
Indexing PDFs - searching the index

Michaël Van Canneyt

March 28, 2023

Abstract

In a previous contribution, we’ve shown how to create an index of words
in a PDF file. In this article, we’ll show how to use this index in a search
prgram and use that to implement a search in a website.

1 Introduction

In the first article on searching PDF files, we showed how to create a PDF indexer:
a program to analyse a bunch of PDF files, and store occurrences of words in the
PDF files in a database. All this was accomplished with classes that are part of
Free Pascal: the end result was that we have a database with all the words in the
PDF files and the locations on which these words occur.

In this article, we’ll show how to query this database: we’ll make a small webpage
in which the user can enter a search term. The search term is sent to the server,
which will reply with a list of pages and the title of the article of which the page is
a part. The user can then choose which article he wants to read. The correct PDF
will be downloaded and opened on the correct page. Once the PDF is downloaded,
the user can search locally in the PDF. For simplicity, the indexed PDF files are
assumed to be in a directory on the server, but they can of course be located in a
database or distributed over many directories.

To help the user, we’ll also create an auto-complete mechanism for the search box:
as soon as the user typed 2 letters, the program will present a list of words that
contain the letters he or she typed. The user can then select the complete words and
let the backend search for it. This will not only save typing, but will also increase
the accuracy of the search.

2 The server search part: overview

The server is a simple HTTP application which has 3 functions:

1. Return a list of words from the database, based on some letters in the word.

2. Return a list of matches for a word, returning the pdf name, the pages with
a match and the article name to which the page belongs.

3. Return a PDF file.

To make this HTTP application, we start a new HTTP application as usual in the
Lazarus IDE.

The main program source code is changed somewhat, so it reads as follows:

1

begin

ConfigureApp;

{$ifndef usecgi}

Application.Port:=3010;

{$endif}

Application.Initialize;

Application.Run;

ASearch.Free;

end.

The configureApp is a call to a routine that creates the search mechanism (the 2 first
statements in the routine) and configures the HTTP router, which is responsible
for routing the 3 HTTP requests that the application supports:

Var

aSearch : TSearcher;

Procedure ConfigureApp;

begin

// Create search mechanism

aSearch:=TSearcher.Create(Application);

aSearch.Init;

// Register routes for the search mechanism

HTTPRouter.RegisterRoute(’/search’,@aSearch.DocSearch,true);

HTTPRouter.RegisterRoute(’/list’,@aSearch.WordList,False);

// Set default file downloader

DefaultFileModuleClass:=TCorsFileModule;

// Where are the PDF files located.

RegisterFileLocation(’pdf’,aSearch.PDFLocation);

end;

The last 2 lines use a descendent of a standard Free Pascal file downloader module
(TFPCustomFileModule) named TCorsFileModule to set up a download function-
ality for the PDF files. Note that the path must of course be matched.

The TCorsFileModule is there to enable CORS:

TCorsFileModule = Class(TFPCustomFileModule)

Procedure HandleRequest(ARequest: TRequest;

AResponse: TResponse); override;

end;

procedure TCorsFileModule.HandleRequest(ARequest: TRequest;

AResponse: TResponse);

begin

Cors.Enabled:=true;

if Cors.HandleRequest(aRequest,aResponse) then exit;

inherited HandleRequest(ARequest, AResponse);

end;

The standard TFPCustomFileModule does not allow CORS requests, so a descen-
dent is made that allows this. It enables the CORS support (standard part of every
FCL-Web module) and if a CORS preflight request is detected, it is handled. If it
is a regular request, the PDF download request is handled: We need not do more
than this to serve the PDF files from an url formed as:

2

http://localhost:3010/pdf/somepdf.pdf

(the host & port may differ depending on your setup) all the rest will be handled
by the file module itself.

The actual searching happens in the TSearcher class, which is defined as follows:

TSearcher = Class(TComponent)

private

procedure ConfigSearch(aRequest: TRequest;

aResponse: TResponse);

procedure ConfigWordList(aRequest: TRequest;

out aContaining : UTF8string;

Out Partial : TAvailableMatch;

Out aSimple : Boolean);

procedure ConnectToDatabase;

procedure DisConnectFromDatabase;

function FindArticle(Position: Integer;

const aFile: String): TArticleData;

function SearchDataToJSON(aID: Integer;

const aRes: TSearchWordData): TJSONObject;

procedure SendJSON(J: TJSONObject;

aResponse: TResponse);

procedure SetupMetadata;

procedure LoadArticles;

Protected

function InitSearch(aResponse: TResponse): Boolean;

function SetupDB(aIni: TCustomIniFile): TCustomIndexDB;

Property DB : TCustomIndexDB;

Property Search : TFPSearch;

Property MinRank : Integer;

Property FormattedJSON : Boolean;

Property Articles : TArticleDataArray;

Public

Procedure Init;

procedure DoDBLog(Sender: TSQLConnection;

EventType: TDBEventType;

const Msg: String);

Function CheckParams(aRequest : TRequest;

aResponse : TResponse) : Boolean;

Function CheckSearchParams(aRequest : TRequest;

aResponse : TResponse) : Boolean;

Procedure DocSearch(aRequest : TRequest;

aResponse : TResponse);

Procedure WordList(aRequest : TRequest;

aResponse : TResponse);

Property AllowCors : Boolean;

end;

The DocSearch and WordList routines are the entry points for handling the browser
requests, we’ll treat them in a moment.

The Init which is called during program procedure initializes the search engine. It
reads a configuration file with the settings for the database connection and some
further settings that configure the search mechanism. The configuration file is

3

searched in several directories, in the GetConfigFileName routine, which we will
not present here.

procedure TSearcher.Init;

Const

// Adapt this default to your setup....

DefaultLocation = ’/home/michael/Documents/pdf/blaise/’;

Var

CFN : String;

aIni: TMemIniFile;

begin

CFN:=GetConfigFileName;

aIni:=TMemIniFile.Create(CFN);

try

FFormattedJSON:=aIni.ReadBool(’search’,’formatjson’,False);

FDefaultMinRank:=aIni.ReadInteger(’search’,’minrank’,1);

FDefaultMetadata:=aIni.ReadBool(’search’,’metadata’,true);

FAllowCors:=aIni.ReadBool(’search’,’allowcors’,true);

FPDFLocation:=aIni.ReadString(’Files’,’PDF’,DefaultLocation);

FDB:=SetupDB(aIni);

FSearch:=TFPSearch.Create(Self);

FSearch.Database:=FDB;

finally

aIni.Free;

end;

SetupMetadata;

end;

4 variables are initialized from the configuration file, they influence the returned
results to the client requests:

FFormattedJSON Should the JSON returned be formatted or not.

FDefaultMinRank minimum rank for a word occurrence to be included in the
result.

FDefaultMetadata Should metadata be returned in absence of a parameter that
specified it.

FAllowCors Should CORS HTTP headers be set on the result ?

FPDFLocation The location of the PDF files on disk.

The FDB variable is an instance of TCustomIndexDB as presented in the previous
article: it handles the database connection for the TFPSearch instance which does
the actual search in the database.

The TFPSearch class is part of the fpIndexer unit presented in the previous article.
It handles searching in the index database. The class is declared as follows:

TFPSearch = class (TComponent)

public

constructor Create(AOwner: TComponent); override;

destructor Destroy; override;

4

function Execute: int64;

procedure AddResult(index: integer; AValue: TSearchWordData);

procedure SetSearchWord(AValue: UTF8String);

Function GetAvailableWords(out aList : TUTF8StringArray;

aContaining : UTF8String;

Partial : TAvailableMatch) : Integer;

property Count: integer;

property RankedCount: integer;

property Results[index: integer]: TSearchWordData ;

property RankedResults[index: integer]: TSearchWordData;

published

property Database: TCustomIndexDB;

property Options: TSearchOptions;

property SearchWord: TWordParser;

Property UsePositionInRank : Boolean;

end;

The published properties can be used to configure the search mechanism: The
Database property represents the connection to the database. Options can be set
to

soContains

in which case the search will be for words containing the search term. UsePositionInRank
will determine whether the position should be taken into account when ranking
words (normally, only the file/name is taken into account)

The methods of the class have the following purpose:

SetSearchWord Set the word to search for.

Execute Start the search. Returns the number of found results.

AddResult add a match to the results index.

GetAvailableWords Get the list of words that contain the word aContaining.
The matching mechanism is determined by the value of the Partial parame-
ter: one of amAll (all words),amExact (exact match on the search term),amContains
(words that contain the search term),amStartsWith (words that start with the
search term)). The results are returned in the aList array, and the function
returns the number of results.

The public properties of the class allow to examine the results of the search. The
Results and Count properties describe the raw results of the search operation.
The RankedResults and RankedCount properties describe the ranked results of the
search operation.

The last line of the Init routine is a call to SetupMetadata. This routine sets up
metadata definitions for the 2 REST result sets that can be handled by the server
program: the program is set up in such a way that the result it returns is a JSON
structure that can be consumed by the TJSONDataset implementation in pas2js.

The JSON structure that is consumed by a TJSONDataset dataset contains a ”meta-
data” element, that describes the data. Rather than creating this structure every
time we create a result set, we create it once and reuse it when a result is being
returned.

5

procedure TSearcher.SetupMetadata;

begin

FMetadata:=TJSONObject.Create([

’root’, ’data’,

’idField’,’id’,

’fields’,TJSONArray.Create([

TJSONObject.Create([’name’,’id’,’type’,’int’]),

TJSONObject.Create([’name’,’rank’,’type’,’int’]),

TJSONObject.Create([’name’,’articlePage’,’type’,’int’]),

TJSONObject.Create([’name’,’articleIssue’,

’type’,’string’,’maxlen’,10]),

TJSONObject.Create([’name’,’articleAuthor’,’

type’,’string’,’maxlen’,127]),

TJSONObject.Create([’name’,’articleTitle’,

’type’,’string’,’maxlen’,255]),

TJSONObject.Create([’name’,’url’,

’type’,’string’,’maxlen’,100]),

TJSONObject.Create([’name’,’context’,

’type’,’string’,

’maxlen’,MaxContextLen]),

TJSONObject.Create([’name’,’date’,’type’,’date’])

])

]);

FWordsMetadata:=TJSONObject.Create([

’root’, ’data’,

’idField’,’id’,

’fields’,TJSONArray.Create([

TJSONObject.Create([’name’,’id’,’type’,’int’]),

TJSONObject.Create([’name’,’word’,

’type’,’string’,’maxlen’,100])

])

]);

end;

3 The server search part: The word list for auto-
completion

The WordList routine is called whenever the user types a search term, and the
browser wants to show a completion list.

The WordList resource accepts several query parameters:

q (for query), this mandatory parameter contains the letters typed by the user.

t (for type) determines which words will be returned: The value is one of

all will return all words, the value of q must be empty.

contains will return all words that contain the value of q.

exact will return only an exact match: this allows to determine whether the
word is present in the database.

startswith will return all words that start with the value of q.

6

s a boolean (0 or 1), if True, then the return only contains an array of words. If
false, then an id field is returned as well.

m a boolean (0 or 1): include metadata in the response or not. If omitted, the
default as in the config file is taken.

When invoked, it starts by initializing the response that will be sent to the browser,
including the CORS headers for optional CORS support, and then proceeds by
checking the query parameters: The CheckSearchParams routine checks whether
the supplied query parameters are valid. If not, it puts an error code in the HTTP
request and returns False. It will not be presented here. The InitSearch routine
simply checks whether the database is available.

procedure TSearcher.WordList(aRequest: TRequest; aResponse: TResponse);

Var

I : Integer;

J : TJSONObject;

A : TJSONArray;

w,aContaining : UTF8String;

aPartial : TAvailableMatch;

aSimple : Boolean;

aList : TUTF8StringArray;

begin

aResponse.ContentType:=’application/json’;

if AllowCORS then

AResponse.SetCustomHeader(’Access-Control-Allow-Origin’,’*’);

if not CheckSearchParams(aRequest,aResponse) then

exit;

if not InitSearch(aResponse) then

exit;

ConfigWordList(aRequest,aContaining,aPartial,aSimple);

FSearch.GetAvailableWords(aList,aContaining,aPartial);

J:=TJSONObject.Create;

try

if FIncludeMetadata then

J.Add(’metaData’,FWordsMetadata.Clone);

A:=TJSONArray.Create;

if aSimple then

For W in aList do

A.Add(W)

else

begin

For I:=0 to Length(aList)-1 do

A.Add(TJSONObject.Create([’id’,I+1,’word’,aList[i]]));

end;

J.Add(’data’,A);

SendJSON(J,aResponse);

finally

J.Free;

end;

end;

The ConfigWordList routine extracts the query parameters from the request, and

7

makes sure the returned values (aContaining,aPartial,aSimple) are consistent.
One could integrate this functionality with the CheckSearchParams routine. The
FSearch.GetAvailableWords function is used to get the actual results.

Once the results are in, the rest of the routine is just constructing the JSON to
be returned to the browser: here the ’simple’ parameter is used to determine the
structure of the elements in the result array.

The SendJSON simply returns the constructed JSON in the HTTP response:

procedure TSearcher.SendJSON(J : TJSONObject; aResponse: TResponse);

begin

if FormattedJSON then

aResponse.Content:=J.FormatJSON()

else

aResponse.Content:=J.AsJSON;

aResponse.ContentLength:=Length(aResponse.Content);

aResponse.SendContent;

end;

With this, the functionality so get a word list is complete. Being a simple HTTP
request, it can be tested simply in the browser using for example the following URL:

http://localhost:3010/list?q=class&t=contains&s=1

A sample result for the word class can be seen in figure 1 on page 9. Note that
the browser recognizes the result is JSON based on the content-type, and formats
the result accordingly.

4 The server search part: The list of pages with
word matches

The second call needed in the server will find all occurrences for a word in the
indexed PDFs. The PDF indexer stores for each word the name of the file in which
the word occurs, and the page on which the word occurs.

For the application that we wish to make, the page number needs to be matched
with an article: To match a page with an article, we have a table with the PDF
name (and issue), starting and ending pages, author and title.

Since there is a limited amount of articles and the list changes not so often, it makes
sense to cache the list in the server. We’ll do so in the following array of records:

TArticleData = record

StartPage,

EndPage : Integer;

Author,

Title,

Issue,

PDF : String;

function Match(aPDF : String; aPage : Integer) : boolean;

end;

TArticleDataArray = Array of TArticleData;

8

Figure 1: The result of a word list request

9

This information will matched with the result of the PDF index data. The HTTP
entry point for the search mechanism is the ’search’ path, linked to the PDFSearch

method.

Similar to the WordList entry point, the PDFSearch method accepts some options
through the query variables:

q (for query), this mandatory parameter contains the word to search for.

r (for rank) determines the minimal rank a match must have for the match to be
included in the result. The default is zero.

c a boolean (0 or 1), if True, words containing the query will be returned. If False
(the default) then only an exact word match is returned.

m a boolean (0 or 1): include metadata in the response or not. If omitted, the
default as in the config file is taken.

The PDFSearch method is surprisingly short, and has the same overall structure as
the WordList method. It starts by preparing the response, setting CORS headers
and checking the parameters. The next step is to initialize and configuring the
search. If the initializing goes wrong, the routine exits.

procedure TSearcher.PDFSearch(aRequest: TRequest; aResponse: TResponse);

Var

I : Integer;

J : TJSONObject;

A : TJSONArray;

begin

aResponse.ContentType:=’application/json’;

if AllowCORS then

AResponse.SetCustomHeader(’Access-Control-Allow-Origin’,’*’);

if not CheckParams(aRequest,aResponse) then

exit;

if not InitSearch(aResponse) then

begin

aResponse.Code:=500;

aResponse.CodeText:=’Internal error’;

aResponse.SendResponse;

exit;

end;

ConfigSearch(aRequest,aResponse);

The ConfigSearch will configure the FPC index search object from the query vari-
ables:

procedure TSearcher.ConfigSearch(aRequest: TRequest; aResponse: TResponse);

Var

S : string;

O : TSearchOptions;

B : Boolean;

10

begin

FMinRank:=StrToIntDef(aRequest.QueryFields.Values[’r’],0);

if FMinRank=0 then

FMinRank:=FDefaultMinRank;

S:=aRequest.QueryFields.Values[’m’];

if (S=’’) or Not TryStrToBool(S,FIncludeMetaData) then

FIncludeMetaData:=FDefaultMetaData;

FSearch.SetSearchWord(aRequest.QueryFields.Values[’q’]);

O:=[];

S:=aRequest.QueryFields.Values[’c’];

if (S<>’’) and TryStrToBool(S,B) and B then

Include(O,soContains);

FSearch.Options:=O;

end;

When the call to the CongfigSearch routine has configured the search mechanism,
the PDFSearch routine starts the actual search:

The call to FSearch.Execute will execute the necessary SQL statements on the in-
dex database. The results will be available in the Results and RankedResults array
properties. The latter will be combined with the articles array in the SearchDataToJSON
routine to form the actual result set:

FSearch.Execute;

A:=nil;

J:=TJSONObject.Create;

try

if FIncludeMetadata then

J.Add(’metaData’,FMetadata.Clone);

A:=TJSONArray.Create;

For I:=0 to Search.RankedCount-1 do

begin

if Search.RankedResults[I].Rank>=MinRank then

A.Add(SearchDataToJSON(I+1,Search.RankedResults[I]));

end;

J.Add(’data’,A);

SendJSON(J,aResponse);

finally

J.Free;

end;

The result is combined with the metadata if needed, and is sent to the browser with
the SendJSON command, just as in the WordList routine.

The search data is combined with the article list in the SearchDataToJSON routine,
which starts by finding the article which matches the page of the word match (stored
in Position). The found article and the search result are then unified in a single
JSON structure:

function TSearcher.SearchDataToJSON(aID: Integer; const aRes: TSearchWordData

): TJSONObject;

Var

Article : TArticleData;

11

begin

Article:=FindArticle(aRes.Position,aRes.URL);

Result:=TJSONObject.Create([

’id’,aID,

’rank’,aRes.Rank,

’articlePage’, aRes.Position,

’articleTitle’, Article.Title,

’articleAuthor’, Article.Author,

’articleIssue’, Article.Issue,

’url’,aRes.URL,

’context’,ares.Context,

’date’,FormatDateTime(’yyyy"-"mm"-"dd"T"hh":"nn":"ss’,aRes.FileDate)

]);

end;

The routine to find the articles is simplicity itself:

function TSearcher.FindArticle(Position: Integer; const aFile: String

): TArticleData;

Var

A : TArticleData;

begin

Result:=Default(TArticleData);

if Length(Articles)=0 then

LoadArticles;

for A in Articles do

if A.Match(aFile,Position) then

Exit(A);

end;

The LoadArticles routine executes a simple select SQL query and stores the results
in the Articles array, part of the TSearcher class. The interested reader can
consult the code supplied with the articles for the details. The Match method of the
TArticleData record returns True if the article is located in the PDF and contains
the page number:

function TArticleData.Match(aPDF : String;

aPage : Integer) : boolean;

begin

Result:=SameText(Pdf,aPdf)

and (StartPage<=aPage)

and (aPage<=EndPage)

end;

With this routine we’ve covered the search mechanism in the index database. Again,
the result can easily be tested in the browser, as shown in figure 2 on page 13.

5 The browser application

Now that we have an API in place for getting word lists and matches of a word
in our collection of PDF documents, we can create a browser application that uses
these APIs to query and show a collection of PDF documents.

12

Figure 2: The result of a search request

To do so, we will refactor the PDF viewing application presented in an earlier
contribution, and change it so we can either search locally in the shown PDF or
look in the collection of PDFs on the server.

To do so, we start by refactoring the application: initially, the application consisted
of a single application class. This will now be separated in 4 different classes:

TPDFPanel this class abstracts away the PDF viewer PDF.js. It has a method
to load a PDF, a method to set the current page, and 2 events that are called
when the PDF is loaded and the page is shown, respectively.

TPDFPanel = Class(TComponent)

Procedure QueueRenderPage(aNum : Integer);

Procedure ShowPDF(aSource : TPDFSource; AtPage : Integer = 1);

Property CanvasID : String;

Property PageRendering : Boolean;

Property Scale : Double;

Property DisplayedPage : Integer;

Property PageCount : Integer;

Property OnPageLoaded : TNotifyEvent;

Property OnLoaded : TNotifyEvent;

Property PDFDoc : TPDFDocumentProxy;

end;

The properties are pretty straightforward: The CanvasID can be set to the
ID of the canvas element in which the PDF element is drawn. The Scale

property is there to set the zoom factor for the PDF. The read-only prop-
erties PageRendering, DisplayedPage, PageCount and PDFDoc have obvious
meanings.

13

TPDFControlPanel This class contains the controls for the PDF viewer: The
page navigation buttons and the zoom button. The component has in fact
only some public properties to set the PDF panel and the IDs of various
HTML elements.

TPDFControlPanel = class(TComponent)

Procedure BindElements;

property PDFPanel : TPDFPanel Read FPDFPanel Write SetPDFPanel;

Property EditPageID : string;

Property PreviousButtonID : string;

Property ZoomLabelID : string;

// Properties for all other buttons

end;

The BindElements call will fetch the references to all needed elements in the
HTML page.

TPDFSearchControl This class takes care of the actual search mechanism: it
has some properties for the various IDs of the HTML tags that it needs to do
its job, and some methods to show/hide/clear the search results panel .

TPDFSearchControl = class(TComponent)

procedure BindElements;

Procedure ShowResultPanel;

Procedure HideResultPanel;

Procedure ClearResultPanel;

Property pdfPanel : TPDFPanel;

Property LocalCheckboxID : String;

Property SearchButtonID : String;

Property SearchEditID : String;

Property DivAutoCompleteID : String;

Property ResultPanelID : String;

Property SidebarPanelID : String;

Property ShowResultsPanelButtonID;

end;

Again, the BindElements call will fetch the references to all needed elements
in the HTML page.

The code of TPDFControlPanel and TPDFPanel classes can be found in the previous
article on showing a PDF, so it will not be repeated here. The only changed code is
that the TPDFControlPanel class does not access the low-level TPdfDoc class, but
instead uses the TPDFPanel methods (which in turn of course call the methods of
the TPdfDoc class).

The TPDFIndexApp application class ties everything together: it has instances of
the above three classes, and some references to the HTML elements to load a PDF
file from disk:

TPDFIndexApp = class(TBrowserApplication)

pnlSidebar,

lblFileLocation : TJSHTMLElement;

btnLoad,

btnClosePane : TJSHTMLButtonElement;

edtPDFFile: TJSHTMLInputElement;

14

FPDFPanel : TPDFPanel;

FPDFControls : TPDFControlPanel;

FPDFSearch: TPDFSearchControl;

procedure doRun; override;

procedure BindElements;

function DoLoadFile(Event: TEventListenerEvent): boolean;

procedure onLoad(aEvent: TJSEvent);

procedure ShowPDF(aSource: TPDFSource);

Procedure DisplayFileLocation(const aLocation : String);

procedure onClosePane(aEvent: TJSEvent);

end;

The various event handlers in the application class will not be treated here, the
code has not changed from the code presented in the article on showing a PDF file.

The DoRun code has changed, so we will present it here:

procedure TPDFIndexApp.doRun;

const

TheURL = ’https://mozilla.github.io/pdf.js/build/pdf.worker.js’;

begin

pdfjsLib.GlobalWorkerOptions.workerSrc:=TheURL;

FPDFPanel:=TPDFPanel.Create(Self);

FPDFControls:=TPDFControlPanel.Create(Self);

FPDFControls.PDFPanel:=FPDFPanel;

FPDFSearch:=TPDFSearchControl.Create(Self);

FPDFSearch.PDFPanel:=FPDFPanel;

BindElements;

Terminate;

end;

As can be seen in the code, the code is reduced to creating the various panels and
passing a reference to the TPDFPanel instance to the TPDFControls panel.

The BindElements code is much reduced, since most of the elements have now
been moved to the other classes. Their BindElements method is called from the
application class BindElements method.

procedure TPDFIndexApp.BindElements;

begin

btnLoad:=TJSHTMLButtonElement(GetHTMLElement(’btnLoad’));

btnLoad.addEventListener(’click’, @onLoad);

lblFileLocation:=GetHTMLElement(’lblFileLocation’);

edtPDFFile:=TJSHTMLInputElement(GetHTMLElement(’edtPDFFile’));

edtPDFFile.onchange:=@DoLoadFile;

btnCloseSidebar:=TJSHTMLButtonElement(GetHTMLElement(’btnClosePane’));

btnCloseSidebar.addEventListener(’click’, @onClosePane);

pnlSidebar:=TJSHTMLInputElement(GetHTMLElement(’pnlSidebar’));

FPDFPanel.CanvasID:=’PDFCanvas’; // Will call bindelements

FPDFControls.BindElements;

FPDFSearch.BindElements

end;

The other elements and events are related to loading a user-selected PDF file: the

15

original functionality of being able to search any file is preserved.

The TPDFPanel and TPDFControlPanel classes do not contain code that differs
from the article on showing a PDF file, so their code will not be repeated here.
The TPDFSearchControl does change, since now 2 search mechanisms must be
supported, as well as a mechanism to show an auto-complete list.

We’ll start with the auto-complete list. It is activated in the oninput event of the
edit element. The event handler is set in the BindElements method=

edtSearch:=TJSHTMLInputElement(GetHTMLElement(SearchEditID));

edtSearch.onkeyup:=@DoSearchKeyUp;

edtSearch.oninput:=@DoCompleteWord;

The DoCompleteWord method is responsible for starting (or restarting) a timer (200
ms), and when the timer expires, the word completion list is fetched. Fetching the
word completion list is done by opening a dataset:

function TPDFSearchControl.DoCompleteWord(Event: TEventListenerEvent): boolean;

procedure DoServerSearchWord;

begin

if Length(edtSearch.Value)>1 then

begin

FSearchTerm:=edtSearch.Value;

FWords.Close;

FWords.Load([],Nil);

end;

end;

begin

Result:=False;

if FSearchTimerID<>0 then

window.clearTimeout(FSearchTimerID);

FSearchTimerID:=window.SetTimeout(@DoServerSearchWord,200);

end;

As mentioned in the first part of this article, the result of the server calls can be
in a format that is suitable for a rest dataset. The FWords variable in the above
code is a TRestDataset, and it is initialized in the SetupDatasets method of the
TPDFSearchPanel class:

procedure TPDFSearchControl.SetupDatasets;

Const

ServerURL = ’http://localhost:3010/’;

begin

FConn:=TRESTConnection.Create(Self);

FConn.BaseURL:=ServerURL;

FConn.OnGetURL:=@DogetURL;

FResult:=TRestDataset.Create(Self);

FResult.Connection:=FConn;

Fresult.AfterOpen:=@DoOpenResults;

16

FWords:=TRestDataset.Create(Self);

FWords.Connection:=FConn;

FWords.AfterOpen:=@DoWordsOpen;

end;

The method also sets up the FResult dataset, which will handle the result of the
search for word matches, later on.

The FConn.OnGetURL is an event called by the TRestConnection component, which
can be used to construct the URL for a dataset that gets its data from a REST
server. In our implementation, we need to choose the correct endpoint depending
on what dataset is opened:

procedure TPDFSearchControl.DogetURL(Sender: TComponent;

aRequest: TDataRequest;

var aURL: String);

var

Q : String;

begin

Q:=encodeURIComponent(FSearchTerm);

if aRequest.Dataset=FResult then

aURL:=FConn.BaseURL+’search?m=1&q=’+q

else

aURL:=FConn.BaseURL+’list?t=contains&m=1&q=’+q;

end;

You can see from the above that the 2 endpoints we defined in the server are used
for both datasets. In both cases the query variables are set up to request metadata,
and the q is set to the FSearchTerm variable, which is the value of the edtSearch

HTML input tag.

The AfterOpen event of the TDataset class is used to generate the HTML for the
word completion list. The HTML for this completion list is actually quite simple.
The edit control is wrapped in 2 classes:

<p class="control is-small">

<div class="dropdown">

<div class="dropdown-trigger">

<input id="edtSearch" class="input" style="max-width: 15em;">

<div class="dropdown-menu" id="mnuAutoComplete" role="menu" />

</div> <!-- .dropdown-trigger -->

</div> <!-- .dropdown -->

</p>

And the html for the completion list is inserted below the tag with id mnuAutoComplete.
It is generated by looping over the records in the dataset and generating the neces-
sary HTML elements. The routine starts by hiding the element, clearing the content
and then adding the elements:

procedure TPDFSearchControl.DoWordsOpen(DataSet: TDataSet);

Var

17

Figure 3: The autocomplete list

S : String;

F : TField;

P : TJSHTMLELement;

A : TJSHTMLAnchorElement;

begin

mnuAutoComplete.style.setProperty(’display’,’none’);

mnuAutoComplete.InnerHTML:=’<div class="dropdown-content"></div>’;

P:=TJSHTMLELement(mnuAutoComplete.firstElementChild);

if Dataset.RecordCount<=0 then

exit;

F:=Dataset.FieldByName(’Word’);

While Not Dataset.EOF do

begin

S:=F.AsString;

a:=TJSHTMLAnchorElement(Document.createElement(’a’));

a.href:=’#’;

a.classlist.Add(’dropdown-item’);

a.innerText:=s;

a.dataset[’value’]:=s;

a.addEventListener(’click’,@DoWordSelected);

P.appendChild(a);

Dataset.Next;

end;

mnuAutoComplete.style.setProperty(’display’,’block’);

end;

Note that the ’OnClick’ event is set for every word. At the end, the menu is made
visible again. figure 3 on page 18 shows what the effect is of this code. Needless
to say, using some CSS the list can be made to look much nicer. The OnClick

event handler on the words sets the word in the search edit, which is a really simple
operation:

procedure TPDFSearchControl.DoWordSelected(Event: TJSEvent);

begin

18

event.PreventDefault;

edtSearch.value:=event.targetelement.innerText;

mnuAutoComplete.style.setProperty(’display’,’none’);

end;

When the user presses Enter in the search edit, or presses the search button, the
resulting action depends on the value of the cbLocal checkbox: when checked, a
local search is performed. If unchecked, then the server is queried:

function TPDFSearchControl.DoSearchKeyUp(aEvent: TJSKeyBoardEvent): boolean;

begin

Result:=False;

if (aEvent.Key<>TJSKeyNames.Enter) then

exit;

onSearch(aEvent);

end;

procedure TPDFSearchControl.onSearch(aEvent: TJSEvent);

var

aterm : string;

begin

aTerm:=edtSearch.Value;

if Length(aTerm)<=2 then

exit;

if cbLocal.Checked then

begin

if not assigned(pdfPanel) then

exit;

DoLocalSearch(aTerm);

end

else

DoIndexSearch(aTerm);

end;

As you can see, only words of length 3 or longer will be searched. The DoLocalSearch
is the search mechanism as implemented in the article on showing a PDF, and will
not be repeated here.

The DoIndexSearch method is the method we are interested in, and it is very
simple. It opens the FResult dataset:

procedure TPDFSearchControl.DoIndexSearch(aTerm : String);

begin

FResult.Close;

FSearchTerm:=aTerm;

FResult.Load();

end;

Again, the AfterOpen event of the FResult dataset is where the real work is done.
It is again a simple loop over the dataset. The TServerResultsMap is a little helper
class, which contains a field definition for every field in the result set (comparable to
persistent fields, only created at runtime). Every record from the dataset is stored

19

in a record of type TServerMatch and passed on to a routine ShowServerMatch,
which generates the HTML for the record.

procedure TPDFSearchControl.DoOpenResults(DataSet: TDataSet);

var

i : Integer;

aResult: TServerMatch;

aMap : TServerResultsMap;

NoFilter : Boolean;

begin

I:=0;

ShowResultPanel;

aMap:=TServerResultsMap.Create(Dataset);

While not aMap.Dataset.EOF do

begin

Inc(I);

aResult.FromMap(aMap);

ShowServerMatch(aResult);

Dataset.next;

end;

end;

For completeness, here is the TServerMatch record:

TServerMatch = record

ID : Integer;

Rank : Integer;

Page : Integer;

Issue : String;

Author : String;

Title : string;

URL : String;

Context : String;

Date : TDateTime;

Procedure FromMap(aMap : TServerResultsMap);

end;

The FromMap copies the values of all dataset fields into the typed record fields. The
ShowResultMatch routine uses the TServerMatch record to generate the HTML
for a match. Basically, this routine is a set of search-and-replace operations on a
HTML template, and the resulting HTML is inserted in a HTML element for which
the OnCLick is then set.

The ResultContent constant contains the HTML template, it is not shown here,
the interested reader can find it in the source code. It has variable placeholders
in {{ }} brackets: the name in the brackets is a field name and is replaced by the
value of the named field.

function TPDFSearchControl.ShowServerMatch(aResult: TServerMatch

): TJSHTMLElement;

Var

aReplace, Content, Res : String;

20

Figure 4: The search result

begin

Result:=TJSHTMLElement(Document.CreateElement(’a’));

Result.Dataset[’page’]:=IntToStr(aResult.Page);

Result.Dataset[’idx’]:=IntToStr(aResult.ID);

Result.Dataset[’title’]:=aResult.Title;

Result.Dataset[’url’]:=aResult.url;

Result.ClassName:=’panel-block result-item’;

Res:=ResultContent;

Res:=StringReplace(Res,’{{page}}’,IntToStr(aResult.Page),[rfReplaceAll]);

Res:=StringReplace(Res,’{{author}}’,aResult.Author,[rfReplaceAll]);

Res:=StringReplace(Res,’{{issue}}’,aResult.Issue,[rfReplaceAll]);

Res:=StringReplace(Res,’{{title}}’,aResult.Title,[rfReplaceAll]);

aReplace:=StringReplace(Highlight,’{{match}}’,edtSearch.Value,[rfReplaceAll]);

Content:=StringReplace(aResult.Context,edtSearch.Value,aReplace,[rfReplaceAll]);

Res:=StringReplace(Res,’{{content}}’,Content,[]);

Writeln(’Res : ’,Res);

Result.InnerHTML:=Res;ku

Result.AddEventListener(’click’,@DoServerMatchSelected);

pnlResults.appendChild(Result);

end;

Note that the HTML element in which the generated HTML is inserted (the Result
HTML element) has several data attributes with all information needed to locate
the article from which the match forms a part. The result of this code is shown in
figure 4 on page 21. The last piece of the puzzle is the DoServerMatchSelected

event handler, which is invoked when the user selects a match in the result list.

It is actually a quite simple method. It uses the data-attributes of the generated

21

Figure 5: Selecting a result match.

HTML to select the PDF and page to show. If there is a valid PDF name and page
number, the ShowPDF method of the TPDFPanel instance is used to show the correct
page.

procedure TPDFSearchControl.DoServerMatchSelected(aEvent: TJSEvent);

var

aPage : Integer;

aTitle,aURL : string;

Src : TPDFSource;

El : TJSHTMLElement;

begin

aEvent.currentTargetElement.classList.add(’is-active’);

El:=TJSHTMLElement(aEvent.currentTargetElement);

aPage:=StrToIntDef(String(El.Dataset[’page’]),-1);

aTitle:=String(El).Dataset[’title’]);

aUrl:=El.Dataset[’url’];

if (aPage<>-1) and (aUrl<>’’) then

begin

Src:=TPDFSource.new;

Src.url:=ServerURL+’pdf/’+aUrl;

pdfPanel.ShowPDF(Src,aPage);

HideResultPanel;

end;

end;

As a last step, the results panel is closed to maximize the space for the PDF viewer.
The user can open the results panel with a button, and select another match, if so
desired. The result can be seen in figure 5 on page 22

22

6 Conclusion

In this second article on PDF indexing, we showed how to use the PDF index
database constructed in the previous article on PDF indexing. All this was ac-
complished with standard components of Free Pascal and Pas2JS. Although the
resulting mechanism works satisfactorily and does what is needed, there is room
for improvement. For example the search mechanism can be switched to manticore
search (which has more options than the FPC mechanism). Additionally the client
code can be reduced by using some of the data-aware widgets distributed by pas2js
instead of the custom code written here. These improvements will be the subject
of a future contribution.

23

	Introduction
	The server search part: overview
	The server search part: The word list for autocompletion
	The server search part: The list of pages with word matches
	The browser application
	Conclusion

