
Blaise Pascal Magazine Library

Michaël Van Canneyt

June 7, 2023

Abstract

Blaise Pascal Magazine offers subscribers a library : a collection of all issues
available till now. In this article we show how the PDF indexer application
presented in the previous articles about indexing PDF files will be used to
rewrite and enhance the Blaise Pascal Magazine library.

1 Introduction

In several earlier contributions, we showed how to show a PDF file in an offline
Pas2JS application, and how to index PDF files and use that index to search and
download PDF files. In this article, we’ll show how to combine all these techniques
to rewrite the Blaise Pascal Magazine library as a Pas2js application that works
both offline and online.

The new edition of the Blaise Pascal Magazine library will need to have the following
features:

� It must work as a local application, distributed on a USB stick.

� It must work as a web application, deployed on the Blaise Pascal Magazine
website.

� When working locally, issues must be loaded from the local disk: usually a
USB.

� The issues must be searchable.

� When working locally, and no internet connection is available, then a (lim-
ited) search must be performed locally in the list of articles. if an internet
connection is available, the application must be able to search globally and
download a PDF if needed.

� PDF Downloads are limited to the downloads purchased by the magazine
subscriber.

� The user can enter an issue number, and the first page of the issue will be
displayed.

All of the techniques needed to satisfy these requirements have been presented in
previous articles. In this article we bring everything together: this will require some
refactoring of the code presented in the previous articles.

Since we’ll be needing a server part and a client part, we’ll start by discussing the
code changes needed on the server.

1

2 Adding security to the server

In previous articles about indexing PDF files, we implemented a simple mechanism
to download issues from the server in addition to the search mechanism and word
list mechanism. Any issues could be downloaded from the server. This needs to be
modified so the user can only download what he has subscribed for.

This means we need to add a login mechanism: the server needs to know who is
attempting to download an issue. We’ll also need a mechanism to determine what
issues a user is allowed to download. In order to implement this, we need to extend
the database with this information.

First, we’ll need a list of users: a table with at least a username and a password.
The SQL to create such a table (let’s name it users)can for example look like this
in Postgres:

create sequence seq_users;

create table users (

u_id bigint not null default nextval(’seq_users’),

u_firstname varchar(50) NOT NULL,

u_lastname varchar(50) NOT NULL,

u_login varchar(127) not null,

u_password varchar(127) not null,

constraint pk_users primary key (u_id)

);

create unique index udx_users on users (u_login);

The fieldnames speak for themselves, and the index is there to make sure every
login is unique.

Similarly, we’ll need a table with all available issues. We could take the articles table
presented in the previous articles, but every issue occurs more than once in that
table, so it is difficult to create a foreign key on this table for referential integrity.

Instead, we create a new table, aptly named issues:

create sequence seq_issues;

create table issues (

i_id bigint not null default nextval(’seq_issues’),

i_issue varchar(10) NOT NULL,

i_filename varchar(127) NOT NULL,

constraint pk_issues primary key (i_id)

);

The i issue field is not a number to accomodate for double issues, so we can
support a notation as 81 82 for the combined issues 81 and 82.

To know which issues a given user can access, we need a third table (named
userissues):

create sequence seq_userissues;

create table userissues (

ui_id bigint not null default nextval(’seq_userissues’),

ui_user_fk bigint NOT NULL,

2

ui_issue_fk bigint NOT NULL,

constraint pk_userissues primary key (ui_id)

);

For each user and each issue that user can access, a record is inserted in this table,
with a link to the users table and issues table.

For referential integrity, we enforce a foreign key to these tables;

alter table userissues add constraint fk_userissues_users

foreign key (ui_user_fk) references users(u_id) on delete cascade;

alter table userissues add constraint fk_userissues_issues

foreign key (ui_issue_fk) references issues(i_id) on delete cascade;

Additionally, we make sure there is only one record for each user - issue combination.

create unique index udx_userissue on userissues (ui_user_fk,ui_issue_fk);

Armed with these tables, we can now implement some security mechanisms. We
will not describe how data gets into these tables: we’ll assume the tables have been
filled through some external mechanism, through some link with the subscription
system.

The first thing is to implement a kind of login routine: we implement a simple
HTTP endpoint which receives a JSON with a username and password (this is not
a JSON-RPC mechanism):

{

"username": "michael",

"password": "verysecret"

}

The server will respond with a token (a simple GUID) :

{

"token" : "{F5A07A5B-5184-4256-8EE6-20E2DE987AF5}",

"expires" : "2023-06-03T17:12:09.489Z"

}

This token can be passed to the server when a PDF is downloaded: the server will
then verify this token and allow the download if it is valid.

The tokens are also stored in the database, in a table called tokens:

create sequence seqTokens;

CREATE TABLE tokens

(

tk_id bigint NOT NULL DEFAULT nextval(’seqTokens’::regclass),

tk_token character varying(38) NOT NULL

DEFAULT (upper(((’{’::text || uuid_generate_v4()) || ’}’::text)))::character varying(38),

tk_user_fk bigint NOT NULL,

tk_expires_on timestamp without time zone NOT NULL

DEFAULT (now() + ’00:30:00’::interval),

CONSTRAINT pktokens PRIMARY KEY (tk_id)

3

);

create index idx_token_expires on tokens(tk_expires_on);

create unique index udx_tokens on tokens(tk_token);

The tk expires on is by default filled with a timestamp 30 minutes from the time
of insert of the record. In effect, the token will be valid for 30 minutes.

The uuid generate v4 function is part of a Postgres extension and generates a
GUID, which will serve as our unique session token. The extension needs to be
activated with the following SQL statement:

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

To implement this scheme, we create a new class TSessionManager:

TSessionManager = Class(TComponent)

Public

constructor Create(aOwner : TComponent); override;

destructor destroy; override;

// Public API

Procedure GetToken(aRequest : TRequest; aResponse : TResponse);

Function CheckToken(const aToken : string) : int64;

function CheckFileAllowed(aUserID : int64; const aFileName : string) : Boolean;

Property DB : TSQLConnection Read FDB Write FDB;

end;

The GetToken call is registered as the handler for the /token login during applica-
tion startup:

aSession:=TSessionmanager.Create(Nil);

aSession.DB:=aSearch.Connection;

HTTPRouter.RegisterRoute(’/token’,@aSession.GetToken,False);

The DB property is the SQL connection used by the search class: it was set up in
code of the previous articles and is simply reused here.

The GetToken call is pretty straightforward. It starts with checking for a CORS

request, in a similar manner to the way it was done in the PDF file download in
the previous article. This is needed, because when the client application is started
from a local disk, the origin differs from the server.

When the CORS request indicates that all is well, the code starts by decoding
the request payload as a JSON structure. If something goes wrong then the
ReportInvalidParam routine is used to report a HTTP 400 return code. If the
JSON is decoded correctly, the username and password are extracted. Again a
check is done to see if values have been passed for both username and password. If
not a HTTP 400 error is again reports:

procedure TSessionManager.GetToken(aRequest: TRequest; aResponse: TResponse);

Var

Req,Resp : TJSONData;

Obj : TJSONObject absolute Req;

token,UserName,UserPW : String;

aExpiresOn : TDatetime;

4

begin

if FCors.HandleRequest(aRequest,aResponse,[hcDetect,hcSend]) then exit;

Req:=Nil;

Resp:=Nil;

try

Req:=GetJSON(aRequest.Content);

if not (Req is TJSONObject) then

ReportInvalidParam(aResponse)

else

begin

userName:=Obj.Get(’username’,’’);

userPW:=Obj.Get(’password’,’’);

if (UserName=’’) or (userPW=’’) then

ReportInvalidParam(aResponse)

else

begin

token:=ValidateUser(UserName,UserPW,aExpiresOn);

if Token=’’ then

ReportForbidden(aResponse)

else

begin

Resp:=TJSONObject.Create([

’token’,token,

’expires’,DateToISO8601(aExpiresOn)

]);

SendJSON(aResponse,200,’OK’,Resp);

end;

end;

end;

except

on E : Exception do

ReportException(aResponse,E);

end;

Resp.Free;

Req.Free;

end;

The username and password are validated using the ValidateUser call: it will
return a token if the username/password pair was valid. If the token is empty, it
means the combination was not valid and an error is reported. Lastly, if we received
a token and expiration date, we send both back to the client in a JSON structure
using SendJSON:

procedure TSessionManager.SendJSON(aResponse : TResponse;aCode : Integer; aText : String; aJSON : TJSONData);

begin

if aResponse.ContentSent then

exit;

aResponse.Code:=aCode;

aResponse.CodeText:=aText;

aResponse.ContentType:=’application/json’;

aResponse.Content:=aJSON.FormatJSON();

aResponse.SendContent;

5

end;

The same SendJSON method is used in e.g. the ReportInvalidParam method:

procedure TSessionManager.ReportInvalidparam(aResponse: TResponse);

Var

J : TJSONObject;

begin

J:=TJSONObject.Create([’message’,’need username/password’]);

try

SendJSON(aResponse,400,’INVALID PARAM’,J);

finally

J.Free;

end;

end;

The ValidateUser method is again very straightforward: the only noteworthy thing
is that the password is stored encrypted in the database.

We use the native Postgres database cryptographic mechanisms for this: the crypt

function encrypts a value using a salt, and the same function can be used to insert
the data.

The crypto functionality must be enabled with the following SQL statement:

CREATE EXTENSION pgcrypto;

Using this function, the SQL statement to verify a user password is as follows:

SELECT

U_password=crypt(:password,U_password) as PasswordOK, *

from

Users

where

(U_login=:login);

If the user login is not found, the query will return no records. If the user is found,
then there will be a single record (because the login is unique), and the PasswordOK
field will be True if the password passed in parameter:password matches the one
stored in the database, and it will be False if not.

Using this SQL statement we can easily create the ValidateUser call. It starts out
by creating a database transaction: every operation is done in its own transaction.
After the transaction is created, it is used to create a TSQLQuery dataset and run the
SQL statement (The CreateTransaction and CreateQuery) functions are trivial
and will not be presented here):

function TSessionManager.ValidateUser(

const aUser, aPassword: String;

out aExpires: TDateTime): String;

Const

SQLSelectUser =

’SELECT U_password=crypt(:password,U_password) as PasswordOK,*’ +

’from Users ’+

6

’ where (U_login=:login)’;

Var

Tr : TSQLTransaction;

Qry : TSQLQuery;

Res,OK : Boolean;

aID : Int64;

begin

OK:=False;

Result:=’’;

qry:=Nil;

Tr:=CreateTransaction;

try

Qry:=CreateQuery(SQLSelectUser,[’LOGIN’,aUser,’PASSWORD’,aPassword],Tr);

Qry.Open;

// If we have a user and the password matches

Res:=(Not Qry.IsEmpty) and (Qry.FieldByName(’PasswordOK’).AsBoolean);

aID:=Qry.FieldByName(’u_id’).AsLargeInt;

if Res then

// We get a token

Result:=CreateToken(aID,aExpires,Qry.SQLTransaction);

Tr.Commit;

OK:=True;

finally

if not OK then

Tr.Rollback;

ReleaseQuery(Qry,Tr);

end;

end;

If the user is verified, then the user ID and transaction are passed to CreateToken,
which will create a new token. Note that the token is created in the same transac-
tion:

The CreateToken function is again quite simple, it makes use of the fact that the
’default’ values in the table column definitions create usable values, and simply
returns the values created by Postgres.

function TSessionManager.CreateToken(aUser: Int64;

out Expires: TDateTime;

aTransaction : TSQLTransaction): String;

Const

SQLInsert =

’insert into tokens (tk_user_fk) values (:USER) ’ +

’returning tk_token, tk_expires_on;’;

Var

Qry : TSQLQuery;

OK : Boolean;

begin

OK:=False;

Qry:=CreateQuery(SQLInsert,[’USER’,aUser],aTransaction);

7

try

Qry.Open;

if Qry.IsEmpty then

DatabaseError(SErrFailedToCreateToken, self);

Result:=Qry.FieldByName(’tk_token’).AsString;

Expires:=Qry.FieldByName(’tk_expires_on’).AsDateTime;

OK:=True;

finally

if Not OK then

Qry.SQLTransaction.RollBack;

ReleaseQuery(Qry);

end;

end;

With these routines we have created a HTTP endpoint that can be used in the
application to ask for a token.

3 Securing the download

When the user wants to downloads a PDF file, the token must be supplied so the
server can verify who is making the download, and whether the user is allowed to
download the requested PDF file. The token can be specified in one of 2 ways:

� As a URL query parameter, called ’token’:

http://localhost:3010/pdf/BlaisePascalMagazine_61_UK.pdf?token=%7BF5A07A5B-5184-4256-8EE6-20E2DE987AF5%7D

� As a HTTP header, called ’X-Access-Token’:

X-Access-Token: {F5A07A5B-5184-4256-8EE6-20E2DE987AF5}

This means we must adopt the download module so it first checks the token, and
then checks if the user that owns the token can download the file. The change is
trivial:

procedure TCorsFileModule.HandleRequest(ARequest: TRequest; AResponse: TResponse

);

begin

Cors.Enabled:=true;

if Cors.HandleRequest(aRequest,aResponse) then exit;

if not CheckToken(aRequest,aResponse) then exit;

inherited HandleRequest(ARequest, AResponse);

end;

The CheckToken function does the actual work. It uses the CheckToken function
from the TSessionManager class to verify the token. If the token is OK, the user
ID is returned, if the token is not OK, -1 is returned.

The returned user ID is then used to check if the user is allowed to download the
requested PDF (the GetRequestFileName function is a method of the file download
datamodule that comes with FPC):

function TCorsFileModule.CheckToken(

8

ARequest: TRequest;

AResponse: TResponse): Boolean;

var

aToken,aFileName : String;

aID : int64;

begin

// Check URL parameter and HTTP header for token.

aToken:=aRequest.QueryFields.Values[’token’];

if aToken=’’ then

aToken:=aRequest.CustomHeaders.Values[’x-access-token’];

Result:=(aToken<>’’);

if Result then

begin

// Check token in database

aID:=aSession.CheckToken(aToken);

Result:=aID<>-1;

if Result then

begin

// Get requested filename.

aFileName:=ExtractFileName(GetRequestFileName(aRequest));

// Check if user is allowed to download this file.

Result:=aSession.CheckFileAllowed(aID,aFileName)

end;

end;

if not Result then

begin

aResponse.Code:=403;

aResponse.CodeText:=’FORBIDDEN’;

aResponse.SendContent;

end;

end;

Note that if the token is invalid, or the user is not allowed to download the PDF, a
403 FORBIDDEN HTTP return code is sent to the browser.

The CheckToken function of the session manager does the actual check of the token.
It is again quite simple:

function TSessionManager.CheckToken(const aToken: string): int64;

const

SQLSelect = ’select tk_user_fk,tk_expires_on from tokens where (tk_token=:token)’;

var

Tr : TSQLTransaction;

Qry : TSQLQuery;

OK : Boolean;

begin

OK:=False;

Qry:=nil;

Result:=-1;

TR:=CreateTransaction;

9

try

Qry:=CreateQuery(SQLSelect,[’token’,aToken],Tr);

Qry.Open;

if Not Qry.IsEmpty

and (Qry.FieldByName(’tk_expires_on’).asDateTime>Now) then

Result:=Qry.FieldByName(’tk_user_fk’).asLargeInt;

if Result<>-1 then

UpdateToken(aToken,Tr);

finally

if not OK then TR.Rollback;

ReleaseQuery(Qry,Tr);

end;

end;

If the token has not expired, it is extended with 30 minutes using the UpdateToken:

function TSessionManager.UpdateToken(

const aToken: String;

aTrans: TSQLTransaction): TDateTime;

Const

SQLUpdate =

’update tokens set ’ +

’ tk_expires_on = clock_timestamp() + interval ’’30 minutes’’ ’+

’ where (tk_token=:TOKEN) returning tk_vervalt_op;’;

Var

Qry : TSQLQuery;

begin

Qry:=CreateQuery(SQLUpdate,[’TOKEN’,aToken],aTrans);

try

Qry.Open;

if not Qry.IsEmpty then

Result:=Qry.Fields[0].AsDateTime

else

Result:=0;

finally

ReleaseQuery(Qry);

end;

end;

This is to avoid that the user needs to login every 30 minutes, but after more than
30 minutes of inactivity, the token does expire. The above mechanism is a simple
one, in practice, more advanced strategies can be used.

Lastly, the CheckFileAllowed call is used to check whether the user is entitled to
download the requested PDF file. This is done using the userissues table: if a
record is present for the requested issue and user, the user is allowed to download
the pdf. The check is then very simple:

function TSessionManager.CheckFileAllowed(aUserID: int64;

const aFileName: string): Boolean;

Const

10

SQLSelect =

’select ’+

’ ui_id ’+

’from ’+

’ userissues ’+

’ inner join issues on (i_id=ui_issue_fk) ’+

’where ’+

’ (i_filename=:filename) ’+

’ and (ui_user_fk=:uid)’;

var

Tr : TSQLTransaction;

Qry : TSQLQuery;

begin

Tr:=CreateTransaction;

try

Qry:=CreateQuery(SQLSelect,[

’uid’,aUserID,

’filename’,lowercase(aFileName)],Tr);

Qry.Open;

Result:=Not Qry.IsEmpty;

finally

ReleaseQuery(Qry,Tr);

end;

end;

4 Allowing to download an issue by number

One of the requirements was that the user can download and view an issue by
entering the number of the issue. To map this to a PDF filename, a routine is
needed that checks the issues table and returns the corresponding filename. To
implement this, when the application needs to show an issue, we’ll let it download
a PDF with a special URL:

http://localhost:3010/issue/45

In the above URL, the number 45 must be replaced with the actual issue.

To code this on the server, we must implement a handler for the above URL. We
register it with the HTTP router as follows:

HTTPRouter.RegisterRoute(’/issue/:Issue’,@IssueToPDF);

The IssueToPDF is a simple routine. The search mechanism has the list of articles
in an issue in an array in memory. This list can be accessed to retrieve the filename
of the issue.

When a filename is found, instead of sending the file, a redirect response is sent to
the browser with the ’normal’ pdf download location: The redirect response means
a 307 HTTP return code is sent, and the location of the PDF is returned in the
Location HTTP header.

The server response will be something like this:

11

HTTP/1.1 307 Temporary Redirect

Location: /pdf/BlaisePascalMagazine_45_46_UK.pdf

Upon receiving the 307 return code, the browser will immediatly do a second request
to the new location. To the user, this is transparant.

To code this is quite simple:

Procedure IssueToPDF(ARequest: TRequest; AResponse: TResponse);

var

Cors : TCORSSupport;

PDF : String;

begin

Cors:=TCORSSupport.Create;

try

Cors.Enabled:=true;

if Cors.HandleRequest(aRequest,aResponse) then exit;

finally

Cors.Free;

end;

PDF:=aSearch.IssueToPDF(aRequest.RouteParams[’Issue’]);

if (PDF<>’’) then

aResponse.SendRedirect(’/pdf/’+PDF)

else

begin

aResponse.Code:=404;

aResponse.CodeText:=’Not Found’;

end;

aResponse.SendContent;

end;

With this, we have completed the extension of the server. We can now turn to the
changes in the client (pas2js) application.

5 Searching in the client

In the previous articles where searching through a PDF in a browser application
was handled, 3 mechanisms have been treated, where a search was performed in 3
different locations:

1. In the displayed PDF, using the mechanisms provided by the pdf.js package
in the browser.

2. In a list of articles, using an in-memory copy of the list of articles.

3. In a database built with a PDF indexer.

If our application should be able to work online and offline, we must consider if each
of the mechanisms is usable: Searching in the displayed PDF is of course always
possible. When offline, the search in the database is unavailable, and the best we
can do is replace it transparently by a search in the list of articles.

12

In order to do so, we need to adapt the search mechanism: in our last iteration of
the PDF application, the search algorithms (PDF and database) were handled by
the TPDFSearchControl. We now need to add the search in the list of articles (as
demonstrated in the first article about showing a PDF) to this class.

To keep the code simple, we’ll split out the search mechanisms in separate classes.
The TPDFSearchControl will then, depending on the user setting and the on-
line/offline status of the browser, select a search mechanism.

The 3 search classes are responsible for searching and displaying the results below
a given HTML tag. When the user selects a result, a special event is triggered with
enough information to show the selected result. The TPDFSearchControl will then
do what is necessary to display the PDF and jump to the page containing the result.

The search class is also responsible for returning a list of words for auto-completion
in the search box: the mechanism that was built to search the indexed database
has an implementation. For the list of articles, a list of words can be built on the
fly, and a list of words in the current PDF can also be constructed.

Since the three mechanisms need to perform the same functions, we define the
following interface to encapsulate the requirements:

TPageInfo = record

Issue, Title, FileName : String;

Page: Integer;

useIssue : Boolean;

end;

TShowPDFPageEvent = procedure(aPage : TPageInfo) of object;

TWordListCallBack = reference to procedure(List : TStrings);

{ ISearchEngine }

ISearchEngine = Interface

// Property getters & setters

function GetOnShowResultPanel: TNotifyEvent;

procedure SetOnShowResultPanel(AValue: TNotifyEvent);

Procedure SetResultsElement(aValue : TJSHTMLElement);

Function GetResultsElement : TJSHTMLElement;

Procedure SetShowPageEvent(aValue : TShowPDFPageEvent);

function GetShowPageEvent : TShowPDFPageEvent;

// Actual interface

Procedure Search(const aTerm : string; const aIssue : String);

procedure GetWordList(aTerm : string; aOnResults : TWordListCallBack);

// Easy access using properties

Property ResultsElement : TJSHTMLElement Read GetResultsElement Write SetResultsElement;

Property ShowPDFPageEvent : TShowPDFPageEvent Read GetShowPageEvent Write SetShowPageEvent;

Property OnShowResultPanel : TNotifyEvent Read GetOnShowResultPanel Write SetOnShowResultPanel;

end;

The Search call will display the list of found occurrences of the search term below
ResultsElement. The OnShowResultPanel event can be used to notify the caller
that there were results, and that the result element needs to be shown (the result
panel is by default closed, it needs to be opened when results are available).

When the user clicks a result, the ShowPDFPageEvent event is triggered with a
TPageInfo record: this record contains enough information to download a PDF if

13

needed, and jump to the correct page.

The GetWordList method is also clear: it needs to show a list of words. When a
word list is available the aOnResults callback is called, passing it the list of words.
A callback must be used, since the search can be asynchronous: consulting the
database on the server is an asynchonous call.

In the previous iteration of the PDF viewing and indexing application, the TPDFSearchControl
contained 2 search mechanisms. We’ll factor these out into their own classes, so we’ll
have 4 classes that work together to implement the search functionality. The first
3 classes are just a refactoring of the existing classes.

TPDFSearchControl This will just handle the search mechanism’s UI: it man-
aged the edit and search buttons, shows the word list for completion and
shows or hides the results panel. The actual search is handled by the other 3
components. When a PDF must be shown, an event handler is called.

TServerSearch Implements the above interface using the server search mechanism
discussed in the previous article.

TPDFSearch Implements the above interface for searching in the displayed PDF.
It uses the PDF search mechanism discussed in the first article in this series.

TArticleSearcher Implements the above interface using a search mechanism in a
list of articles which is included in the application when it is loaded from disk.

When the TPDFSearchControl class is created, it creates instances of the 3 search
mechanisms:

constructor TPDFSearchControl.Create(aOwner: TComponent);

begin

Inherited;

FLocalsearch:=TArticleSearcher.Create(Self);

FServerSearch:=TServerSearch.Create(Self);

FSearch:=TPDFSearch.Create(Self);

end;

And it initializes them in its BindElements method:

procedure TPDFSearchControl.BindElements;

begin

// ... other code...

PrepareEngines(True);

end;

procedure TPDFSearchControl.PrepareEngines(Full : boolean);

begin

PrepareEngine(FLocalsearch as ISearchEngine,Full);

PrepareEngine(FServerSearch as ISearchEngine,Full);

PrepareEngine(FSearch as ISearchEngine,Full);

end;

procedure TPDFSearchControl.PrepareEngine(aEngine : ISearchEngine; Full : Boolean);

14

begin

aEngine.ShowPDFPageEvent:=FOnShowPDFPage;

if Full then

begin

aEngine.OnShowResultPanel:=@HandleShowResultPanel;

aEngine.ResultsElement:=pnlResults;

end;

end;

The PrepareEngine is called for all 3 searchengines: it will initialize the relevant
properties so the classes can do their work. the FOnShowPDFPage is an event handler
that is set by the main application class: the main application class is responsible
for loading a PDF file.

The ’click’ event handler of the search button in TPDFSearchControl now becomes
quite simple:

procedure TPDFSearchControl.onSearch(aEvent: TJSEvent);

var

aterm : string;

begin

aterm:=SearchTerm;

if Length(aTerm)<=1 then

exit;

CurrentSearchEngine.Search(aTerm,FIssueFilter);

end;

The CurrentSearchEngine property returns an ISearchEngine interface. The get-
ter of this property decides which search engine to return based on the PDFSearch

property (basically the value of the ’Search PDF’ checkbox) and a property OffLine

:

function TPDFSearchControl.GetSearchEngine: ISearchEngine;

begin

if PDFSearch then

Result:=FSearch as ISearchEngine

else if OffLine then

Result:=FLocalsearch as ISearchEngine

else

Result:=FServerSearch as ISearchEngine;

end;

The OffLine property is determined by the online or offline status of the navigator.
It is determined during startup of the application, and is maintained during the
lifetime of the application. We’ll show how to do this later on.

The application has a feature where the edit box shows a list of words for completion,
based on the returns from the server. This mechanism needs to be reworked so
the list of words is fetched from the current search engine. This mechanism was
implemented in a timer event, which now becomes quite short:

function TPDFSearchControl.DoCompleteWord(Event: TEventListenerEvent): boolean;

15

procedure DoServerSearchWord;

begin

if Length(edtSearch.Value)>1 then

CurrentSearchEngine.GetWordList(edtSearch.Value,@DoShowWordList);

end;

begin

Result:=False;

if FSearchTimerID<>0 then

window.clearTimeout(FSearchTimerID);

FSearchTimerID:=window.SetTimeout(@DoServerSearchWord,200);

end;

The GetWordList will call DoShowWordList as soon as the list of words has been
retrieved. The DoShowWordList routine which will actually show the list of words
now simply needs to iterate over all words in the list:

procedure TPDFSearchControl.DoShowWordList(List : TStrings);

Var

S : String;

P : TJSHTMLELement;

A : TJSHTMLAnchorElement;

begin

mnuAutoComplete.style.setProperty(’display’,’none’);

mnuAutoComplete.InnerHTML:=’<div class="dropdown-content"></div>’;

P:=TJSHTMLELement(mnuAutoComplete.firstElementChild);

For S in List do

begin

a:=TJSHTMLAnchorElement(Document.createElement(’a’));

a.href:=’#’;

a.classlist.Add(’dropdown-item’);

a.innerText:=s;

a.dataset[’value’]:=s;

a.addEventListener(’click’,@DoWordSelected);

P.appendChild(a);

end;

mnuAutoComplete.style.setProperty(’display’,’block’);

end;

The implementation of the algorithm to retrieve a word list was moved to the
TServerSearch class. It remains almost the same as it was, with exception that it
fills a TStringlist.

The ISearchEngine interface contains some boilerplate code to define 3 properties
(they must be defined through getters and setters).

In order to reduce the code needed in the 3 search classes to implement this interface,
we’ll descende all 3 classes from a common ancestor: TSearchBase. Here is the
definition:

TSearchBase = class(TComponent)

Private

16

FShowPDFPageEvent : TShowPDFPageEvent;

FOnShowResultPanel : TNotifyEvent;

FResultsElement: TJSHTMLElement;

Protected

// Property getters & setters

function GetOnShowResultPanel: TNotifyEvent;

procedure SetOnShowResultPanel(AValue: TNotifyEvent);

Procedure SetResultsElement(aValue : TJSHTMLElement);

Function GetResultsElement : TJSHTMLElement;

Procedure SetShowPageEvent(aValue : TShowPDFPageEvent);

function GetShowPageEvent : TShowPDFPageEvent;

// Easy access for descendents

procedure ShowPDFPage(aInfo : TPageInfo);

// Show results panel.

procedure ShowResultsPanel;

// Clear results panel.

procedure ClearResultPanel;

// Append a HTML node to the results panel.

procedure AppendToResults(aElement : TJSHTMLElement);

Public

// Easy access using properties

Property ResultsElement : TJSHTMLElement Read GetResultsElement Write SetResultsElement;

Property ShowPDFPageEvent : TShowPDFPageEvent Read GetShowPageEvent Write SetShowPageEvent;

Property OnShowResultPanel : TNotifyEvent Read GetOnShowResultPanel Write SetOnShowResultPanel;

end;

The various Get* and Set* methods do nothing but setting and setting the values
of the private fields for the properties. The easy access methods are there to call
the event handlers, if they have been set. This avoids that descendents must all
implement a check.

The TServerSearch class is reworked as a descendent of this class, but contains no
new code compared to the previous iteration of our application, so we won’t repeat
it here. The same is true for the TPDFSearch class: nothing changes for this class,
except that the signature of the method changes somewhat.

6 Working offline

When working offline, we cannot contact the server and perform a search on a
database. We also cannot distribute and access the database from within the
browser.

What we can do is offer limited search: the list of articles and issues is distributed
with the offline version of the application. Basically, we create a javascript file in
containing a ’database’ of articles. The database is then simply a Javascript array
of records, which looks like this (formatting added for display purposes):

var BPMArticles = [

{

"i" : "1",

"p" : 6,

"a" : "Representing graphics for math functions",

"u" : "Peter Bijlsma",

"c" : ""

17

},

{

"i" : "1",

"p" : 8,

"a" : "Client Dataset Toolkit",

"u" : "Detlef Overbeek",

"c" : ""

},

//

]

This javascript file is included in the html page using a script element:

<script src="js/articles.js"></script>

Accessing this array from a Pascal program is easy: One record in this array can
be declared in Pascal as an external class:

Type

TArticle = Class external name ’Object’ (TJSObject)

Issue : String; external name ’i’;

Page : Integer; external name ’p’;

Title : String; external name ’a’;

Author : String; external name ’u’;

Code : string; external name ’c’;

end;

TArticleArray = Array of TArticle;

Note the use of ’external name’ to map the human-readable fields (Issue, Page

etc.) to the actual member names used in Javascript.

The array itself is then defined as follows:

var

BPMArticles : TArticleArray; external name ’BPMArticles’;

As you can see, the variable is declared external: this means it is actually defined
outside the pascal code.

Armed with his, we can now set about creating a class that implements a local
search mechanism and a mechanism to get a word list: the TArticleSearcher

class in the articlesearch unit.

This class is defined as a descendent of TSearchBase, and has 2 main methods.
The first is to get a list of words:

procedure TArticleSearcher.GetWordList(aTerm: string;

aOnResults: TWordListCallBack);

var

L : TStringList;

aArticle : TArticle;

S : String;

R : TJSRegexp;

begin

if not assigned(aOnResults) then

18

exit;

aTerm:=UpperCase(aTerm);

L:=TStringList.Create;

try

L.Sorted:=True;

L.Duplicates:=dupIgnore;

R:=TJSRegexp.New(’\b(?:\w|-)+\b’,’g’);

For aArticle in BPMArticles do

for S in TJSString(aArticle.Title).match(R) do

if pos(aTerm,Uppercase(S))>0 then

L.Add(s);

aOnResults(L);

finally

L.Free;

end;

end;

This is a very simple loop over the array of article records: For every article, the
Title field is split into words using the Javascript ’match’ method of the String type:
the compli If the word contains the search term (we check this case-insentitively),
we add it to the list: the list ignores duplicates, so we get each word only once. At
the end we call the callback.

The search mechanism works in a completely similar way. It clears any previous
results, loops over the article list, and if an article matches the search term, it is
included in the result.

procedure TArticleSearcher.Search(const aTerm: string; const aIssue: String);

Var

aIdx : integer;

aArticle : TArticle;

V,IssueFilter : string;

I : integer;

begin

if Not Assigned(ResultsElement) then exit;

IssueFilter:=’’;

For I:=1 to Length(aIssue) do

if Pos(aIssue[I],’0123456789_’)>0 then

IssueFilter:=IssueFilter+V[i];

ClearResultPanel;

For aIdx:=0 to Length(BPMArticles)-1 do

begin

aArticle:=BPMArticles[aIdx];

if aArticle.IsMatch(aTerm,IssueFilter) then

ResultsElement.AppendChild(CreateArticleRow(aIdx,aArticle));

end;

ShowResultsPanel;

end;

At the end, the results panel is shown.

The IsMatch procedure which is used to determine if an article is matched, is a
helper method for TArticle:

19

TArticleHelper = class helper for TArticle

Function IsMatch (aTerm : String; aIssue : string) : Boolean;

end;

function TArticleHelper.IsMatch(aTerm: String; aIssue: string): Boolean;

begin

aTerm:=UpperCase(aTerm);

Result:=(aTerm=’’) or ((Pos(aTerm,UpperCase(Author))>0)

or (Pos(aTerm,UpperCase(Title))>0));

if Result and (aIssue<>’’) then

Result:=(aIssue=Issue);

end;

This must be implemented as a helper method, since the TArticle class is defined
as an external class, and therefore its definition cannot contain pascal methods.

The CreateArticleRow method uses a string constant DefaultPanel with a HTML
template to construct the actual HTML using a simple search and replace mecha-
nism:

function TArticleSearcher.CreateArticleRow(aIdx: Integer; aArticle: TArticle

): TJSHTMLElement;

Var

Panel : String;

begin

Result:=TJSHTMLElement(Document.createElement(’div’));

Panel:=StringReplace(DeeaultPanel,’{{issue}}’,aArticle.Issue,[rfReplaceAll]);

Panel:=StringReplace(Panel,’{{page}}’,IntToStr(aArticle.Page),[rfReplaceAll]);

Panel:=StringReplace(Panel,’{{title}}’,aArticle.Title,[rfReplaceAll]);

Panel:=StringReplace(Panel,’{{author}}’,aArticle.Author,[rfReplaceAll]);

Result.dataset[’issue’]:=aArticle.Issue;

Result.dataset[’page’]:=IntToStr(aArticle.Page);

Result.dataset[’articleid’]:=intToStr(aIdx);

Result.dataset[’title’]:=aArticle.Title;

Result.AddEventListener(’click’,@OnArticleClick);

Result.innerHTML:=Panel;

end;

Finally, the OnClick handler for the result element collects some data to set up a
TPageInfo record, which is then used to display the correct PDF page:

procedure TArticleSearcher.OnArticleClick(aEvent : TJSEvent);

var

aPage : TPageInfo;

begin

aPage:=Default(TPageInfo);

With TJSHTMLElement(aEvent.currentTargetElement) do

begin

20

aPage.Issue:=dataset[’issue’];

aPage.Page:=StrToIntDef(dataset[’page’],-1);

aPage.Title:=dataset[’title’];

aPage.useIssue:=True;

end;

ShowPDFPage(aPage);

end;

The ShowPDFPage uses the ShowPDFPageEvent event handler to actually show the
PDF on the correct page. And with this, our offline search mechanism is ready.

7 Detecting offline status and showing a PDF

The offline search mechanism has to be activated when the navigator has no access to
internet: We implemented the OffLine property for this in the TPDFSearchControl.
But this property has not yet been set to a correct value.

Luckily, the browser has a property that indicates whether it is currently online or
offline: The window.Navigator.onLine property indicates whether the browser is
currently online or offline. What is more, the Window class implements 2 events
’online’ and ’offline’ that are triggered when the browser goes online or offline,
respectively. So we can use AddEventListener to install an event handler and
react to changes in online or offline status.

This is done in the DetectOffLine routine in the application class. It does 2 things:
it detects whether the application was started by double clicking the index.html file
in the file explorer or whether it was started from a website. The result is stored in
the IsLocal property, and the online status is stored in the IsOffLine property:

procedure TBPMLibraryApplication.DetectOffline;

Procedure updateOnlineStatus(event : TJSEvent);

begin

IsOffLine:=not window.Navigator.onLine;

end;

begin

IsLocal:=Copy(window.location.protocol,1,4)=’file’;

IsOffLine:=not window.Navigator.onLine;

window.addEventListener(’online’,@updateOnlineStatus);

window.addEventListener(’offline’,@updateOnlineStatus);

end;

Note that the online and offline eventhandler is used to update the IsOffLine

property.

The IsOffLine property of the application object has a setter, and is used to
propagate the value to the searchcontrol:

procedure TBPMLibraryApplication.SetIsOffLine(AValue: Boolean);

begin

if FIsOffLine=AValue then Exit;

FIsOffLine:=AValue;

FSearchPane.OffLine:=FisOffline;

21

end;

Thus, the search mechanism will know whether to search locally or remote.

As we’ve seen, the search mechanism only has an event which it must use to open
a PDF and display a certain page. The event is set in the main application to the
following event handler:

procedure TBPMLibraryApplication.HandleShowPDFPage(aPage: TPageInfo);

Function IsSameAsLastPDF : Boolean;

begin

if aPage.useIssue then

Result:=(FLastIssue<>’’) and (FLastIssue=aPage.Issue)

else

Result:=(FLastPDF<>’’) and (FLastPDF=aPage.FileName)

end;

begin

// local search or PDF already loaded

if IsSameAsLastPDF then

FViewer.ShowPage(aPage.Page)

else if Not HaveLocalFile(aPage) then

LoadRemotePDF(aPage)

else

LoadLocalPDF(aPage);

end;

If the PDF is already loaded (checked in IsSameAsLastPDF), then the viewer panel
is simply instructed to show the new page. If the PDF is not yet loaded, then it must
be loaded before the correct page can be shown. If the page was loaded from local
disk (as is the case on the USB-stick version of the Blaise Pascal magazine), then
it is loaded from disk using LoadLocalPDF, else it is loaded using LoadRemotePDF.

The HaveLocalFile function uses the IsLocal property that was initialized by the
application to decide whether a file can be loaded from disk or not:

If IsLocal is false, we know the page is loaded from a website, and the PDF files
will not be available locally. But if IsLocal is true, it still can be that the PDF is
not available locally: When an online search was performed, the search result could
have returned a PDF that is not available locally. To cater for that case we must
check the list of available articles to see if the requested issue is present, and this is
done by checking the issue number in the list of articles:

function TBPMLibraryApplication.HaveLocalFile(aPage : TPageInfo) : Boolean;

Var

aArticle : TArticle;

begin

Result:=IsLocal;

if Result then

begin

// Determine if we have the PDF locally

Result:=False;

for aArticle in BPMArticles do

22

if (aPage.Issue=aArticle.Issue) then

Exit(True);

end

end;

When the PDF is available locally, we load it using the trick shown in the first
article in this series: a script tag is inserted which defines contents of the PDF as a
Javascript variable (pdfData):

var

pdfData : String; external name ’pdfData’;

procedure TBPMLibraryApplication.LoadLocalPDF(aPage: TPageInfo);

Procedure DoShowPage;

begin

FViewer.ShowPage(aPage.Page);

end;

function DoLoaded(Event : TEventListenerEvent) : Boolean;

var

Src : TPDFSource;

begin

Src:=TPDFSource.new;

Src.Data:=pdfData;

Fviewer.StartPDFRender(Src,@DoShowPage);

end;

Var

Script : TJSHTMLScriptElement;

FN : String;

begin

Script:=TJSHTMLScriptElement(document.CreateElement(’script’));

FN:=aPage.FileName;

if Pos(’file://’,FN)=1 then

Delete(FN,1,7);

else if FN=’’ then

FN:=’issues/issue’+aPage.Issue+’.js’;

Script.Src:=FN;

Script.Onload:=@DoLoaded;

end;

Finally, the LoadRemotePDF routine loads a PDF from the server. It needs to
distinguish between a call where only the issue number is given (the user requested
simply to see an issue) or when the PDF filename is known. In the former case
it uses the /issue/ URL which we showed in the beginning of the article, in the
latter case the /pdf/ URL is used:

procedure TBPMLibraryApplication.LoadRemotePDF(aPage: TPageInfo);

23

Figure 1: Showing issue 1 of the Blaise Pascal magazine library

Procedure DoShowPage;

begin

FViewer.ShowPage(aPage.Page);

end;

var

Src : TPDFSource;

begin

Src:=TPDFSource.new;

if aPage.useIssue then

Src.url:=ServerURL+’issue/’+aPage.Issue

else

Src.url:=ServerURL+’pdf/’+aPage.FileName+’?token=’+ encodeURIComponent(FLogin.Token);

FLastPDF:=aPage.FileName;

FViewer.StartPDFRender(Src,@DoShowPage);

end;

And with this routine, the application is ready to go. The application with an issue
loaded locally is shown in figure 1 on page 24.

24

8 Conclusion

In this article, we’ve shown how to make a real-world application using Pas2JS
that can work both online and offline and adapts itself: we refactored techniques
introduced in the previous articles in this series. The application can still be im-
proved: for instance the online/offline status can be made visual - e.g. changing a
background color. The application times out after 30 minutes, but no warning is
given: this can also be improved. As with all software, the work is never finished...

25

	Introduction
	Adding security to the server
	Securing the download
	Allowing to download an issue by number
	Searching in the client
	Working offline
	Detecting offline status and showing a PDF
	Conclusion

