonstration program, shown in 1 shows that reading the output of
a program works also correctly. The program contains a button, a Memo and a TProcess
component. The commandline property is set to ’ls -l’. The code to display the
output of the ls call is in the OnClick handler of the button component:

procedure TForm1.Button1Click(Sender: TObject);

Var s : String;
c : char;

begin
MLS.Lines.Clear;
With PLS do

begin
Execute;
With Output do

begin
S:=’’;
While (Read(C,1)=1) do

begin
If C<>#10 then

S:=S+C
else

begin
MLS.Lines.Add(S);
S:=’’;
end;

end;
If S<>’’ then

MLS.Lines.Add(S);
end;

WaitOnExit;
end;

end;

The result of a press on the button is shown in 1.

5 Conclusion

The TProcess component is a small and simple component which makes running and
controlling another program very easy. It’s simplicity is illustrated by the fact that a port
to Linux is not very difficult, and can be done with a remarkable degree of completeness.
Although not all features can be ported, the component is ported to a large enough degree
to make cross-platform development with it a realistic idea.

15

Figure 1: Reading the output of a program.

16

	Introduction
	A word about pipes
	A closer look at the methods of TProcess
	Porting TProcess to Linux
	Conclusion

