
Object Persistence in Object Pascal

Michaël Van Canneyt

October 7, 2006

Abstract

"Traditional" Object Pascal focuses on a dataset-oriented way of programming
databases, mainly using relational databases and DB-Aware controls, using the TDataset
paradigm. In a series of articles, an alternative approach to database programming will
be examined: Object Persistence.

1 Introduction

Delphi and it’s VCL have always offered powerful tools for database programming: the
TDataset and it’s many descendents, combined with powerful DB-aware controls made
database programming a breeze. Programming moderately complex relational databases
can be done without a single line of code, making Delphi a real RAD tool.

In this way of working, the focus lies on the database: the datasets provide various views
of the database, and allow to manage the various records in the various tables. The fact
that Delphi uses an Object-Oriented language (Object Pascal) is visible only in the VCL:
the components to create the GUI and the Data Access components are created using an
Object Oriented design.

However, the data managed in the program is not object oriented by itself: it’s just records
in tables, related and ordered by the database model.

Even the programming itself is almost procedural: one doesn’t have to write a single class
manually. Simply filling in some event handlers. That most handlers and procedures are
methods of a real class which descends from TForm, is a fact that many Delphi program-
mers need not worry about, indeed, some don’t even know about it. Only when more
advanced programming is done, the Object Oriented nature of Delphi pops up.

In true Object-Oriented programming or Model-Driven programming, a completely differ-
ent approach is used. There an Object Oriented model is created. Often this is done UML
(Unified Modelling Language), which is a powerful language to describe object-oriented
software designs. It describes the application in functional terms (use-case diagrams), the
classes involved in the application, together with the relations between the classes. There
are also diagrams to describe the interactions between classes (possibly using a timeline),
component diagrams describing the various components (i.e. parts) of an application, and
even deployment diagrams. All these provide different views of the application. UML
does not care how the model is stored in the database. Indeed, the presence of a database
is completely irrelevant for the design.

Storing the model data in a database is done using Object Persistence. There are various sets
of components available for Delphi and Lazarus which perform this task: object persistence
frameworks. All of them provide ways to program a model, and to store it in a database.
What is more, they provide also GUI components to create an application which manages
the classes. Indeed, in an earlier article by the author (’RTTI components in Lazarus’ Joerg,

1

can you find the issue for this ?), a minimal and simplistic object persistence framework
for Lazarus was presented.

Examining and comparing these frameworks will be the subject of this and subsequent
articles.

2 Comparing traditional and model-driven programming

To illustrate the creation of an application using object persistence more clearly, let’s take
a look at how a contact management application would be constructed in a traditional ap-
plication, and how it is done using a model-driven approach using object persistence. Ob-
viously, the application is a database application.

The functional analysis is the same for both approaches: What is needed is an application
which manages a list of contact persons (just a first/last name, mobile number and email),
and to each contact person a series of addresses can be associated. Each address is identified
by its kind (home, work, etc.). What is more, the cities and countries should be selectable
through a list, to avoid double entry and differences in spelling.

In a traditional application development cycle, one would e.g. start with a relational
database design, and create 5 tables:

Countries Containing e.g. the ISO code and name of the country.

Cities Containing cities as entered by the users, possibly adding a ZIP code. A foreign key
establishes the relation with the country.

AddresTypes The table with address types. Strictly speaking this is not necessary.

Addresses Containing all addresses. One foreign key establishes the relation with a city,
and one establishes the relation with a contact.

Contacts A list of first and last names, emails, mobiles.

How to create the primary keys and the foreign keys between the tables is a choice of the
programmer:

1. The country can be identified by its ISO code, the city by its zip code and country,
and the contact by the first/last name.

2. Another method would be to assign a unique ID (using some autoincremental value)
to each record in each table, and use that as the primary key. A unique index can be
used to ensure the uniqueness of the ISO code, ISO/Zip cobination, and first/lastname
combination.

After the database is created, the application will be programmed. The details of the appli-
cation depend on the choices made in the database model.

In a model-driven design, the development cycle is different. First, a model is created. It
will consist of several classes:

TContact A contact person class. It will have 5 ’attributes’ (they would be implemented
as propertiesin Object Pascal): Firstname, lastname and birthday, mobile and email.

TCountry A country class, with 2 attributes: Name and ISO code.

TCity A city class, with 2 attributes: zip code and name.

2

TAddress An address class, with several attributes: Street, telephone, fax.

Then, the relations (associations) between the various classes are described:

1. Each address instance is associated to 1 and exactly 1 city.

2. Each city instance is associated to 1 and exactly 1 country.

3. Each address instance is associated to 1 and exactly 1 person. The association also
specifies the kind of address.

In the last item, there is some choice: it could be that 1 address is related to different
contacts (as in several people living in the same house, or working in the same company),
thus avoiding duplication. However, it is a deliberate choice not to do so.

Note that the kind of address could also be specified in the address itself, but instead this
attribute is specified in the relation. There is no pressing need to do this, but it allows to
illustrate a point which is a marked difference with the relational-database design. To be
able to set the ’kind’ attribute in the association between city and contact, a separate class
must be created to represent the association.

The above steps closely actually quite resemble the design of the relational database ap-
proach: Indeed, it would be hard to see the difference. To introduce a difference, a small
enhancement is made to the model. Some of the contact persons are business contacts. So
a new class is introduced:

BusinessContact A business contact person class. It inherits from Contact, but has 2
additional attributes: Company and Title.

In the relational model, this would amount to 2 optional fields in the Contact table.

The details of creating an application for this model, and the creation of the classes in the
model, depend on what object persistence framework is used.

3 Object Persistence: Some theory

Object persistence is obviously not bound to Object Pascal. It is bound to Object Oriented
programming (even for languages that do not have language features for Object Oriented
programming: a Persistence layer for C also exists). Indeed, for Java, many object persis-
tence frameworks exist, ready made: Hibernate, or JavaBeans. A quick search on Source-
forge reveals many persistence layers for Java, C#, C++ or PHP. And of course, for Object
Pascal, persistence layers also exist.

How does it work ? The idea is that an application is built in 3 layers, as depicted in figure
1 on page 4. The top layer is the GUI layer (or process control layer, for daemons and
services). It knows nothing about databases, tables, object persistence. It only knows the
business objects it has to deal with: TContact, TCountry, in the case of the contacts
application. It only interacts with these objects, which form the middle layer: the business
classes. The GUI layer creates instances of them, sets properties and so on. In short, it
manipulates the data represented by the business classes. The business classes are built
on top of the persistence layer. That is, each business class which needs to be stored
somehow, tells the persistence layer what it wants loaded and saved from a persistence
storage (usually a database): It tells the persistence layer which properties, links and so
forth should be stored.

In a good persistence layer, the business classes have no need to know how these properties
are stored. It just tells the layer what needs to be stored, not how this is done. In the case

3

Figure 1: Application layers

of a TContact class this means that the TContact class tells the persistence layer that
it wants its ’Firstname’ property stored. It does not tell the persistence layer where (which
database, which table, which field) this property should be stored: this decision is up to the
persistence layer.

Indeed: The persistence layer can be configured to store the ’FirstName’ property in a
SQL database in a table ’Contacts’ in column ’Firstname’. But it could equally well be
configured to store this property in another table ’Persons’: The TContacts class by
itself is not aware of this. Indeed, the exact storage could change over time.

This is an important feature: the storage is totally separate from the business logic. This
allows flexibility in the storage of the objects: the GUI logic and business logic are unaf-
fected by this; The GUI logic only knows the business classes, and never interacts with the
persistence layer at all. The Business logic does interact with the persistence layer, but has
no knowledge of the storage details.

Ideally, the persistence layer allows the program developer to concentrate only on the busi-
ness classes, without having to worry about the storage details. Likewise, and equally
important: it should allow the database administrator the freedom to move data in such a
way that the data throughput is maximal: the business classes should remain unaffected by
this.

Note that in the above description, nothing is said about how the base class tells the per-
sistence layer what properties it wants stored. This can be accomplished in essentially 2
ways:

1. Automatically, through the use of Run-Time Type Information (also called introspec-
tion in Java and .NET circles). All published properties will be made persistent.

2. Programmatically: By overriding some methods introduced for this purpose, the per-

4

sistent classes indicate which properties they want stored.

In both cases it’s the responsability of the programmer that programs the business classes to
make sure that all relevant properties are made persistent. In the former case by making sure
they are published properties, in the latter by enumerating the properties in the appropriate
methods. Needless to say that the former method requires less code.

To be able to accomplish all this, the persistence layer itself is comprised of several parts:

Base Class This is the base class for all persistent objects. It is the entry point into the
persistence framework for the base classes, and defines some methods to interact
with the persistence layer.

Mapper This is a layer which defines how the storage is done: it maps classes and prop-
erties to databases, tables and fields. It can be configurable, or not. This mapping
could even, in principle, change in time.

Query Engine The persistence layer must have a mechanism to retrieve single objects -
this is simple. But it must equally be able to fetch a collection of objects that match
a set of criteria. (e.g. all contacts living in a certain city)

Storage This part takes care of the actual storage: it can execute queries on one or more
database engines.

In an actual implementation, each of these parts is comprised of several classes. Many
implementations will not offer the option of a configurable mapper: the mapping from
object to database will be determined by the structure of the business objects, but this need
not be so: a run-time configurable mapper could e.g. enable a database administrator to
move data between tables.

Note that the application programmer should be unaware of all this; He just gets the busi-
ness classes, and can use only these.

In practice, the mapping from objects to databases is usually a fixed one, enforced by the
persistence layer: it will assign tables and fields to store the data. since RDBMs systems
are not ideal implementations, often it will be needed to fine-tune the queries, and it will be
necessary to write SQL statements anyway, making it hard if not impossible to move data.

Also, since a program needs to know what database to contact - for instance, a bookkeeping
system could store the data of various companies in a database per company - the GUI
programmer will need to interact with the persistence layer anyway, telling it where the
data is stored.

Another issue is reporting: SQL and relational databases are a standard. Objects are far
from standardized, making it hard to create a universal reporting engine for it. Indeed, most
reporting engines assume a RDBMs which understands SQL. If the end-user is allowed to
run reports on his data (that is what it is for, after all), then being able to chang the location
of the data is a bad idea: all of a sudden, the reports will no longer work. Also, while data
may be stored in a way that is optimal for loading and saving the objects, for the end user
the table structure may not be so transparent.

4 Mapping objects to relational databases

Although it was argued that any form of storage can be used to store the objects, and even
multiple storage mechanisms can be used at once, in practice storage is done in a single
database, most of the time an SQL-capable database.

5

Figure 2: One table per hierarchy

Mapping objects to tables and fields in a database is a tricky issue: performance is always
the most pressing factor. The requirements of fast loading or fast querying of the database
do not always point to the same solution.

Broadly speaking, there are 2 issues when mapping objects to tables in a database:

1. Mapping class hierarchies to tables. It is possible to put each class in it’s own table,
or a complete class hierarchy in one table, and some stages between these extremes.

2. Mapping class relations to tables and foreign keys. Depending on the case, it makes
sense to put an object in a separate table, or store it in the table of the object that
owns it. For example, the ’AddressType’ can be stored in a field the address table,
but can also be stored in a separate table, with a pointer to it in the address table.

To map class hierarchies, there are several options:

One table per hierarchy for each class hierarchy, one table is used. The term hierarchy
refers to inheritance. In the example of the contacts application, the ’TBusiness-
Contact’ and ’TContact’ classes would be stored in a single table. The attributes of
’TBusinessContact’ are then nullable fields in the table. On top of the fields which
map to properties, an additional field would exist, which indicates the type of object
of a particular row. For more complex hierarchies, a series of boolean fields may
be more appropriate: one boolean field per class in the hierarchy. This situation is
depicted in figure 2 on page 6.

One table per class In this approach, each declared class gets it’s own table, with just the
properties of that class declared as fields in the table. A system of foreign keys would
then relate the class inheritance: the foreign key indicates the record where the parent
class’ information is stored. This situation is depicted in figure 3 on page 7.

One table per concrete class In this class, each class that is directly instantiated gets a
table which contains a field for all the properties of the class and all parent classes.
obviously, this can create a lot of duplicate data. This situation is shown in figure 4
on page 7

The generic solution This is the most generic solution. It works with 5 tables, related
through foreign keys:

6

Figure 3: One table per class

Figure 4: One table per concrete class

7

Figure 5: 5 tables for all classes

1. A table for class definitions. Each class gets a record in this table, with an
indication of it’s parent class (no multiple inheritance).

2. A table for attribute types. One record per attribute type (string, integer, date)
is stored here.

3. A table for attributes: a record for each attribute of each class.

4. A table for class instances. A record per instance, irrespective of the actual
class: a pointer to the class type indicates the class of the instance.

5. A table for attribute values. For all attributes of each instance, a record exists.
This figure is depicted in figure 5 on page 8.

Retrieving all possible attributes of a given instance would be done as follows:

SELECT
CLASSTYPE.NAME as AttributeClassname,
ATTRIBUTE.NAME as AttributeName,
ATTRIBUTETYPE.NAME as AttributeType,
VALUE as AttributeValue,

FROM
INSTANCE
LEFT JOIN VALUES

ON (INSTANCES.ID=VALUES.INSTANCEID)
LEFT JOIN ATTRIBUTE

ON (VALUES.ATTRIBUTEID=ATTRIBUTE.ID)
LEFT JOIN ATTRIBUTETYPE

ON (ATTRIBUTE.ATTRIBUTETYPEID=ATTRIBUTETYPE.ID)
LEFT JOIN CLASSTYPE

ON (ATTRIBUTE.CLASSTYPEID=CLASSTYPE.ID)
WHERE

(Instance.ID=:ID)

While this solution does not need a lot of tables and does not need any changes to the
database as classes are added to the model, querying this model is a near impossible
task, as can be seen from the sample query above. Not to mention that the attributes
would be returned as one row per attribute, instead of one row per instance with the
attributes in various fields.

Which approach should be taken is largely dependend on the project. The one table per
class is the most normalized (in the database sense of the word) solution, but can be harder
to query. Most likely, the used scheme will change as the project evolves.

8

There are not so many ways to map relations between objects to a database. Obviously,
databases have their own concept of ’relations’: foreign keys, and they map naturally to
relations between objects. There are 3 types of relationships between objects:

One-to-one In this case, the foreign key may be in either of the tables that represent the 2
objects. Take the case of an inventory of overhead projectors in a school: There could
be 2 classes TProjector and TRoom. The relation between the room and resource
could be described by properties TRoom.Projector and TProjector.InRoom.
The foreign key for this relation could be located in the table holding TRoom data,
but it could also be located in the table holding TProjector data.

One-to-many Here, there is no discussion where the relationship is stored. In the contacts
application, the relation between TCity and TCountry is stored in the table that
holds TCity data: the pointer to the TCountry instance is stored there.

Many-to-many Normally, this is implemented with an associative table: an auxiliary table
which implements a one-to-many relationship with the original tables. In the case of
a school, there is such a relationship between a TTeacher and TStudent class:
The teacher teaches many students, and a student is taught (different subjects) by
many teachers. The only way to correctly map this is to introduce a new table which
holds a reference to both the table for TTeacher and the table for TStudent.

One could implement this by having 10 fields (Student1 to Student10) in the
table for the TTeacher class, and having e.g. 5 fields (Teacher1 to Teacher5)
in the table for TStudent. Obviously, this would mean that a teacher can only
teach 10 students, and vice versa, a student can have only 5 teachers. This can be
sometimes a valid approach - if it is known that the number of relations is limited -
but mostly this will not be the case.

An important difference between object and database relations is that database relations
are always bi-directional: a foreign key can be traversed in 2 directions. For the contacts
application, this means that it’s always possible to construct a list of cities that are in a
certain country. But this relationship does not necessarily exist in both directions in the
object model: a TCity class may have a Country property which refers to a TCountry
instance, but the TCountry class need not have a Cities property (a TObjectList)
referring to all TCity instances that point to it.

It may be that extra data needs to be introduced in the objects so the object persistence
framework can do it’s job: a unique ID for each instance (using a generator, or a GUID).
This makes it easier to load the object instance from the database. A timestamp is usually
also added, to check for concurrent access to the database, and a boolean property to indi-
cate whether the object was loaded from the database or was newly created. This data is not
part of the object model by itself, but is needed for efficient functioning of the persistence
framework. Obviously the timestamp and ID will be saved in the database.

One advantage of such an ID is that all primary keys and foreign keys have the same
structure. For most database systems, comparing a single integer or GUID is also a much
faster operation than comparing keys based on string operations; furthermore the indexes
maintained by the database will be uniform and - in general - smaller than indexes based
on character fields.

Obviously, all the above is only valid for a datamodel for which a new database will be
created. Sometimes a model needs to be made representing data in existing databases.
In that case, the mapping from model to database will not always be possible in a clean
and efficient manner. Nevertheless, a good Object Persistence framework caters for this
situation as well.

9

5 Available Object Persistence frameworks

After having seen what an Object Persistence framework should do, it is time to show that
Object Persistence frameworks for Delphi (or Lazarus) exist. Fortunately, several exist. An
overview:

ECO comes with the Architect version of Delphi as of Delphi 2005. It’s a full-fledged
environment that enables Delphi to be used for model-driven programming, and pro-
vides a lot more than just Object Persistence; It is a full-fledged UML tool, which
as one of it’s features provides object persistence. It has grown from Bold for Del-
phi, which was acquired by Borland. It can use most database access technologies
supported by Delphi as storage mechanisms.

InstantObjects Originally a closed-source solution for Object Persistence, it was open-
sourced some years ago, and continues to be developed rather actively by a team of
programmers. It provides object persistence mechanisms for many database engines,
and offers a modeling tool which is integrated with the IDE. It has been around
for some years, and is very stable. One of its key features is that it allows to use
ordinary DB-aware controls to be used to represent the objects, by using a clever
bridge between collections and datasets. The largest part of it is usable with Lazarus
as well. More info can be found on the website:

http://www.instantobjects.org/

tiOPF is an open source object persistence framework which has been developed at TechIn-
site, Melbourne, Australia. It also has been around for many years, it’s very stable,
and comes with an extensive testsuite, based on DUnit. It introduces a number of
visual controls which are persistent-object-aware. The latest versions in Subversion
compile with Lazarus. More information on tiOPF can be found on

http://www.techinsite.com.au/

Wich offers a comprehensive documentation download.

DePO is an Object Persistence framework which offers less features than the above three,
but is definitely usable as well: it comes with a lot of Database engines. Started
by Cosimo de Michele, it is now maintained by Cesar Romero. Downloads can be
found on

http://www.liws.com.br/depo/

Note that documentation is scarce, and mostly in Portugese.

Jazz is the successor of DePO by Cesar Romero. It is currently in development, and more
information can be found on

http://jazz.liws.com.br/

SnapObjects is the successor of DePO by Cosimo de Michele. It is demonstrated and
downloadable on

http://digilander.libero.it/snapobject/

In subsequent articles, most of these persistent frameworks will be examined, and their
features will be compared. More importantly, the advantages and disadvantages will be
compared to the traditional way of developing a database application.

10

6 A contact manager application: The objects

To program a contacts application with Objects, the data in the contacts application must
be defined as classes (or even interfaces). As described earlier, 5 classes will be needed to
describe the model data:

TCountry will represent a country.

TAddressType will represent an address type. Whether this should be a separate persistent
class or not, remains an issue to be solved.

TCity will represent a city. It will - somehow - refer to a TCountry instance.

TContact will represent a contact person. It will have some kind of array property which
will contain the various addresses for this contact person.

TBusinessContact will represent a business contact person. It inherits from TContact.

TAddress will represent an address of a contact person. It will have a reference to a
TCity instance, and possibly one to a TAddressType.

How these classes are written for the sample application, depends on the object persistence
mechanism. More in particular: all the mechanisms require that the base class for all
objects that must be stored persistently, depend on a certain base class, which is different
for each framework. Some of the frameworks require the properties to be published, for
others, the properties may be public; Some require Get/Set methods, others do not. It is
therefore hard to give the declarations for the objects above, and this will be postponed to
the articles describing the various frameworks.

7 The traditional RAD approach: The database

The contacts application will be programmed in the various Persistence Frameworks, to
be able to compare the features and drawbacks. To be able to compare the advantages (or
drawbacks) of model-driven programming with Database Driven programming, the Con-
tacts application will first be programmed using a traditional RAD database approach.

This means a database will be needed: The design of the database should be known before
the application is programmed: The GUI interacts in a rather direct way with the database
using TDataset and DB-aware controls.

As a database engine Firebird will be used, but it should work equally well on other
database engines. There will be 5 tables, as described earlier. Each table contains an
autonumber field as the primary key (which is actually an Object-Oriented approach to
databases).

There are 3 auxiliary tables, and all of these, the AddressTypes is the simplest:

CREATE TABLE ADDRESTYPES (
AT_ID INTEGER NOT NULL,
AT_TYPE VARCHAR(30),
CONSTRAINT ADDRESSTYPES_PK PRIMARY KEY (AT_ID),
CONSTRAINT U_ADRESSTYPE UNIQUE (AT_TYPE));

The unique key ensures that each type occurs only once. Almost equally simple is the
Countries table:

11

CREATE TABLE COUNTRIES (
CN_ID INTEGER NOT NULL,
CN_ISO VARCHAR(3) NOT NULL,
CN_NAME VARCHAR(80) NOT NULL,
CONSTRAINT COUNTRIES PRIMARY KEY (CN_ID),
CONSTRAINT U_COUNTRY UNIQUE (CN_ISO));

Note the primary key and the unique constraint.

The Cities table has a foreign key that refers to this table:

CREATE TABLE CITIES (
CI_ID INTEGER NOT NULL,
CI_ZIP VARCHAR(15) NOT NULL,
CI_CITY VARCHAR(80) NOT NULL,
CI_COUNTRY_FK INTEGER NOT NULL,
CONSTRAINT CITIES_PK PRIMARY KEY (CI_ID),
CONSTRAINT U_CITY UNIQUE (CI_ZIP,CI_COUNTRY_FK));

The Addresses table contains the most fields:

CREATE TABLE ADDRESSES (
AD_ID INTEGER NOT NULL,
AD_CONTACT_FK INTEGER NOT NULL,
AD_TYPE_FK INTEGER NOT NULL,
AD_CITY_FK INTEGER NOT NULL,
AD_STREET VARCHAR(100),
AD_STREETNR VARCHAR(15),
AD_TELEPHONE1 VARCHAR(20),
AD_TELEPHONE2 VARCHAR(20),
AD_FAX VARCHAR(20),
CONSTRAINT ADRESSES_PK PRIMARY KEY (AD_ID));

Note that the city and type fields are pointers to entries in the Cities and AddressTypes
tables. This has the advantage that all types and cities can be uniquely identified, but has
the disadvantage that they must be present in the Cities or AddressTypes tables be-
fore they can be used. In the case of the address types, this is not such a problem. In the
case of cities, this can be a bigger problem if an easy-to-use GUI must be constructed. For
web applications, this will not be such a problem.

Each Address is associated with a contact person through the AD_CONTACT_FK foreign
key:

CREATE TABLE CONTACTS (
CO_ID INTEGER NOT NULL,
CO_FIRSTNAME VARCHAR(80),
CO_LASTNAME VARCHAR(80),
CO_COMMENT VARCHAR(255),
CO_MOBILE VARCHAR(20),
CO_EMAIL VARCHAR(80),
CONSTRAINT CONTACTS_PK PRIMARY KEY (CO_ID));

Firebird does not have an auto-number field type. Instead, a unique ID is created using a
generator (a unique sequence) per table, which are created using the following statements:

CREATE GENERATOR GEN_ADDRESSES;

12

CREATE GENERATOR GEN_CITIES;
CREATE GENERATOR GEN_CONTACTS;
CREATE GENERATOR GEN_COUNTRIES;
CREATE GENERATOR GEN_ADDRESTYPES;

The generator names are chosen so they match the table names. This requirement will be
explained below.

The programmer can retrieve a new ID from the generator, but to ensure that a unique ID
is always assigned to a new record, a trigger can be used. For the Contacts table, this
trigger would look like this:

CREATE TRIGGER CONTACTS_ID FOR CONTACTS
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN

If (NEW.CO_ID is null) then
NEW.CO_ID= GEN_ID(GEN_CONTACTS,1);

END

Actually, as will be obvious from the below, for a TDataset based approach as in Delphi,
the key field value needs to be retrieved in advance.

8 The Database-Driven contacts application

Even using the RAD approach to database applications, it is good practice to separate the
data code from the GUI code. Delphi provides for this using the TDatamodule: designed
to contain the data-access components. Even so, it will become apparent that typical GUI
elements will find their way into the data layer.

So, to program the contacts application, first a TDataModule instance is designed. This
datamodule contains the database connection, and datasets for all tables. Various com-
ponent sets can be used for this, in the example application, DBExpress will be used: a
TSQLConnection component will represent the connection to the database. TSimpleDataset
instances will be used for the various queries and tables; The naming scheme is simple:
SDCities for the Cities table, and so on.

For each table, a query equivalent to SELECT * FROM TABLENAME is generated. The
query for the addresses dataset (SDAddresses is a bit different. It looks as follows:

SELECT

*
FROM

ADDRESSES
WHERE

(AD_CONTACT_FK=:CO_ID)

Which will retrieve all addresses for a single contact person. The CO_ID is a parameter,
which makes it possible to use this dataset as a detail dataset in a master-detail relationship
- the master dataset being the list of contacts.

For each query, the persistent fields are created, plus some additional lookup fields. For
instance, for the CI_COUNTRY_FK field in the SDCities dataset field, a lookup field
is generated which is called CI_COUNTRY: it looks up the CN_NAME field in a lookup
dataset (SDSelectCountry, in this case), using the CI_COUNTRY_FK as a key field.

13

The reason for defining the lookup field is that Delphi ’knows’ how to display lookup
fields in a Data-Aware grid: Instead of showing the CI_COUNTRY_FK field in a grid -
which would be a meaningless number - the lookup field is shown in the grid: when a
lookup field is shown in a field, and it must be edited, then Delphi will present a dropdown
list filled with all possible values from the lookup dataset. The chosen value will be stored
in the original key field.

The same is done for the AD_TYPE_FK and AD_CITY_FK fields in the DSAddresses
dataset.

The AD_ID field (or any other key field) will be shown as Required in the Object inspec-
tor. This means that Delphi will verify that the field has a value, when the Post method
of TDataset is called. Delphi is clever enough to know that an autoincremental field
will get it’s field value from the database, but for Firebird, the ID field is a normal required
integer field: The dataset code will require a value - and Delphi has no way of knowing that
the value will be generated in the trigger, and will therefore complain that no ID value was
provided when the data is posted.

So, in the AfterInsertmethod of each dataset, a call similar to the following is inserted:

procedure TContactsDataModule.SDCountriesAfterInsert(DataSet: TDataSet);
begin

SDCountriesCN_ID.AsInteger:=GetID(’COUNTRIES’);
end;

Where the GetID method looks as follows:

function TContactsDataModule.GetID(TableName: String): Integer;

Const
SGen = ’SELECT GEN_ID(GEN_%s,1) as THEID FROM RDB$DATABASE’;

begin
With QGetID do

begin
SQL.Text:=Format(SGen,[TableName]);
Open;
try

If (EOF and BOF) then
Raise EContacts.CreateFmt(SErrNoID,[TableName]);

Result:=Fields[0].AsInteger;
Finally
end
end;

end;

The QGetID class is an instance of TSQLQuery, part of DBExpress. Now it becomes
obvious why the names of the generators in the database were chosen as GEN_ plus the
table name.

Since DBExpress is used, and TSimpleDataset is a client dataset, it’s Post method
saves the changes only locally: only the dataset contains the changes, the database does not
yet contain the changes. That is why in the AfterPost and AfterDelete events, the
ApplyUpdates call is issued:

procedure TContactsDataModule.DatasetAfterPost(
DataSet: TDataSet);

14

begin
(Dataset as TSimpleDataset).ApplyUpdates(0);

end;

This call will actually apply the changes to the database. Obviously, the changes could
be cached locally, and applied at a later time - one of the the advantages of using the
clientdataset technology.

After all the datasets have been created, the GUI of the application can be programmed.
For this, 5 forms are created:

MainForm this is the main form of the application. It shows the available contacts in
a (editable) data-aware grid, and shows a menu which allows to edit the ’system’
tables: address types, countries, cities.

CountriesForm this form allows to edit the countries table. It’s essentially a simple DB-
Grid and TDBNavigator component, connected to the SDCountries dataset on
the datamodule. The primary key field (CN_ID) is not shown in the grid - this will
be so for all grids.

AddressTypesForm this form allows to edit the address types. Again, it is simply a DB-
Grid and TDBNavigator component, this time connected to the SDAddressTypes
dataset on the datamodule.

CitiesForm this form allows to edit the cities table. Again it essentially a simple DBGrid
and TDBNavigator component, connected to the SDCities dataset on the data-
module. Here, care must be taken not to show the CI_COUNTRY_FK field is not
shown in the grid. Instead, the CI_COUNTRY lookup field must be shown.

AddressForm Here, the details of a contact are shown, as well as the addresses for this
contact person. The addresses are shown in a grid, and again the lookup fields for
type and city are shown instead of the actual foreign key fields.

With the exception of the address form, all secondary forms are shown modally. The ad-
dress form can be shown nonmodal - as the current contact record in the main form changes,
the details are refreshed in the detail form. To achieve this, the following code must be in-
serted in the AfterScroll event of the SDContacts dataset:

procedure TContactsDataModule.SDContactsAfterScroll(
DataSet: TDataSet);

Var
B : Boolean;

begin
With SDAddresses do

begin
B:=Active;
If B then

Close;
Params[0].AsInteger:=SDContactsCO_ID.AsInteger;
If B then

Open;
end;

end;

15

The menu item OnClick handlers to show the auxiliary forms are quite simple and
straightforward, they look for instance as follows:

procedure TMainForm.MICitiesClick(Sender: TObject);
begin

With TCitiesForm.Create(Self) do
try

ShowModal;
Finally

Free;
end;

end;

And with this, the whole application is coded.

As is obvious, not much code was needed to create a simple working database application
which manages 5 tables which are related through foreign keys: True RAD.

However, there are some points which must be noted:

1. While an effort was made to separate GUI and Data logic (a split between forms
and datamodules), the separation is not perfect: the lookup fields are defined in the
database part, while strictly speaking, they are only needed for the correct function-
ing of the GUI (the DBGrid).

2. Care must be taken that a value for the primary key is retrieved when a new record is
inserted.

3. After posting the data to the dataset, a second call is needed to apply the changes to
the database. This is a consequence of the use of the ClientDataset approach used in
the application. In the case of direct access to the database, this would not be needed.

4. Master-detail relationships between datasets are defined in function of the GUI: if a
different address screen had been designed, the relation would have been different.

None of these points are difficult or surprising, but they should be identified: they are all
consequenses of the chosen RAD approach to creating the database application. They will
be contrasted with the approach in object-oriented applications which use object persis-
tence.

The final application looks as in figure 6 on page 17

9 Conclusion

The basis for a series of articles comparing various Object Persistence frameworks has
been laid: The purpose of Object Persistence has been described, it’s workings have been
explained. A sample application has been defined. The various available Object Persis-
tence frameworks have been enumerated, and the Objects that will be needed have been
identified. A Database-driven implementation has been made to be able to contrast it with
the model-driven implementations. The stage for the subsequent articles has been set: In a
series of articles, some of the mentioned object persistence frameworks will be presented
and compared: at most one framework per article.

16

Figure 6: The finished contacts application

17

	Introduction
	Comparing traditional and model-driven programming
	Object Persistence: Some theory
	Mapping objects to relational databases
	Available Object Persistence frameworks
	A contact manager application: The objects
	The traditional RAD approach: The database
	The Database-Driven contacts application
	Conclusion

