
Persistence frameworks: writing GUIs in tiOPF

Michaël Van Canneyt

May 27, 2007

Abstract

In this second article about the Object Persistence framework tiOPF, the GUI layer
of the tiOPF framework is investigated. It will be shown how to use the persistence-
aware controls of tiOPF.

1 Introduction

In a previous article, the architecture of the persistence framework tiOPF was investi-
gated. In it, the 3 corner objects in the tiOPF framework were explained: the base object
TtiObject, from which all objects in the model should descend; the basic list object
TtiObjectList, and the TtiVisitor, which will be needed to save the data.

In this article, the use of these 3 objects to create a GUI application will be explained, and
a rudimentary overview of the available persistence-aware controls will be given.

The GUI controls are located on 2 palettes in the component palette:

Techinsite Base These are the basic edit, combobox, checkbox, memo controls, in a persistence-
aware version. They resemble the standard data-aware controls of Delphi, but there
are some subtle differences. The persistence aware in this case means that the con-
trols know how to retrieve, display and set a published property of an object. (much
as the standard RTTI controls in Lazarus). The controls do not mark the object as
’dirty’, this must be done manually.

Techinsite Extra Here more advanced controls are located. There are many utility con-
trols (splitters, speedbuttons, rounded panels) but there are also 2 basic controls:
TtiVTListView and TtiVTTreeView. These are quite advanced controls, and
quite indispensable for creating list views of the objects in the application.

The reader is warned that the available documentation of the controls in the framework
itself is rather out-of-date: some of the controls have radically changed. The old controls, as
explained in the available documentation on the website are still available on the component
palette under the ’techinsite old’ page.

2 The model

Before a start can be made, the business model must be programmed: this means that the
following classes must be programmed:

TCountry which represents a country. It has 2 published string properties: ISO and
Name.

1



TCity which represents a city in a country. It has 3 published properties: Name, Zip (both
strings) and Country, which is a reference to a TCountry instance.

TAddressType which has a single property ’Name’, represents the type of an address.

TAddress represents an address of a contact person. The obvious string properties are
Street, Nr, Telephone1, Telephone2, followed by the AddressType and City
properties, both references to an instance of an object of type TAddressType and
TCity, respectively.

TContact represents a contact person. It has 5 published string properties: FirstName,
LastName, Email, mobile, Comments. It also has a property Addresses, which is
a TTiObjectList descendent. More about this list below.

Next to the basic objects, a set of lists must be created:

TCountries A list of all countries.

TCities A list of all cities.

TAddresses a (general) list of addresses.

TContactAddresses is a descendent of TAddresses, which will be owned by a TContact
instance. It will represent the addresses for that contact.

TContacts a list of all contacts in the application.

For all lists will be needed in the application, a list object should be created.

It’s good practice to create, for each project, a descendent of the basic TtiObject and
TtiObjectList classes: in these classes, some logic, common to all objects in the ap-
plication. For the purpose of the contacts application, a single method will be implemented,
Mark, and the basic objects will be called TMarkObject and TMarkObjectList:

Type
TMarkObject = Class(TTiObject)
Protected

Procedure Mark; // Set to dirty;
end;

TMarkObjectList = Class(TTiObjectList)
Protected

Procedure Mark; // Set to dirty;
end;

The Mark procedure simply sets the Dirty property:

procedure TMarkObject.Mark;
begin

if (ObjectState<>posEmpty) then
Dirty:=True;

end;

These 2 classes will be the base of all objects in the application:

TCountry = class(TMarkObject)
private

2



FISO: string;
FName: string;
procedure SetISO(const Value: string);
procedure SetName(const Value: string);

published
property ISO: string read FISO write SetISO;
property Name: string read FName write SetName;

end;

The SetISO and SetName properties are set using a Write procedure:

procedure TCountry.SetISO(const Value: string);
begin

FISO:=Value;
Mark;

end;

Which sets the ’Dirty’ property of the object. This means that as soon as a property is set,
the object is marked as dirty. As a result, as soon as an edit control sets a property, the
object is marked as dirty, and will be saved when needed.

The TCity class contains a reference to a country:

TCity = Class(TMarkObject)
private

FZIP: string;
FName: string;
FCountry: TCountry;
procedure SetCountry(const Value: TCountry);
procedure SetName(const Value: string);
procedure SetZIP(const Value: string);

published
property Country: TCountry read FCountry write SetCountry;
property Name: string read FName write SetName;
property ZIP: string read FZIP write SetZIP;

end;

The country property is a class property, it contains an instance. However, the instance is
not owned by the TCity class, it exists as a separate entity. Therefore, the SetCountry
simply stores the TCountry pointer:

procedure TCity.SetCountry(const Value: TCountry);
begin

FCountry := Value;
Mark;

end;

The TAddress type has a similar reference to a TCity. The AddressType property
is an instance of TCity, but in contrast it is owned by the address. This means that
an instance must be created when the TAddress record is created, and that when the
property is set, special measures must be taken. The relevant parts of the TAddress
record are declared as follows:

TAddress = Class(TMarkObject)
private

3



Procedure SetAddressType(const Value: TAddressType);
Public

constructor Create ; override;
Destructor Destroy; override;
procedure AssignClassProps(pSource: TtiObject); override;

published
property AddressType: TAddressType read FAddressType

write SetAddressType;
end;

With the following implementation for the methods:

constructor TAddress.Create;
begin

inherited;
FAddressType:=TAddressType.Create;
FAddressType.Owner:=Self;

end;

destructor TAddress.Destroy;
begin

FreeAndNil(FAddressType);
inherited;

end;

And specially

procedure TAddress.SetAddressType(const Value: TAddressType);
begin

FaddressType.Assign(pSource);
Mark;

end;

procedure TAddress.AssignClassProps(pSource: TtiObject);
begin

inherited;
FaddressType.Assign(pSource);
FCity:=TAddress(pSource).City;

end;

The AssignClassProps is called when the tiOPF framework handles the Assign
method, to assign class properties.

For each class, a list class is defined. For the TCountry class, this list is defined as:

TCountries = class(TMarkObjectList)
private

function GetItems(i: integer): TCountry;
procedure SetItems(i: integer; const Value: TCountry);

public
procedure Add(AnAddress : TCountry) ; reintroduce;
property Items[i:integer] : TCountry

read GetItems write SetItems ; default;
end;

4



The implementation is quite simple and straightforward.

For the TAddress type, a similar list, TAddresses, exists, plus a descendent: TContactAddresses
class, which is declared as:

TContactAddresses = Class(TAddresses)
private

function GetContact: TContact;
procedure SetContact(const Value: TContact);

public
property Owner : TContact read GetContact write SetContact;

end;

The Owner property is used in the TContact class, when creating an instance of TContactAddresses
to hold the list of addresses:

constructor TContact.Create;
begin

inherited;
FAddresses:=TContactAddresses.Create;
FAddresses.Owner:=Self;
FAddresses.ItemOwner:=Self;

end;

Setting the ItemOwner means that when the object hierarchy is traversed, the owner of
an address is the contact instance to whom the address belongs.

All these classes are implemented in the ContactModel unit.

3 The manager class

To make saving and loading easier, a single class which owns all global lists is implemented

TContactManager = Class(TMarkObject)
Public

Constructor Create; override;
Procedure PopulateContacts;

Published
Property Countries : TCountries Read FCountries;
Property Cities : TCities Read FCities;
Property Contacts : TContacts Read FContacts;

end;

A single instance of this class (ContactManager)is created and maintained in the mgrContacts
unit: the instance is created in the initialization section, and destroyed in the finalization
section. Note that the Countries, Cities and Contacts properties are lists classes
as defined in the model.

When data needs to be saved, the ContactManager class can be saved: all lists will
be saved in turn by the tiOPF framework, because they are published properties of the
TContactManager class, which in itself is a TMarkObject descendent.

The PopulateContacts method creates some testdata for the application. It’s instruc-
tive to have a look at this, because it shows how to create new data:

5



procedure TContactManager.PopulateContacts;

Var
C : TContact;
I,J : Integer;
A : TAddress;

begin
Randomize;
PopulateCountries;
PopulateCities;
For I:=1 to 10 do

begin
C:=TContact.CreateNew;
C.FirstName:=FirstNames[I];
C.LastName:=LastNames[I];
C.Mobile:=GenPhone;
C.Email:=FirstNames[i]+’@freepascal.org’;
For J:=1 to 1+Random(2) do

begin
A:=TAddress.CreateNew;
A.Street:=StreetNames[1+Random(10)];
A.Nr:=IntToStr(Random(100)+1);
A.City:=FCities[Random(10)];
A.Fax:=GenPhone;
A.Telephone1:=GenPhone;
If Random(2)>0 then

A.Telephone2:=GenPhone;
C.Adresses.Add(A);
end;

FContacts.Add(C);
end;

end;

First off, the countries and cities lists are populated, using methods similar to the one shown
here. After that, 10 contact persons are generated: their first and last names are taken from
2 constants, FirstNames and LastNames, both of which are arrays of strings.

The genphone is an algorithm which generates a random telephone number. The StreetNames
is again a constant array of string, containing 10 names of streets. This way, for each con-
tact 1 or 2 addresses can be created. The generated addresses are simply added to the
Addresses list of a contact, and the created contact is added to the global list of contacts
(FContacts) which is owned by the ContactsManager.

Note that the CreateNew constructor is called, and not Create: Calling CreateNew
tells the tiOPF framework that the instance is new, and does not yet exist in the database.
The framework will then allocate a new unique identifier for the object instance. More
about this below. If Create is called, then the framework will assume that it will be
loaded with data from the database.

The PopulateCountries and PopulateCities work in a similar manner, and
store their data in the global Countries and Cities lists.

6



4 The main form

The main form consists of a menu bar, an action list, and a TtiVTListView instance
(LVContacts). The TtiVTListView component is one of the most important GUI
components of the tiOPF framework. It is the equivalent of the TDBGrid in delpi’s list
of data-aware controls. It allows to display the contents of any TtiObjectList list, and
can do more:

1. There is a full-text search function (activated with Ctrl-F), which searches through
all properties in the list. The Searching boolean property controls the availability
of this feature.

2. The rows in the list can be shown in alternating colors, which is controlled by the
ShowAlternateRowColor, AlternateRowColors and AlternateRowCount
properties.

3. The list can be ordered on any property that is shown in the columns of the listview,
by simply clicking on the header of a column. This behaviour is controlled by the
HeaderClickSorting property.

4. It has a context menu and a series of buttons to add/delete/edit/view items in the list.
The list of buttons that is shown is controlled by the VisibleButtons property.
The look of the buttons is controlled by the ButtonStyle property.

5. It can export it’s data in a CSV file by default. The availability of this feature is
controlled by the Exporting boolean propery.

6. Derived properties can be shown - this is the equivalent of a calculated field in a
TDataset descendent.

All this is controlled by a large number of properties. The Header property is the biggest
of them: It has by itself a number of properties that control the list’s view. The most impor-
tant one is the Columns property. This is a collection which – similar to the TColumns
in a TDBGrid – controls which properties of the objects in the lists are shown in a column,
and how they are shown:

FieldName is the name of the property

Text the caption shown above the column.

Derived If set to true, the column will contain a custom (calculated) text. The value is not
directly available, but must be calculated in the OnDeriveColumn event.

OnDeriveColumn If Derived is set to True, then the value displayed in this column
must be calculated in this event.

In figure 1 on page 8 the properties for a column in an address list is shown: the column
displays the name of the city, which must be calculated from the City instance from the
address that must be displayed.

The list can also show a set of 4 buttons on top of the list: View, Edit, New and Delete.
Which buttons are shown is determined by the VisibleButtons property of the list. In
addition to this property, the event handlers for each of these actions (as explained below)
must be set, or the button will not be shown.

Unlike it’s TDBGrid cousin, the TtiVTListview does not know how to edit, add or
delete the items in the list. This must be done using events. The relevant events are:

7



Figure 1: Property settings for a derived column

8



OnItemEdit When an item must be edited. The chosen item (a TtiObject) is passed to the
event handler.

OnItemDelete When an item must be deleted.

OnItemInsert When a new item must be inserted.

OnItemView When an item must be viewed (i.e. more details should be shown than are
visible in the list).

All events have the same prototype:

procedure TCitiesForm.LVCitiesItemInsert
(pVT: TtiCustomVirtualTree;
AData: TtiObject;
AItem: PVirtualNode);

The first item is the instance of the list (The OnInsert event is introduced in TtiCustomVirtualTree,
and TTiVTListView descends from that, which explains the type of the first parameter
in the event); the second parameter is the data object associated with it, and the third pa-
rameter is the actual node in the list that represents the data object.

There is no design-time property that can be set to tell the listview which list of objects
must be shown. This must be done run-time. In the case of the contacts application, this is
done in the ShowContacts method of the form:

procedure TMainForm.ShowContacts;
begin

With LVContacts do
begin
AddColumn(’LastName’,vttkString,’Last name’,120);
AddColumn(’Firstname’,vttkString,’First name’,120);
AddColumn(’Email’,vttkString,’E-mail’,150);
AddColumn(’Mobile’,vttkString,’Mobile’,100);
AddColumn(’Comment’,vttkString,’Comment’,200);
Header.MainColumn:=0;
Header.SortColumn:=0;
Data:=ContactManager.Contacts;
end;

end;

Below we’ll show when this method is called.

As can be seen from the code above, the TtiVTListview introduces a method AddColumn
which can be used to quickly define the columns run-time. The call has the following pa-
rameters:

AFieldName Name of the property that must be shown.

pDataType the kind of data to display (in the above case, strings)

pDisplayLabel the text for the column header (optional).

pColWidth the width of the column (optional).

The main column is the index of the main column for the list, and the sortcolumn is the
initial column on which must be sorted.

9



Figure 2: Listview showing contact data

Finally, the Data property is set to the global ContactManager.Contacts list. After
this, the listview is ready to show data. It will look something like figure 2 on page 10

The menu contains 2 entries under the ’System’ menu: ’Countries’, and ’Cities’. Each
shows a modal form to display the global lists of countries and cities (for maintenance).
The list of cities is a good example to show how to display Derived columns.

In the OnClick event handme of the ’Cities’ menu, the cities form (TCitiesForm is
shown modally). The cities form contains - just as the main form - simply a TtiVTListView
(LVCities), which is filled in the OnCreate event of the form:

procedure TCitiesForm.FormCreate(Sender: TObject);
begin

LVCities.Data:=ContactManager.Cities;
end;

All other properties are set in the designer. The last column, Country, is a derived col-
umn. It’s value is computed in the OnDeriveColumn event of the column:

procedure TCitiesForm.VTTtiVTHeaderColumns2DeriveColumn(
const pVT: TtiCustomVirtualTree; const AData: TtiObject;
const ptiListColumn: TtiVTColumn; var pResult: String);

Var C : TCity;

begin
If (Adata is TCity) then

begin
C:=TCity(AData);
If Assigned(C.Country) then

pResult:=C.Country.ISO+’ ’+C.Country.Name;
end;

end;

The meaning of the parameters should be obvious from the names. The important ones are:

AData is the object instance that is shown in the current row. In the example above, this
will be a TCity instance.

10



pResult is the string that will be shown in the column: this is the value that must be
calculated by the event handler. In the above case, presult will be filled with the
ISO code and Name of the country, if a country is assigned to the city.

The editing events in the city listview serve as a nice example of how to edit items in a
listview. In the OnItemDelete event, the following code will delete the item:

procedure TCitiesForm.LVCitiesItemDelete(
pVT: TtiCustomVirtualTree;
AData: TtiObject;
AItem: PVirtualNode);

begin
if MessageDlg(SConfirmDelete,

mtConfirmation,
[mbYes, mbNo],0)=mrYes then

begin
Adata.Deleted:=True;
ContactManager.Cities.Extract(AData);
LVCities.Refresh;
AData.Free;
end;

end;

After a confirmation of the user, the AData instance is marked as deleted, and then ex-
tracted from the list of cities. (The Extract method will not free the instance, as opposed
to Remove). After the list was updated, the listview is refreshed (this must be done man-
ually. Only after this, the item is freed. The order of events is important, otherwise, access
violations may occur.

The code for editing and adding an element resembles each other:

procedure TCitiesForm.LVCitiesItemEdit(pVT: TtiCustomVirtualTree;
AData: TtiObject; AItem: PVirtualNode);

begin
ShowCity(TCity(AData));

end;

procedure TCitiesForm.LVCitiesItemInsert(pVT: TtiCustomVirtualTree;
AData: TtiObject; AItem: PVirtualNode);

Var
C : TCity;

begin
C:=TCity.Create;
If ShowCity(c) then

begin
ContactManager.Cities.Add(C);
LVCities.Refresh(C);
end

else
C.Free;

end;

The edit event handler simply calls the ShowCity method. The insert method handler
first creates a new TCity instance, passes it to ShowCity, and if that function returns

11



Figure 3: Editing a single city instance

True, the instance is added to the global list of cities, and the listview is refreshed, and po-
sitioned on the newly created city (this is the meaning of the Refresh method’s optional
parameter). If False is returned, the newly created instance is freed again.

The ShowCity method is quite simple, and looks as follows:

Function TCitiesForm.ShowCity(C : TCity) : Boolean;

begin
With TCityForm.Create(Self) do

try
City:=C;
Result:=ShowModal=mrOK;

Finally
Free;

end;
end;

The real work is done in the TCityForm, which is a form that allows to edit a single city
instance, as shown in figure 3 on page 12.

The TCityForm form demonstrates some of the edit controls that exist in the tiOPF
framework. It contains 2 edit boxes (EName, EZip) of type TtoPerAwareEdit and
a special combobox (CBCountry) of type TtiPerAwareComboBoxDynamic. All of
them have an associated label which (much like the TLabeledEdit control in Delphi)
which shows the caption for the edit control.

The CBCountry combobox is special in the sense that it will be used to display a list of
country instances, and the selected country will be determined by the Country property of
the TCity - also an object instance. This is handled transparently by the TtiPerAwareComboBoxDynamic
control.

The FieldName property of the controls should contain the name of a published property
of an object: the value of this property will then be edited by the control. It can be set at
design-time in the object inspector, or it can be set runtime. The Data property must be set

12



at runtime to the TtiObject instance whose properties must be edited. Both properties
can be set with a single call using the LinkData method. The LinkCity method uses
this method to link a city instance to the controls in the form:

procedure TCityForm.LinkCity;

begin
EName.LinkToData(FCity,’Name’);
EZip.LinkToData(FCity,’Zip’);
CBCountry.LinkToData(FCity,’Country’);

end;

As can be seen, the first parameter to LinkToData is the object instance whose properties
must be edited, the second parameter is the name of the property.

The class name TtiPerAwareComboBoxDynamic indicates that the CBCountry com-
bobox must be filled dynamically with a list of objects. The list property (of type TList)
must be set run-time to the list of of objects to display in the combobox. The actual texts
that will be shown must be set in the ’FieldNameDisplay’ property. For the CBCountry
combobox, The list is filled in the OnCreate event handler of the form:

procedure TCityForm.FormCreate(Sender: TObject);

Var
i : Integer;

begin
FCity:=TCity.Create;
FCountries:=TList.Create;
For I:=0 to COntactManager.Countries.Count-1 do

FCountries.Add(ContactManager.Countries[i]);
CBCountry.List:=FCountries;

end;

As can be seen, the list is created, and filled with the elements in the global Countries
list. Then it’s assigned to the List property of the CBCountry combobox. The FieldNameDisplay
is set to ’Name’ in the object inspector, so the name of the country will be shown.

The list is again destroyed in the OnDestroy handler of the form:

procedure TCityForm.FormDestroy(Sender: TObject);
begin

FreeAndNil(FCity);
FreeAndNil(FCountries)

end;

In the 3 above methods, a FCity variable is initialized with a TCity instance, is linked
to the controls, and is freed again when the form is destroyed. Obviously, the correct city
must be shown in the form, and this will not be the FCity instance. Which city should be
edited is determined by the City property, defined as follows:

Property City : TCity Read FData Write SetCity;

The SetCity makes clear what the intention of the definition is:

procedure TCityForm.SetCity(const Value: TCity);

13



begin
FData:=Value;
FCity.Assign(Value);
LinkCity;

end;

The actual TCity instance that must be edited is saved in FData. The data of this instance
is then copied to the instance in FCity by means of the Assign call. This data is edited
in the form, since all controls are linked to the FCity instance.

When the user has finished editing, (s)he has now 2 options: hit the Cancel button, or the
OK button. When the OK button is hit, the data from the FCity instance must be copied
back to the instance that should be edited, in FData. This is done in the following way:

procedure TCityForm.BOKClick(Sender: TObject);
begin

FData.Assign(FCity);
end;

When the user hits the Cancel button, the form is simply closed (with modalresult mrCancel).
Since the data is not copied back, the original city instance remains unmodified. And this
is the reason for the copying back and forth of data: since the tiOPF controls edit the object
instance directly, there is no way to cancel an edit, such as it is possible in DB-Aware con-
trols: for database-aware controls, all edits are done in a temporary buffer, and the changes
are only saved to the dataset when the Post method of the attached dataset is called. Un-
til Post is called, all edits can be undone with the Cancel method of TDataset: the
temporary buffer is then simply discarded. By contrast, persistent-aware edits apply the
changes to the object immediatly. So, to be able to do a cancel operation, the controls must
edit a copy of the objects. Cancelling then means simply not copying back the data to the
original object. If this mechanism was not used, a cancel would mean reloading the data
from the database - which would not be possible if the object had not yet been saved to the
database in the first place.

The other forms in the contact application work in similar manners, or even simpler. The
resulting application can be seen in figure 4 on page 15

5 Interfacing the database: Loading and saving

The application as it is now is ready to edit data. The PopulateContacts call can
be used to create sample data. But the data cannot yet be saved to a database, nor can
it be loaded from database. For this, the visitors need to be written, as explained in the
previous article. Per class in the business model, visitors must be registered for read and
save operations. For save operations, 3 visitors must be registered: one for inserting, one
for updating and one for deleting. For reading, a visitor must also be created.

When tiOPF needs to save an object, it lets all registered save visitors visit the object. As
soon as the correct visitor has saved the data, the loop stops. The same operation is done
when an object must be read from database.

tiOPF has several pre-defined abstract classes for saving and loading objects from database.
The central class is TtiPerObjVisitor, defined in tiVisitorDB: it is a base class for
all vistors that must read or write an object to a database. It introduces the following
properties:

Database the database to which this visitor is connected. The database connection will be
set up by the tiOPF framework. This property is of type TtiDatabase.

14



Figure 4: The finished contacts application

15



Query a query object which will be usedto execute the queries. It is of type TtiQuery.

Visited the object which must be saved, of type TtiVisited

It also has a SetupParams method, which must be overridden by the descendents, this
should be overridden to set up all parameters that are needed to execute the query correctly.

2 descendents of this class exist. The first descendent is TtiVisitorSelect, which
can be used to create read visitors. In addition to the SetupParams method, the read
visitors must override 2 extra methods:

Init in which the SQL statement of the query must be set up.

MapRowToObject in which the query result must be copied to the object. This method
will be called for each record returned by the query: this means that it is also suitable
to load a list: each element in the list can be mapped from a row.

The second descendent of TtiPerObjVisitor is TtiVisitorUpdate, which can
serve as parent for the update, delete and insert visitors.

The read visitor works in the following way:

• The visitor is created by the framework, a query object is created, and the database
property is set to the active connection.

• If the visited is accepted, the query is initialized by calling Init.

• The SetupParams method is called.

• The query is opened.

• For each record returned by the query, MapRowToObject is called.

• The query is closed again.

For the contacts application, the list objects will be responsible for loading all objects in
memory. This means that read visitors will be created for the list obects only. No read
visitors will be made for the individual objects.

For the countries visitor, the following class is defined:

TReadCountriesVisitor = Class(TtiVisitorSelect)
Protected

Function AcceptVisitor : Boolean; override;
Procedure Init; override;
Procedure SetupParams; override;
Procedure MapRowToObject; override;

end;

The methods are as follows. First, the AcceptVisitor must be coded:

function TReadCountriesVisitor.AcceptVisitor: Boolean;
begin

Result:=Visited is TCountries;
end;

This is necessary, because all known read visitors are tried on an object that must be read.
Only after this method has returned True, the Init method is called:

16



procedure TReadCountriesVisitor.Init;
begin

Query.SQL.Text:=’SELECT ID, ISO, NAME FROM COUNTRY’;
end;

It simply sets the SQL statement of the query. The following method to be called is the
SetupParams method, which in this case needs to do nothing (note that it must be over-
ridden anyway, or an exception will be raised at runtime. The method can simply be left
empty). After the query is opened, the MapRowToObject method is called for each
record returned by the query:

procedure TReadCountriesVisitor.MapRowToObject;

Var
C : TCountry;

begin
C:=TCountry.Create;
C.OID.AssignFromTIQuery(’ID’,Query);
With Query do

begin
C.ISO:=FieldAsString[’ISO’];
C.Name:=FieldAsString[’NAME’];
end;

C.ObjectState:=posClean;
TCountries(Visited).Add(C);

end;

This method creates a new TCountry instance (using Create, so no new ID is assigned).
The unique object ID is assigned from the ID field from the COUNTRY table. Then the fields
of the country instance are filled from the fields in the Query object. After all fields are
loaded, the instance is marked as clean, and finally it is added to the countries list.

The SetupParams method in this case needs to do nothing. But for the list of addresses
of a contact (TContactAddresses), the following query is set up:

procedure TReadContactAddressesVisitor.Init;
begin

Query.SQL.Text:= ’SELECT ID, STREET, NR, ’ +
’ TELEPHONE1, TELEPHONE2, ’+
’ FAX, CITYID, ADDRESSTYPE ’+
’FROM ’+
’ ADDRESS ’+
’WHERE ’+
’ CONTACTID = :ContactID’;

end;

And the ContactID parameter must be set up with the unique ID from the TContact
class that owns the addresses:

procedure TReadContactAddressesVisitor.SetupParams;

Var
C : TContact;

17



begin
C:=(Visited.Owner as TContact);
C.OID.AssignToTIQuery(’CONTACTID’, Query);

end;

The Owner of the list is the TContact instance, and it’s OID must be assigned to the
ContactID parameter of the Query class. This is what the standard AssignToTIQuery
method does.

There are 3 save visitors for the TCountry class:

TCreateCountryVisitor = Class(TtiVisitorUpdate)
Protected

Function AcceptVisitor : Boolean; override;
Procedure Init; override;
Procedure SetupParams; override;

end;

The TUpdateCountryVisitor and TDeleteCountryVisitor classes have the
same declaration. The implementation of the TCreateCountryVisitor is similar to
the one of the read visitor:

function TCreateCountryVisitor.AcceptVisitor: Boolean;
begin

Result:=(Visited is TCountry) and
(Visited.ObjectState=posCreate);

end;

Note that the ObjectState is explicitly checked. This is necessary, because the 3 save
visitors will be tried on the TCountryInstance class, and only the correct one should
actually execute. The query is again set up in the Init method:

procedure TCreateCountryVisitor.Init;
begin

Query.SQL.Text:=’INSERT INTO COUNTRY (ID, ISO, NAME) ’+
’ VALUES (:ID, :ISO, :NAME)’;

end;

This time, the SetupParams method has a little more work:

procedure TCreateCountryVisitor.SetupParams;

Var
C : TCountry;

begin
C:=Visited as TCountry;
C.OID.AssignToTIQuery(’ID’,Query);
With Query do

begin
ParamAsString[’ISO’]:=C.ISO;
ParamAsString[’NAME’]:=C.Name;
end;

end;

18



Each parameter is filled with the corresponding fields of the TCountry instance.

The update and delete classes are completely similar. With these 4 classes, the TCountry
instances can be loaded from database and saved to database. The same exercise must be
made for all other classes in the business model.

Once the classes are implemented (in a unit called viscontactmodel, they must be regis-
tered with tiOPF. This is done in the RegisterHardCodedVisitors procedure:

Procedure RegisterHardCodedVisitors;

begin
With gTIOPFManager do

begin
// Countries
regReadVisitor(TReadCountriesVisitor);
regSaveVisitor(TDeleteCountryVisitor);
regSaveVisitor(TUpdateCountryVisitor);
regSaveVisitor(TCreateCountryVisitor);
end;

The regReadVisitor and regSaveVisitor calls register the visitor instances with
tiOPF mechanism. Note that the order in which they are registered is significant, because
all save visitors will be tried.

At this point, some things should be noted about the used technique:

• For each class, at least 4 visitors must be created. This is a lot. It pays off to use the
code templates features of Delphi’s IDE: some sample code templates are present in
the tiOPF sources.

• The read visitors are database agnostic, i.e. they should run on all databases: it is not
possible to register visitors which work only on 1 database layer.

• tiOPF does not guarantee that the queries will run on all database systems: the queries
are passed as-is to the database layer. It is therefore possible that queries that run on
e.g. MySQL may not run on Firebird.

• The hardcoded queries offer an incredible amount of flexibility: they are very suitable
for reading legacy data.

With all visitor classes in place, how is the data saved or loaded ? This is handled through
the TContactManager class, which has 2 methods:

procedure TContactManager.LoadData;
begin

gTIOPFManager.Read(Countries);
gTIOPFManager.Read(Cities);
gTIOPFManager.Read(Contacts);

end;

procedure TContactManager.SaveData;
begin

If Connected then
begin
gTIOPFManager.Save(Countries);
gTIOPFManager.Save(Cities);

19



gTIOPFManager.Save(Contacts);
end;

end;

It is simply a matter of calling the Read or Savemethods of the global gTIOPFManager
instance, and passing it the class one wishes to load or save. In the above case, the global
list instances are passed to the tiOPF framework: the framework will recursively load or
save the objects. Obviously, the Read or Save methods can be called at any point in the
application lifecycle. A single object can be passed to it, this is all up to the application
programmer, tiOPF does not enforce any restrictions on this.

Note the order in which the lists are loaded. This is important, because in order to load the
cities, the countries list must be present, as can be seen in the MapRowToObject method
in the TReadCitiesVisitor:

procedure TReadCitiesVisitor.MapRowToObject;
Var

C : TCity;
CC : TCountries;

begin
C:=TCity.Create;
C.OID.AssignFromTIQuery(’ID’,Query);
With Query do

begin
C.Zip:=FieldAsString[’ZIP’];
C.Name:=FieldAsString[’NAME’];
CC:=ContactManager.Countries;
C.Country:=CC.Find(FieldAsString[’COUNTRYID’]) as TCountry;
end;

C.ObjectState:=posClean;
TCities(Visited).Add(C);

end;

The Find method (a standard method of any list class such as TCountries) will search
for an object with a matching OID. Obviously, if the Countries global list would not
yet be loaded when the cities are loaded, the city would have Nil as a Country pointer.
Therefore the countries list must be loaded first (and saved first, for database integrity).

In case no global TCountries list is available, then the following could be done instead:

C.Country:=TCountry.Create;
C.Country.OID.AssignFromTIQuery(’COUNTRYID’,Query);

This would create a TCountry instance, and set its OID property with the ID of the
country as stored in the database. At a later point the TCountry instance could be read
fully with a read visitor. A drawback of this technique is that if 2 cities refer to the same
country, 2 country instances with the same OID would be present in the application, and
changes to one instance would not be reflected in the other. This can be remedied by
using a hybrid technique: use the Find method to search for the instance (Find works
recusively), and if not already present, instantiate one.

20



6 Interfacing the database: Connecting and disconnect-
ing

All methods to load and save objects from/to database are present. However, no code has
been created which actually connects to a database. Fortunately, this is very easy. tiOPF
comes standard with a lot of database connectivity components (persistence layers), which
are completely self-contained. This means that it is not necessary to drop any components
on a form, or instantiate database classes: tiOPF takes care of all that. The only thing that
needs to be done is to include the unit with the desired persistence layer in the project. The
unit will register itself in the tiOPF persistence framework, and is then ready for use.

It is even possible to use multiple persistence layers at once in the same application, or to
connect to multiple databases with a single persistence layer: when loading and saving ob-
jects (using the Read and Save methods) the persistence layer to be used can be specified,
or the specific database to be used can be specified. Both parameters are optional, and if
they are not specified, defaults are used.

What persistence mechanisms are available ? A lot:

tiQueryADO Any database access using ADO components

tiQueryBDE Any database access using BDE components

tiQueryXML Database in XML file

tiQueryCSV Database in CSV text file (comma separated)

tiQueryTAB Database in tab-delimited text file

tiQueryIBX Interbase/Firebird database access using IBX

tiQueryIBO Interbase/Firebird database access using IBO

tiQueryFBL Interbase/Firebird database access using FBlib

tiQuerySQLDBIb Interbase/Firebird database access using Lazarus’ SQLDB.

tiQueryZEOSXXXX with XXXX one of IBFB, FB10 or FB15: Interbase/Firebird database
access using ZeosLib.

There are some more, but these are the main ones (the available units show that Fire-
bird/Interbase is still a natural compagnon for Delphi/Lazarus).

The contacts application is coded with IBX components, since IBX comes standard with
Delphi. Therefore tiQueryIBX is included in the uses clause of the application.

It is possible to check at run-time which persistence layers are compiled-in: The global
gTIOPFManager class has a property PersistenceLayers which holds the regis-
tered persistence layers. To show the contents of this list, a menu item is added to the main
menu, and in the OnClick handler, the ShowDatabaseLayers procedure is called:

procedure TMainForm.ShowDatabaseLayers;

Var
I : Integer;
S,L : String;
PL : TtiPersistenceLayer;

begin

21



Figure 5: Accessing the connections

L:=’’;
for i := 0 to gTIOPFManager.PersistenceLayers.Count - 1 do

begin
if (L<>’’) then

L:=L+sLineBreak;
PL:=gTIOPFManager.PersistenceLayers.Items[i];
If (PL.PerLayerName=gTIOPFManager.DefaultPerLayerName) then

L:=L+’Default ’;
L:=L+Format(’Persistence layer: "%s" ’,[PL.PerLayerName]);
S:=Trim(PL.DBConnectionPools.DetailsAsString);
if (S=’’) then

L:=L+’loaded, but not connected to a database.’
else

L:=L+’Loaded and connected with :’+S;
end;

If (L=’’) then
ShowMessage(’No persistence layers compiled-in’)

else
ShowMessage(L);

end;

This procedure loops over the PersistenceLayers list (it is a descendent of TtiObjectList),
and examines every TtiPersistenceLayer item in the list. If the persistence layer is
the default persistence layer, it is marked as such. The DBConnectionPools property
contains a list of database connections for that persistence layer. The DetailsAsString
returns a string representation of all connected databases for that persistence layer. The con-
nection between the various classes is shown in figure 5 on page 22, and the output for the
dialog when no connection is yet made, is shown in figure 6 on page 23. By adding some
of the units described above to the uses clause of the program, more persistence layers will
be shown.

Now that a persistence layer is built in our application, it’s possible to connect to a database.
The global gTIOPFmanager object does this using the ConnectDatabase call, which
is defined as follows:

procedure ConnectDatabase(const ADatabaseName : string;
const AUserName : string;
const APassword : string;
const AParams : string;
const APackageID : string);

22



Figure 6: Showing persistence layers and databases

The first three parameters are obvious: they are the database filename, username and pass-
word for the database one wishes to connect to. The AParams argument are extra param-
eters that can be passed to the database: for IBX, this can be anything that can be specified
in the Params property of the TIBDatabase component. The APackageID parame-
ter is the name of the persistence layer, in the case of the contacts application this should
be ’IBX’. Overloaded versions of the ConnectDatabase call exist without AParams
and APackageID parameters: if omitted, they will be replaced with default values (for
the persistence layer name, the default is the first registered persistence layer).

For the contacts application, which has just 1 persistence layer, this means that in the main
form of the application, a Connect method can be coded as follows:

procedure TMainForm.Connect;

begin
gTIOPFManager.ConnectDatabase(

’host:/home/firebird/contacts.fb’,
’SYSDBA’,
’masterkey’);

ContactManager.LoadData;
end;

As can be seen, all the data is loaded right after the connection was made. Until the user
actually connects to the database using the File-Connect menu item, no data will be visible.

Disconnecting happens in a similar way:

procedure TMainForm.Disconnect;
begin

If ContactManager.Connected then
begin
ContactManager.SaveData;
gTIOPFManager.DisconnectDatabase;
end;

end;

If the application is still connected, the data is saved prior to actually disconnecting using
the disconnectdatabase call of the TTIOPFManager class. This means that all
changes made to the contact data are not saved to database until the user quits the applica-
tion. While this is not the best design decision, for the sample application this is enough.
In a real-world application, data would be saved as soon as one of the dialog windows is
closed: in case the application crashes, the changes will not be lost.

Checking whether the application is still connected to the database is delegated to the
ContactManager class. The Connected function takes care of this. Since tiOPF

23



is capable of working with multiple persistence layers, each of which can be connected
to various databases, checking whether the application is still connected is not as straight-
forward as in a traditional 1-database application. The Connected function looks as
follows:

function TContactManager.Connected: Boolean;

Var
N : String;

begin
With gTIOPFManager do

begin
N:=DefaultDBConnectionName;
Result:=DefaultPerLayer.DBConnectionPools.IsConnected(N)
end;

end;

The DefaultDBConnectionName property of gTOIPFManager contains the name
of the connection that was first set up - in the case of the contacts application, there is only
1 connection, so this will automatically be the correct one. Since there is only 1 persistence
layer, it will be the default one, and so the DefaultPerLayer property will point to the
IBX persistence layer. The DBConnectionPools property of the persistence layer has
a function to decide whether a given database name is connected or not: IsConnected.
This function returns the result that is actually needed.

In case of multiple persistence layers and multiple databases, checking wether the appli-
cation is still connected to a database would mean iterating over all persistence layers and
databases to see if they are still connected, much like in the ShowDatabaseLayers
procedure presented earlier.

The scenario of multiple persistence layers is not as unlikely as it may seem: in the interest
of performance, it could be logical to have one persistence layer which connects to a remote
database, and a second one which stores data locally in CSV or XML files. Whenever
lookup lists (such as cities or countries) are needed, one would look for them in the local
persistence layer: if not not found there, they can be loaded from the remote database, and
immediatly saved to disk for future use. This would considerably speed up the startup time
of the application.

7 Interfacing the database: Unique objects

Till now, the actual database schema for the tiOPF contacts application was not yet dis-
cussed. This is because an important design decision is expected by tiOPF. All business ob-
jects have a unique ID assigned to them, exposed in the OID property of the TtiObject
class. This property is a class in itself (TOID). The reason is that tiOPF does not enforce a
certain type of ID: the ID can be numerical, a GUID, a string - whatever fits the need. The
only requirement is that the OID is unique among all objects.

tiOPF assigns an ID automatically if the CreateNew method of TtiObject is called.
How does it know which kind of ID should be assigned ? For this, the programmer must
include one of the pre-defined units that provide OID support in his application. tiOPF
comes with several units:

tiOIDGUID each OID is a GUID. The OID has the advantage that no extra database
storage is needed; the next value is simply fetched from the OS and should normally

24



be unique.

tOIDHex each OID is a 32-char hexadecimal value.

tOIDInt64 each OID is a 64-bit integer.

tOIDInteger each OID is a 32-bit integer.

tiOIDString each OID is a string, much like tOIDHex but with all possible characters.

If one of these units does not fit the need of the application, a new descendent of TOID
can be created which suits the need of the database. 2 classes must be created: one de-
scendent of TOID, and a descendent of TNextOIDGenerator, which is responsible for
generating the new value.

In case the last generated value must be stored in the database, a read visitor can be reg-
istered for the TNextOIDGenerator which stores the value in the database. The units
above give sample implementations of such a visitor.

For the contacts application, a 64-bit integer will be used as the primary key for each table,
and as value for the OID property. This means that the tiOIDInt64 unit must be included
in the uses clause of the application. This unit expects to be able to save the value for the
next OID in a table called NEXT_OID with a single field OID: the table and field must be
present in the database, and will automatically be filled with the next value. (actually, the
next value divided by 100 is stored: this means that the next ID must only be stored for
every 100 generated IDs. This avoids unnecessary database access.

For the contacts application, the SQL statement for the NEXT_OID table would look like
this:

CREATE TABLE NEXT_OID (
OID BIGINT NOT NULL

);

While for the countries table it would look like this:

CREATE TABLE COUNTRY (
ISO VARCHAR(2),
NAME VARCHAR(50) NOT NULL,
ID BIGINT NOT NULL,
PRIMARY KEY (ID)

);
CREATE INDEX COUNTRYISO ON COUNTRY(ISO);

The rest of the statements can be found in the contacts.sql file that comes with the source
code.

There are are 2 things to note:

1. The ID is generated by the application: Database mechanisms such as generators or
sequences are not used at all: the database is used solely to store the next value, it is
not used to actually generate the value, this happens in code.

2. The generated ID is unique for all object instances in the business model. In tradi-
tional relational databases, a single ID is used per table; tiOPF uses a single ID for
all objects (and hence all tables). This allows the Find method to locate the instance
of any object, using solely it’s OID.

25



Both items can be dealt with: in the case of a legacy database, which is also used by
other applications, custom TOID and TNextOIDGenerator descendents can be created
which use for instance a database-generated ID. The unique TOID value for use by tiOPF
could for instance be the classname, followed by the ID generated by the database, which
should together form a unique OID value.

8 Conclusion

In this article, the basics of creating an tiOPF application have been shown. It should be
obvious that creating a tiOPF application requires a lot of coding: the RAD aspect of
Delphi programming is a bit lost: many properties should be set run-time, events must be
created for a lot of things that can be done without coding in traditional database applica-
tions, or even in other object persistence frameworks: InstantObjects does not need events
for insert/delete/add operations.

When coding the GUI, one must know the various tiOPF units: many of the parameters to
events of persistence-aware controls are ’unknown’: the unit in which the parameter type
is defined is not in the same unit as the control, and hence was not added automatically to
the ’uses’ clause of the form unit. The programmer must be prepared to add a lot of tiOPF
units manually to the uses clause of the forms he is programming - which presupposes that
he knows the unit in which the parameter types reside.

The database persistence mechanism is very powerful, and can be taylored so tiOPF can
deal with almost any legacy database. In difference with InstantObjects, no database model
is enforced: the programmer is free to save/load the objects as he wishes. Once more, this
power comes with a price: for each object in the business model, no less than 4 visitors
must be created in order to be able to load or save the objects to the database. Delphi’s
code templates are a must for the tiOPF programmer.

As it was said in the previous article: programming tiOPF is not for the faint of heart. For
all the power it offers, still many things are left to the programmer. This may be good for
the experienced OOP programmer, but is likely to put off the beginner. However, once the
basics have been mastered, tiOPF more than makes up for the time spent on learning it:
it’s a very powerful framework, which definitely should be in the toolbox of any Object
Pascal programmer.

26


	Introduction
	The model
	The manager class
	The main form
	Interfacing the database: Loading and saving
	Interfacing the database: Connecting and disconnecting
	Interfacing the database: Unique objects
	Conclusion

