Text selection and highlighting in a Pas2js PDF
viewer

Michaél Van Canneyt

December 10, 2023

Abstract

In previous articles we introduced a way to show a PDF in the browser,
and to search in a PDF. In this article we add a missing feature: highlighting
search results in the text and text selection.

1 Introduction

In a series of articles on PasJS we demonstrated how to show a PDF in the browser,
and how to search for a text in the shown PDF.

This can be done relatively easy using PDF.js, the Javascript PDF displaying library
by Mozilla. Later on we added the capability to search in a series of PDF's using a
server-side mechanism and an indexer written in Free Pascal. The result is the basis
for the Blaise Pascal Magazine library, a searchable library of articles published in
Blaise pascal magazine: a program that works both offline and online.

These demo programs had 2 drawbacks: The first drawback was that the search
mechanism was limited to finding the text and displaying the correct page in the
PDF. The second drawback was that it was impossible to select (and possibly copy)
text in the PDF.

Luckily, the PDF.js API contains some calls that solve both these problems. In
this article we show how to use one of these calls, thereby solving both problems at
once.

2 Ugrading PDF.js

Before diving in, a small detour is needed: In between the publication of the various
programs that show the workings of the PDF.js library, the library has changed in
a way that necessitates changes in the Pascal code and the HTML. These changes
are not extensive, but are necessary or your program will stop working - if it has
not already stopped working, which is likely if you used the online distribution of
PDF.js through some CDN.

Previously, the PDF.js library exposed a global variable pdf jsLib which was defined
in the programs as:

var
pdfjsLib : TPDFJSStatic; external name ’pdfjsLib’;

The PDF'.js library is now created as a Javascript module, similar to a dynamically
loadable library. The library filename extension was also changed to .mjs to reflect
this. As a result, the above variable is no longer defined if you load it as a regular
script, because the browser will refuse to load the script.

The solution is to load the library as a module: This simply means that you must
add a type attribute with the value module to the script tag that includes PDF.js,
for example as follows:

<script src="https://cdnjs.cloudflare.com/ajax/libs/pdf.js/4.0.269/pdf.mjs"
type="module">
</script>

Then the script will be correctly loaded and the global variable will be defined.

If you are using a private copy of the legacy build of PDF'.js, then there is no need
to change anything.

3 A selection and highlighting mechanism

The reason why the first versions of the PDF viewer did not allow highlighting and
selection is because basically, the PDF is rendered as a bitmap on a HT'ML canvas,
including the text. It should be clear that the drawn text bitmap cannot be selected
(unless using OCR), and that some other mechanism is needed.

Luckily, PDF.js offers a solution: it contains a mechanism to render the text ele-
ments of a PDF file as HT'ML, overlaid on the canvas. This HTML is styled so it is
completely transparent, and the user does not see it. But it is actual HTML that is
part of the HTML page’s DOM, and can be manipulated with the usual DOM and
CSS techniques. Additionally, when selecting something in the browser, the ’hid-
den’ html is taken into account: the ’selected’ pseudo-element will also work, and
can be styled: by changing the background color of the ’selected’ pseudo-element,
the selected text can be made visible.

This means that if we use the PDF.js API for rendering text, we have our text
selection mechanism.

Since the rendered HTML contains the actual text (but simply rendered invisibly),
it means that when we searched for a text and a page containing a match of the
text is displayed, we can traverse the created HTML and highlight matches in the
text.

In the below, we’ll show how to do this.

4 Allowing selection: Rendering page text as HTML.

The PDF.js API has 2 calls that create or update the HTML DOM with the text
of the PDF. Both are implemented using a background task, and they both return
an instance of this background task:

function renderTextLayer(params : TPDFJSRenderTextLayerParameters) : TPDFTextLayerRenderTask:
function updateTextLayer(params : TPDFJSUpdateTextLayerParameters) : TPDFTextLayerRenderTask:

The call that interests us is the RenderTextLayer task. It accepts the following
parameter object:

TPDFJSRenderTextLayerParameters = class

textContentSourceStream : TJSReadableStream; external name ’textContentSource’;

textContentSourceltems: TTextContent; external name ’textContentSource’;
container: TJSHTMLElement;
viewport : TPDFPageViewport;
isOffscreenCanvasSupported : Boolean;
textDivs : TJSHTMLElementArray;
textDivProperties : TJSMap;
textContentItemsStr : TStringDynArray;
end;

The first 5 fields in this class are input:

textContentSourceStream The text contents of the PDF as a stream.

textContentSourceltems The text contents of the PDF as returned by the getTextContent
call of the TPDFPageProxy object.

container The HTML element in which to render the text.
viewport The viewport using which the PDF was rendered.

isOffscreenCanvasSupported Set to True if the PDF layer can use an offscreen
canvas. (needed to determine text widths)

The last 3 fields of the class are output: they will be filled after the renderTextLayer
call did its work. Initially they should be set to empty arrays.

textDivs An array with the generated HTML elements;

textDivProperties an array with the properties needed to generate the HTML
elements.

textContentItemsStr The raw texts of the generated HTML elements.

We’ll demonstrate this call in the PDF search example we presented earlier. In that
example, the user could enter an URL or select a PDF file which would then be
shown, and which could be searched. As a reminder, figure [I| on page |4 shows what
the application looked like.

We’ll reuse and expand that example, the source code will of course again be avail-
able for you.

In order to use the renderTextLaye call, we need to add additional elements to
the HTML for our PDF viewer. Where previously we had the following HTML in
which the PDF was shown:

<div class="is-flex is-justify-content-center">
<canvas id="PDFCanvas" height="737" width="538"></canvas>
</div>

We now need an extra element that will be used to overlay the text (with ID
pdfTextLayer), and another one to carry an extra style parameter (with id pdfViewer):

<div class="is-flex is-justify-content-center">
<div id="pdfViewer" style="position: relative">
<div class="canvaswrapper" >

Figure 1: The PDF viewer in action

View PDF file: sample.pdf x +

C @ e O 0O 127004 v | | Q Search &,

VIEW PDF: SAMPLE.PDF

1 Load PDF..

m a0

BLAISE PASCAL «» MAGAZINE10

M

<canvas id="PDFCanvas" height="737" width="538"></canvas>
<div>
<div id="pdfTextlayer" class="textLayer">
</div>
</div>
</div>

The 2 IDs will be bound to 2 variables in our program:

TMyApplication = class(TBrowserApplication)
divpdfViewer,
FTextlayer,
1blFileLocation,
1blZoom : TJSHTMLElement;
/...

end;

The rendering of a page of the PDF document was done in the RenderPage method
of our program: in this method, the GetPage call is used to retrieve a proxy object
for a PDF page, and the render method is used to actuall render the page in the
canvas:

procedure TMyApplication.renderPage(aNum: Integer);
function renderOK(aValue : JSValue) : JSValue;

Var
N : Integer;

begin
FPageRendering:=false;
if (FPageNumPending <> -1) then
begin
N:=FPageNumPending;
FpageNumPending:=-1;

renderPage (N) ;
end;
Result:=True;

end;
function havePage (aValue : JSValue) : JSValue;

var
page : TPDFPageProxy absolute aValue;
viewport : TPDFPageViewport;
renderContext: TPDFRenderParams;
renderTask : TPDFRenderTask;
viewportParams : TViewportParameters;

begin
viewportParams:=TViewportParameters.new;
viewportParams.scale:=FScale;
viewport:=page.getViewport(viewportParams) ;
Fcanvas.height := viewport.height;

Fcanvas.width := viewport.width;
renderContext :=TPDFRenderParams.New;
renderContext.canvasContext:=Fctx;
renderContext.viewport:=viewport;
renderTask:=page.render (renderContext) ;
renderTask.promise.&then(@render0k) ;
Result:=True;

end;

begin
FpageRendering:=True;
pdfDoc.getPage (aNum) . &then (@HavePage) ;
edtPageNo.Value:=IntToStr (anum) ;

end;

As you can see in the code of the havePage routine, the parameters for the PDF
page render task are the same as the ones for the RenderTextLayer call. It makes
therefore sense to put them in a record which is declared in our application class:

TCurrentPageInfo = record
page : TPDFPageProxy;
viewport : TPDFPageViewport;
renderContext: TPDFRenderParams;
renderTask : TPDFRenderTask;
viewportParams : TViewportParameters;
end;

TMyApplication = class(TBrowserApplication)
divpdfViewer,
FTextlayer,
1blFilelLocation,
1blZoom : TJSHTMLElement;
FCurrentPageInfo : TCurrentPageInfo;
/..

end;

We now can rewrite the havePage procedure so it uses the newly introduces record
to store the information needed to render the page

function havePage (aValue : JSValue) : JSValue;

var
page : TPDFPageProxy absolute aValue;

begin
FCurrentPageInfo.Page:=page;
FCurrentPageInfo.viewportParams:=TViewportParameters.new;
FCurrentPageInfo.viewportParams.scale:=FScale;
FCurrentPageInfo.viewport:=page.getViewport (FCurrentPageInfo.viewportParams) ;
Fcanvas.height := FCurrentPagelnfo.viewport.height;
Fcanvas.width := FCurrentPagelInfo.viewport.width;
FCurrentPageInfo.renderContext:=TPDFRenderParams.New;
FCurrentPageInfo.renderContext.canvasContext:=Fctx;
FCurrentPageInfo.renderContext.viewport:=FCurrentPageInfo.viewport;

FCurrentPageInfo.renderTask:=page.render (FCurrentPageInfo.renderContext) ;
FCurrentPageInfo.renderTask.promise.&then(@render0K) ;
Result:=True;

end;

When the rendering is done, the Render0OK procedure is called, and there we can now
add the necessary code to render the text. We start by getting the actual text using
the getTextContent call. The observing reader will note that the getTextContent
call is the same call that was used to retrieve the PDF text to search in the PDF.

The renderOK call then becomes:
function renderOK(aValue : JSValue) : JSValue;

Var
N : Integer;

begin
FPageRendering:=false;
if (FPageNumPending <> -1) then
begin
N:=FPageNumPending;
FpageNumPending:=-1;
renderPage (N) ;
end;
Result:=True;
FCurrentPageInfo.page.getTextContent () .&Then(@RenderText) ;
divpdfViewer.style.setProperty(’--scale-factor’,FloatToStr(FScale))
end;

The pdfViewer element gets a style property that sets a scale-factor CSS vari-
able: this variable is needed by the CSS that is generated by PDF.js.

The value of the variable is set to the current scale used to draw the PDF. Forgetting
to set it (or setting it to a wrong value) will result in HTML that is not properly
positioned over the PDF image.

When the text is retrieved, the RenderText callback which we supplied to the
Javascript Promise object returned by getTextContent, will be called.

The callback simply prepares the arguments for the RenderTextLayer API call,
using the FCurrentPageInfo and the result of the promise:

Function TMyApplication.RenderText(aValue: JSValue) : JSValue;

Var
aContent : TTextContent absolute aValue;
aTextRender : TPDFJSRenderTextLayerParameters;

begin
FTextlayer.InnerHTML:=’";
aTextRender:=TPDFJSRenderTextLayerParameters.New;
aTextRender.container:=FTextlayer;
aTextRender.isOffscreenCanvasSupported:=true;
aTextRender.textContentSourceltems:=aContent;
aTextRender.viewPort:=FCurrentPageInfo.viewport;
pdfjsLib.renderTextLayer (aTextRender) .promise.&then(@TextDone) ;

Figure 2: Selection in the PDF viewer in action

VIEW PDF: SAMPLE.PDF

mo~ O a8 B

BLAISE PASCAL «» MAGAZINE10

Muti platior

The semantic web3

Im;
Rounding numbsr

end;

With the above code in place, the capability to select and copy text is almost there:
the necessary HTML is generated and positioned on the correct place in the HTML
page. What is missing is some CSS that is required by the generated HTML. The
interested reader can find it in the viewer.css file, which we include in the HTML
page with a simple 1ink HTML element:

<link rel="stylesheet" href="viewer.css">

The result of all this can be seen in figure [2[on page [8} some text (over multiple
lines) is selected in the overview of articles. If the scale of the PDF is changed, then
the PDF is re-rendered, and the text is re rendered as well: Since the scale CSS
variable is set before rendering, the 2 will always be in sync.

5 Highlighting search matches

What is still missing is the highlighting of search results once a page has been ren-
dered as a result of a search operation. Adding this functionality is not so difficult:
In the TextDone callback to the renderTextLayer call, we have the opportunity to
do so.

Looking at the generated HTML by PDF.js, we can see that it is simply a flat
series of span HTML elements with some positioning applied: the span elements
only contain text. To highlight the text, we can simply loop over the span elements
and check if the span contains the text. Basically, this is the same loop as done in

the search algorithm, the difference is that now we loop over the generated HTML
instead of the structures returned by the getTextContent call.

The following code checks whether a search was performed. If not, it exits at once.
If a search was performed, it prepares the regular expression used for the search,
and loops over all span tags, calling Highlight for every span element:

Function TMyApplication.TextDone(aValue: JSValue) : JSValue;

var
El : TJSELement;
aRegex : TJSRegExp;
aReg,aTerm : String;

begin
aTerm:=edtSearch.Value;
if aTerm=’’ then exit;

aReg:=Format(’%s’, [aTerm]) ;
aRegEx :=TJSRegExp.New(aReg, 'gi’);
El:=FTextlayer.firstElementChild;
While Assigned(El) do
begin
if (el is TJSHTMLElement) and SameText(El.tagName,’span’) then
HighLight (TJSHTMLElement (E1) , aRegex) ;
El:=El.nextElementSibling;
end;
end;

In the highlight routine, we modify the inner HTML of the span element. If a
match (or multiple matches) is found, then we surround the match with a new span
element which we give a ’highlight’ CSS class: For example, if the search text is
‘integer’ then the following span element:

An integer square root algorithm
becomes
An integer</var> square root algorithm

The ’highlight’ class is picked up by the CSS to color the text background in a
transparant way, and the text in the canvas below will appear as highlighted.

This mechanism can be coded as follows: It is in fact a simple loop using the regular
expression: as long as the reguar expression finds a match, the text between the
match and the end of the previous match is added to the span element as-is, and
then the matched text is added embedded in a new span element. If there are no
more matches, the routine appends the remaining text.

Procedure TMyApplication.HighLight(El : TJSHTMLElement; aRegex : TJSRegexp) ;

Var
S,aText,aleft : String;
Matches : TStringDynArray;
aLast : Integer;
aSpan : TJSHTMLElement;

begin

aText:=El.innerText;

Matches:=aRegex.exec(aText) ;

alast:=1;

// We exit at once if there is nothing to do.

if not Assigned(Matches) then
exit;

// Clear the HTML

EL.InnerHTML:=’";

While Assigned(Matches) do
begin
// Add preceding text
S:=Copy(aText,alast,aRegex.lastIndex-Length(Matches[0]));
// Create span.
El.AppendChild(document.createTextNode(S));
aSpan:=TJSHTMLElement (document .createElement (’span’));
aSpan.InnerText:=Matches[0];
aSpan.className:=’highlight’;
El.AppendChild(aSpan) ;
// Search again.
aLast:=aRegex.LastIndex+1;
Matches:=aRegex.exec(El.innerText) ;
end;

// Append last text.

if alast<length(aText) then
begin
S:=Copy(aText,alast,Length(aText)-aRegex.lastIndex) ;
El.AppendChild(document .createTextNode(S));
end;

end;

With this, the highlighting is complete. The result can be seen in figure [3| on page
18l

6 Conclusion

Adding a text layer to the PDF.js viewer allows to implement selection and copy-
and-paste operations out of the box. As shown in this article, it can also be used
to implement in a rather straightforward manner the highlighting of search terms
on a page. The mechanism is not perfect, as the PDF text will sometimes be split
into different PDF elements (for exaple when formatting changes): The HTML will
consequently be split over HTML tags. For common situations the mechanism is
perfectly suitable.

10

Figure 3: Result highlighting in the PDF viewer in action
VIEW PDF: SAMPLE.PDF

Y | -8 -

Search results

L«r» MAGAZINE10

Page 1:
B and factorisingAn integer cube
root algorithmPseudo ran

Page 2:

t Page 69By Detlef OverbeekAn
integer square root algorithm
Page 30

Page 2:

sing Page 33By David DirkseAn
integer cube root algorithm Page
36By

Page 14:
E tdll = 'wininet.dll'varLen : integer
,Buffer. PChar,beginLen := For

Page 30:

se Pascal Magazine 109 2023AN
integer SQUARE ROOT
ALGORITHM ARTICLE

Page 30:
has operatorsdiv and mod for

11

	Introduction
	Ugrading PDF.js
	A selection and highlighting mechanism
	Allowing selection: Rendering page text as HTML.
	Highlighting search matches
	Conclusion

