
Searching PDF files: Indexing

Michaël Van Canneyt

December 28, 2022

Abstract

In a previous contribution, we’ve shown how to show a PDF in a Pas2JS
program. We also showed how to search the PDF. In this article we’ll show
how to prepare for searching a bunch of PDF files, by indexing them.

1 Introduction

In a previous article (reference: ??) we have demonstrated how to show a PDF
file in a Pas2JS program. The program allowed to show the PDF, and to search
the contents of the PDF. But what if you have lots of PDF files - for instance, all
issues of Blaise Pascal Magazine - and want to search them ? The program as it
was developed can only search a PDF file that was loaded in the browser’s memory.
Clearly, this is not very efficient for a library of many files.

Another approach is needed for this. The PDF files need to be indexed: create a
database of words in the PDF and record the pages on which each word is present.
By cross-referencing the pages with articles, we can get a list of articles that contain
a certain word in their text. When searching, the search term is looked up in the
list of words, and a list of locations (or articles) can be retrieved.

To be able to do this, we need to read the PDF file and extract the words, and
create a database with the words. Free Pascal and Lazarus contain all the tools
needed to do this job: the search database tools exists since a long time and are
used in the Free Pascal documentation at:

https://www.freepascal.org/docsearch/docsearch.var

Recently, a set of units to read a PDF file have been developed in Free Pascal.
Combining both systems will allow us to create a database of words in PDF files
and allow to search them. Since we need to read a file before we can extract the
words from it, we’ll start with discussing how to read a PDF file.

2 Dissecting a PDF file

The PDF file is ubiquitous. It is the de-facto standard for sending documents over
the internet. The PDF format was created by Adobe, and bears some resemblance
to the older Postscript format - also by Adobe. Postscript was a text-based format,
and to a degree, so is the PDF format. However, for reasons of efficiency and
reducing the size of the PDF files, binary data has entered the format. The format
allows also to append new data to the file, without modifying the previous data in
the file: new contents can simply be appended to the file.

1

The specification of the PDF format has been revised several times, each time
adding more features; luckily, the format is made in such way that an application
does not need to know all features in order to read a PDF file.

At its core, the PDF Format is simply a series of objects (called ’Indirect Objects’)
with dictionaries describing the properties of the objects. To find the objects you
need, a cross-reference section is appended, with the positions of all the objects
in the file, together with a small dictionary to find some key objects. In a simple
PDF file, all this can be accomplished with text commands. However, the indirect
objects and the cross-reference table can be encoded in binary streams, which can
be compressed in various ways, and optionally encoded as well - a mechanism called
’Filters’ in PDF parlance.

If content is appended to the file, the newly appended content needs its own cross-
reference secton which must - obviously - refer to the previous cross-references
section for existing content. This process can be repeated ad infinitum: every time
when you open a file and add some annotations to a file, the annotations will be
appended to the existing file using this mechanism. (this obviously depends on the
software, it may decide to completely rewrite the file as well...)

All this makes reading a PDF file not an easy task: various forms of decompression
must be supported, optionally encryption.

When reading a PDF file, you will be confronted with various kinds of objects in
the file. These objects have been defined in a unit called fppdfobjects

TPDFXRef a cross reference to an indirect reference. This is used to refer to
indirect objects, and is used in many places: for example, a page list is simply
a list of TPDFXRef instances referring to the underlying pages (or another page
list object)

TPDFDictionary This object encapsulates a PDF dictionary.

TPDFIndirect This is the base building block of the PDF file: an indirect object.
It has a ObjectID, a number which uniquely identifies this object. By itself
not very interesting, but each type of object in the PDF file is a descendant
of this class. every TPDFIndirect object normally has a dictionary associated
with it (available in the ObjectDict property).

TPDFDocumentInfo This object contains some meta information about the doc-
ument: author, title etc. It is basically a dictionary object.

TPDFFontObject This object describes a font. The font may or may not be
embedded in the file, usually in compressed form.

TPDFPageObject This object describes a page in the PDF document. It con-
tains a list of resources needed to draw the page: fonts and images. It also
contains the content stream: the content stream (which can be spread over
various underlying streams) is the set of commands needed to draw the page.
The CommandList property of the page object contains the actual commands
that make up the page.

TPDFPagesObject This object describes a list of pages in the PDF document:
Pages are organized in a tree, called the ’Page Tree’.

TPDFCommand This object represents a drawing command: a page is made up
of commands that - all taken together - completely render the page.

TPDFCMap this object maps character codes to glyphs in a font. Or to unicode
characters, as we will see below.

2

TPDFCMapData this class contains the actual data of a CMap object.

All these objects are owned by a TPDFDocument class, which represents the complete
PDF document. It has the following properties:

PDFversion The PDF version in the header line

StartXRef The root of the cross-reference table.

TrailerDict Trailer dictionary, set during parsing

PageCount Page count in this document

PageNodes Indexed access to top-level indirect objects that represents a page tree
node. 0 based. This can be another pages node or a page object

Page indexed access to a page by 0-based page number.

Pages an enumerator for the pages

XRefCount Count of elements in XRefs property.

XRefs Indexed access to all global XRefs (cross-references) in the PDF.

There are also some methods to find objects in the PDF File:

FindInDirectObject Find an indirect object by object ID.

FindFont Find a font object by object ID. May return Nil.

GetFont Similar to FindFont but raises an exception if the object is not found.

FindDocumentInfoObject Find the document information object. May return
Nil.

FindDocumentInfo Find document information, resolved to a TPDFDocumentInfo,
but can be Nil. You must free this object yourself.

GetDocumentInfo // Get the document information object. Raises exception if
not found. You must free this object yourself.

FindCatalog Find the document catalog object. Can return Nil.

GetCatalog Similar to FindCatalog but raises an exception if not found.

FindPages Find the top-level pages object. Return Nil if none found.

GetPages Similar to FindPages but raises an exception if not found.

To read a document from file, a PDF parser is needed. This object will actually
read the PDF file. The following is a (shortened) declaration of the PDF parser
object:

TPDFParser = class

Constructor Create(aFile : TStream; aBufferSize : Cardinal = PDFDefaultBufferSize); virtual;

Procedure ParseDocument(aDoc : TPDFDocument); virtual;

Procedure ResolveToUnicodeCMaps(aDoc : TPDFDocument);

Property LoadObjects : Boolean;

Property ResolveObjects : Boolean;

Property ResolveContentStreams : Boolean;

3

Property OnUnknownFilter : TPDFFilterEvent;

Property OnLog : TPDFLogNotifyEvent;

Property OnProgress : TPDFProgressEvent;

end;

The constructor receives a stream with the contents of the PDF document. The
ParseDocument method will actually read and parse the PDF Document. The PDF
parser can function in several modes:

� it can simply read the PDF document, and make the cross-reference table
available.

� Additionally it can also actually read all indirect objects, and make them
available as plain TPDFIndirect instances.

� if the indirect objects are read it can also convert them to objects of the
correct type: a TPDFFontObject for a font, a TPDFPageObject for a page,
and so on.

� If the objects are converted to typed objects, the parser can also interpret
the content stream of a page object, and fill the CommandList property of the
various TPDFPageObject instances.

� If the objects are converted to typed objects, the parser can also interpret the
ToUnicode CMap streams associated with fonts.

As you can see, each step means additional processing of the PDF data.

The various steps are controlled by some boolean properties:

LoadObjects load all objects when XRef is parsed. Default True.

ResolveObjects When loading objects, resolve objects to their actual class. De-
fault True.

ResolveContentStreams Resolve content streams of pages to commands. The
default is True.

ResolveToUnicodeCMaps Immediatly parse font ToUnicode CMap streams. De-
fault False.

There are some events available:

OnUnknownFilter if an unknown filter is encountered you can manually handle
the filter with this event.

OnLog a callback to which log messages are sent.

OnProgress a progress event.

So, to read a PDF File, the following code is sufficient:

{$mode objfpc}

{$h+}

uses fppdfobjects, fppdfparser, sysutils, classes;

procedure ReadPDF(const aStream: TStream; aDoc: TPDFDocument);

4

var

aParser : TPDFParser;

begin

aParser:=TPDFParser.Create(aStream);

try

aParser.ResolveToUnicodeCMaps:=True;

aParser.ParseDocument(aDoc);

finally

aParser.Free;

end;

end;

var

F : TFileStream;

Doc : TPDFDocument;

begin

F:=TFileStream.Create(’mydocument.pdf’,fmCreate or fmShareDenyNone);

try

Doc:=TPDFDocument.Create;

ReadPDF(F,Doc);

// Do somethiing with your PDF.

finally

doc.free;

f.free;

end;

end.

Or, even easier: the fppdfparser unit has a type helper for the TPDFDocument class
with LoadFromFile and LoadFromStream methods:

{$mode objfpc}

{$h+}

uses fppdfobjects, fppdfparser;

var

Doc : TPDFDocument;

begin

Doc:=TPDFDocument.Create;

try

Doc.LoadFromFile(’mydocument.pdf’);

// Do somethiing with your PDF.

finally

doc.free;

end;

end.

Which is about as easy as it gets. The LoadFromFile and LoadFromStream methods
have an overloaded variant with which the various boolean properties of the parser
can be set. The OnLog and OnProgress events can optionally also be specified.

The pdfdump example program demonstrates the use of the various objects by
allowing you to dump certain information from a PDF file.

5

3 Extracting text from a PDF file

Now that we’re able to read a PDF file, we can start extracting words from it. Alas,
this is not so easy as it may sound. PDF is a format suitable for reproducing a
page exactly the same under all circumstances: It literally contains instructions to
draw the page. a PDF reader program reads the instructions, and executes them,
by for instance drawing them on the screen, or sending appropriate commands to
the printer.

If text happens to be part of a page, then the PDF File simply has instructions to
draw images representing the letters (glyphs) on certain locations on the page. The
glyphs are part of a font, and the PDF File essentially says something like ’draw
me glyphs numbers 12 23 45 at position (145,175) on the page.’

Traditionally (and simplifying a bit, we ignore codepages for a second), the glyph
numbers were simply the byte code of the character they represented: the glyph for
the letter ’A’ was simply glyph 65 (the ASCII code for the letter A). Thus a text
”Hello World” could easily be mapped to glyph numbers in a font, and vice versa.

With the appearance of Unicode encoding of characters, and fonts with only a
subset of all characters, this mapping became more difficult. Since the PDF format
has no idea of text and simply used glyph numbers, Adobe came with a solution: a
font could specify a ToUnicode mapping: this was a mapping from glyph numbers
to Unicode character numbers. Simply said, this is a mapping which allows an
application to map font glyph numbers back to Unicode characters. The mapping
is in CMap format, and a Font dictionary in a PDF file can contain an entry towards
such a mapping, using the ToUnicode key of the dictionary.

This mechanism allows PDF-displaying software soch as Acrobat reader to offer
a text-selection mechanism and a search mechanism: when selecting the text, the
glyphs that you selected are translated back to letters. When searching, all text-
displaying commands are scanned for the glyphs they display, the glyphs are trans-
lated to unicode text using the ToUnicode map, and this text is then searched.

This is what we need to do as well if we want to index the pdf.

As indicated earlier, the contents of a page exists of a series of drawing commands.
All drawing commands are a descendant of TPDFCommand. Some of these commands
will draw a text (for example, the Tj and TJ operators), they are all descendants of
an abstract TPDFTextCommand class, which is defined as follows:

TPDFTextCommand = Class(TPDFCommand)

Public

Function GetFullText(aUnicodeMap : TPDFCMap) : RawByteString;

Function GetFullText : RawByteString; virtual; abstract;

end;

The GetFullText function returns all the glyphs for the text to be drawn. For
simple fonts, these will map directly to characters and can be used as-is. For
complicated fonts, a mapping of character glyph IDs to unicode characters is needed:
The aUnicodeMap argument to GetFullText. Several descendants of this class exist,
they implement these 2 methods.

A text drawing command just draws a text using the current font. If we want to
know what unicode map we need to use, we also need to check out the font selection
command that preceded the text drawing command: it will contain a font name.
The font name can be mapped using the page resource dictionary to a font object
(an indirect object). If that font has a ToUnicode map associated with it, this

6

will point to the unicode map to use for all text drawing commands that follow
the font selection command. The font selection operator (Tf) is represented by the
TPDFTfCommand class, defined as follows:

TPDFTfCommand = class(TPDFCommand)

property FontName : String Read GetFontName;

Property FontSize : Integer Read GetFontSize;

end;

Armed with these classes, we can now implement an algorithm to extract the text
from a PDF page. To show this algorithm, we’ll create a small demo that loads a
PDF and extracts the text of a page and shows it in a memo.

For this, we design a form with 5 elements on it:

FEPDF A filename edit to select a PDF file.

edtPageNo An edit to select a page number.

lblPageCount A label to show the page count of the loaded file.

btnShow a button to start the action: load a file and extract the text of the
selected page.

mText a memo to show the text of the selected page.

The code for this application is quite simple. The process is started with the
OnClick event handler of btnSelect: If the PDF file was not yet loaded, or a
different file was chosen, first the file is loaded using LoadPDF:

procedure TMainForm.btnShowClick(Sender: TObject);

Var

aPage : Integer;

begin

if (FDoc=Nil) or (FEPDF.FileName<>FloadedFile) then

LoadPDF(FEPDF.FileName);

aPage:=StrToIntDef(edtPageNo.Text,0);

if (aPage>0) and (aPage<FDoc.PageCount) then

ShowPageText(aPage)

else

ShowMessage(’Invalid page, valid values 1-’+IntTostr(FDOc.PageCount));

end;

When the file is loaded, the page number is examined, and if it is valid, the page
text is shown using ShowPageText. If it is invalid, an error message is shown.

The LoadPDF is not substantially different from what we’ve shown earlier:

procedure TMainForm.LoadPDF(const aFileName : string);

begin

FreeAndNil(FDoc);

FDoc:=TPDFDocument.Create;

Try

FDoc.LoadFromFile(aFilename);

7

FLoadedFile:=aFileName;

lblPageCount.Caption:=’/’+IntToStr(FDoc.PageCount);

except

on E : Exception do

ShowMessage(’Error loading PDF file :’+E.Message);

end;

end;

The ShowPageText is where the real work happens. It is in fact a simple loop, with
2 cases: When a font selection command is encountered, the CMAP for the font’s
ToUnicode mapping is extracted and saved.

procedure TMainForm.ShowPageText(aPageNo : Integer);

Var

aPage : TPDFPageObject;

Cmd : TPDFCommand;

FontName,Rawtext : RawByteString;

aFontRef : TPDFRefData;

UnicodeMap : TPDFCMap;

aFontObj : TPDFFontObject;

begin

mText.Clear;

aPage:=FDoc.Page[aPageNo];

for Cmd in aPage.CommandList do

begin

if Cmd is TPDFTfCommand then

begin

FontName:=TPDFTfCommand(Cmd).FontName;

if (FontName<>’’) and (FontName[1]=’/’) then

Delete(FontName,1,1);

aFontRef:=aPage.FindFontRef(FontName);

aFontObj:=FDoc.FindFont(aFontRef); // TPDFFontObject

if Assigned(aFontObj) then

UnicodeMap:=aFontObj.UnicodeCMap

else

UnicodeMap:=nil;

end

else If cmd is TPDFTextCommand then

begin

rawText:=TPDFTextCommand(Cmd).GetFullText(UnicodeMap);

SetCodePage(RawText,CP_UTF8);

mText.Lines.Add(RawText);

end;

end;

end;

When a text drawing command is encountered, the GetFullText method is used
to extract the full text. If there was an active unicodemap, then that is used to
interpret the text. If there was no unicodemap, then the font is assumed to be a
simple font and the raw text should be readable (this is not 100% correct, as we’ll
see) The codepage of the text is set to UTF8 because that is what the Lazarus LCL
framework expects, and then the text is added to the memo. The result can be seen

8

Figure 1: Extracting the text of a PDF

in figure figure 1 on page 9. There are 2 things to note in the screenshot:

� The page text contains some characters that cannot be displayed. This is the
letter combination fi for which a special glyph is used, and which cannot be
displayed in the memo.

� The text contains linebreaks at unexpected places. This is a consequence of
the simple mechanism we used to extract the text.

Whenever a font change happens in the displayed text (another font, or simply the
same font printed bold or italic), the PDF will contain a paint instruction for each
part of the text: the text leading up to the font change, the text in the alternative
font, and the rest of the text, which can be in the original font or yet another font.
Note that there is no guarantee that the instructions will appear in the order that
the words appear in the text: the layouting mechanism could decide to first draw
all words in one font, then words in another font, thus saving on font selection
commands.

In order to reconstruct actual lines or paragraphs of text, the positioning of the
text would also need to be examined: all text drawing commands that are on the
same baseline can be expected to form a single line of text, although there is no
guarantee that this is actually so.

For the purposes of extracting words from a text, the above mechanism is suffi-
cient: disregarding words for which a different font was selected halfway a word, or
hyphenized words, a text drawing command will contain complete words.

9

4 A class to index words

Free Pascal comes with a unit called fpIndexer. This contains some abstract classes
which serve as the base class for a word indexing and searching mechanism.

TFPIndexer = class(TComponent)

public

constructor Create(AOwner: TComponent); override;

destructor Destroy; override;

function IndexStream(const AURL: UTF8String;

ADateTime: TDateTime;

S: TStream;

Reader: TCustomFileReader): int64;

function IndexFile(AURL: UTF8String; AllowErrors: boolean;

const ALanguage: UTF8String = ’’): int64;

function Execute(AllowErrors: boolean): int64;

property ErrorCount: int64 read FErrorCount;

published

property Language: UTF8String;

property OnProgress: TIndexProgressEvent;

property UseIgnoreList: boolean;

property IgnoreNumeric: boolean;

property CommitFiles: boolean;

property Database: TCustomIndexDB;

property ExcludeFileMask: UTF8String;

property FileMask: UTF8String;

property SearchPath: UTF8String;

property SearchRecursive: boolean;

property DetectLanguage: boolean;

Property CodePage : TSystemCodePage;

Property StripPath : String;

end;

This class can be used to index the contents of files: the IndexStream and IndexFile

methods will create a database of words from the contents of a text file. The various
properties allow to control the search for files on disk and how to index them. The
meaning of most of these properties is clear: only ’CommitFiles’ needs explanation:
the default behaviour is to enter all data in one bug trancaction in the database.
When this property is set to True, a commit will be done after each indexed file.

The indexer uses a factory to create a tokenizer per file type (determined by its
extension): the tokenizer will return all the words in a file for a certain file type.
You can register a handler for a file type, and this handler will then be used to read
the words and fill the database. The thing to do would be to create a handler for
PDF files.

For educational reasons, we’ll take a slightly different approach here.

The interesting property is the Database property: this determines where the in-
dexer writes the words and matches. The TCustomIndexDB class is defined as fol-
lows:

TCustomIndexDB = class(TComponent)

public

procedure CreateDB; virtual; abstract;

procedure Connect; virtual; abstract;

10

procedure Disconnect; virtual;

procedure CompactDB; virtual; abstract;

procedure BeginTrans; virtual; abstract;

procedure CommitTrans; virtual; abstract;

procedure DeleteWordsFromFile(URL: UTF8String); virtual; abstract;

procedure AddSearchData(ASearchData: TSearchWordData); virtual; abstract;

procedure FindSearchData(SearchWord: TWordParser;

FPSearch: TFPSearch;

SearchOptions: TSearchOptions); virtual; abstract;

Function GetAvailableWords(out aList : TUTF8StringArray;

aContaining : UTF8String;

Partial : TAvailableMatch) : integer;virtual; abstract;

procedure CreateIndexerTables; virtual; abstract;

end;

Most of these methods are self-explaining.

CreateDB Create the index database.

CreateIndexerTables Create the tables needed by the indexer.

Connect Connect to the index database.

Disconnect Disconnect from the index database.

CompactDB Clean up the DB.

BeginTrans Start a transaction (if available in the backend).

CommitTrans Commit a transaction (if available in the backend).

DeleteWordsFromFile Delete all word matches from a file.

AddSearchData Add a word match.

FindSearchData find word matches.

GetAvailableWords Get a list of available words matching a pattern.

The FPIndexer package contains several descendants of this class:

TPGIndexDB Is a descendant that writes the data to a PostgreSQL database.
Implemented in the unit pgindexdb

TFBIndexDB Is a descendant that writes the data to a Firebird/Interbase database.
Implemented in the unit fbindexdb

TSQLiteIndexDB Is a descendant that writes the data to a SQLite database.
Implemented in the unit sqliteindexdb

TMemIndexDB Is a descendant that keeps the data in memory. Implemented in
the unit memindexdb

TFileIndexDB Is a descendant that keeps the data in memory, but can addition-
ally save the data to a file. Implemented in the unit memindexdb

Rather than create a file type handler for PDF files, we can use one of the descen-
dants of the TCustomIndexDB class directly to fill a database with search words.

We’ll do this in a class TPDFindexer (implemented in the unit fppdfindexer) with
the following interface, it can be used to index a single PDF file.

11

TPDFIndexer = Class(TComponent)

Public

Procedure Connect;

Procedure CreateTables;

Procedure Disconnect;

Procedure IndexPDF(const aFileName : string); overload;

Procedure IndexPDF(const aStream : TStream); overload;

Property PDFURL : String;

Property Language : String;

Property Indexer : TSQLDBIndexDB;

Property MinWordLength : Integer;

Property IgnoreWords : TStrings;

Property OnLog : TPDFIndexLogEvent;

end;

The Connect, CreateTables and Disconnect methods simply call their counter-
parts in the Indexer, which is a descendant of TCustomIndexDB that writes to a
postgres or firebird database. Which of these three databases is used depends on a
define in the beginning of the file:

{ $DEFINE USEFIREBIRD}

{$DEFINE USEPG}

Since the class only indexes a single document, the URL to write in the database
can be specified in the PDFURL property. It will be set to the PDF filename if nothing
was set. The Language property has a similar purpose: it determines the language
written into the database.

The IgnoreWords strings property allows to provide a list of words to ignore, and
the MinWordLength is set by default to 3, meaning that words with length less than
3 will not be inserted in the database. The log event serves to log progress.

The main method is IndexPDF, which starts the whole indexing process. The
method accepts a filename or a stream. It is simple enough:

procedure TPDFIndexer.IndexPDF(const aStream: TStream);

begin

DoLog(’Start indexing PDF %s’,[PDFURL]);

Connect;

try

DoIndexPDF(aStream);

DoLog(’Done indexing PDF %s’,[PDFURL]);

finally

Disconnect;

end;

end;

The protected DoIndexPDF reads the PDF file and indexes the words by calling the
IndexPDFPage for each page:

procedure TPDFIndexer.DoIndexPDF(const aStream: TStream);

var

aPageNo : integer;

12

aPage : TPDFPageObject;

aParser : TPDFParser;

Doc : TPDFDocument;

begin

aPageNo:=0;

Doc:=Nil;

aParser:=TPDFParser.Create(aStream);

try

Doc:=TPDFDocument.Create();

aParser.ResolveToUnicodeCMaps:=True;

aParser.ParseDocument(Doc);

For aPage in Doc.Pages do

begin

Inc(aPageNo);

IndexPDFPage(aPage,aPageNo);

end;

finally

doc.free;

aParser.Free;

end;

end;

The IndexPDFPage simply makes sure that each page is handled in a separate
transaction, the real work is done in the DoIndexPDFPage method:

procedure TPDFIndexer.IndexPDFPage(const aPage: TPDFPageObject; aPageNo: Integer);

begin

Indexer.BeginTrans;

try

DoIndexPDFPage(aPage,aPageNo);

Indexer.CommitTrans;

DoLog(’Indexed page %d’,[aPageNo])

except

On E : exception do

DoLog(’Error %s while indexing page %d: %s’,[E.ClassName,aPageNo,E.Message]);

end;

end;

The DoIndexPDFPage method works similar to what our PDF page text display
program did, it scans the commands of the page for texts. Every found text is split
into words, which are then saved in the database:

procedure TPDFIndexer.DoIndexPDFPage(const aPage: TPDFPageObject; aPageNo: Integer);

Var

aData: TSearchWordData;

aCmd : TPDFCommand;

aWord,FontName,Rawtext : RawByteString;

aFontRef : TPDFRefData;

UnicodeMap : TPDFCMap;

aFontObj : TPDFFontObject;

aDoc : TPDFDocument;

13

begin

aDoc:=aPage.Document;

With aData do

begin

FileDate:=Date;

Language:=’EN’;

Position:=aPageNo;

URL:=PDFURL;

end;

for aCmd in aPage.CommandList do

begin

if aCmd is TPDFTfCommand then

begin

FontName:=TPDFTfCommand(aCmd).FontName;

if (FontName<>’’) and (FontName[1]=’/’) then

Delete(FontName,1,1);

aFontRef:=aPage.FindFontRef(FontName);

aFontObj:=aDoc.FindFont(aFontRef); // TPDFFontObject

if Assigned(aFontObj) then

UnicodeMap:=aFontObj.UnicodeCMap

else

UnicodeMap:=nil;

end

else If aCmd is TPDFTextCommand then

begin

rawText:=TPDFTextCommand(aCmd).GetFullText(UnicodeMap);

aData.Context:=Rawtext;

SetCodePage(RawText,CP_UTF8);

for aWord in DoSplit(RawText) do

begin

aData.SearchWord:=aWord;

Indexer.AddSearchData(aData);

end;

end;

end;

end;

The TSearchWordData record used to insert data in the index database is defined
in the fpIndexer unit, and is used by the indexer class both for inserting data as
when returning results when searching for data:

TSearchWordData = record

Context: UTF8String;

FileDate: TDateTime;

Language: UTF8String;

Position: int64;

Rank: integer;

SearchWord: UTF8String;

URL: UTF8String;

end;

The meaning of these fields are:

Context some context around the word: usually the line on which the word ap-

14

pears.

FileDate The file date of the file in which the word appeared.

Language A 2-letter language code.

Position A position in the file. In our application, we will insert the page number
here.

Rank an integer signifying the ”rank”: this can be used to score the word.

SearchWord The word actually to be inserted. Will be returned on search.

URL the file in which the word was found. This will be the name of the PDF file.

The DoSplit method used to split the text into words deserves some attention. It
is a virtual method, so it can be overridden to implement a different mechanism.

The DoSplit method as written here only accepts the latin letters ’A’..’Z’ as words:
if a different language (cyrillic or an eastern language) is needed, then this method
needs to be overridden.

function TPDFIndexer.DoSplit(const aText: RawbyteString): TStringDynArray;

Var

aCount : Integer;

c : AnsiChar;

Cleaned : String;

Procedure MaybeAdd;

begin

if (Cleaned<>’’) and AllowedWord(Cleaned) then

begin

Result[aCount]:=Cleaned;

inc(aCount);

end;

Cleaned:=’’;

end;

begin

aCount:=0;

Cleaned:=’’;

Result:=[];

SetLength(Result,Length(aText) div MinWordLength);

for C in aText do

if Upcase(C) in [’A’..’Z’] then

Cleaned:=Cleaned+C

else

MaybeAdd;

MaybeAdd;

SetLength(Result,aCount);

end;

The method is not very difficult to understand. Note that here the check on allowed
words is performed: if a word is not allowed, it is not returned. The AllowedWord

is quite simple:

15

function TPDFIndexer.AllowedWord(aWord : String) : Boolean;

begin

Result:=Length(aWord)>MinWordLength;

if Result then

Result:=FHash.Find(aWord)=Nil;

end;

The FHash variable is a hash list built from the list of words in the IgnoreWords

property.

With this, the indexer class is ready. All that needs to be done is to use it in a
program!

5 The PDF indexer program

The indexer program is a simple program with inputs for the TPDFIndexer class. It
allows to index a single file or multiple files: it can scan a directory for PDF files. It
also has a button to create the needed tables for the indexer, and a memo to show
log output and progress messages.

The form is depicted in figure 2 on page 19. Usage is as follows:

� Enter the database connection info. The database for the index must already
exist somewhere, and you must supply the location plus the user credentials
to connect to it.

Reminder: The fppdfindexer unit is by default set up to use Postgres
database. If you wish to use another database (firebird), you must change
the defines in the start of the fppdfindex unit.

� Press the ’Test connection button’. You will get a message if the connection
failed or succeeded. The ’Create tables’ and ’Index PDFs’ buttons will become
active.

� If you did not yet create the index tables, use the ’Create tables’ to create the
tables.

� Set the other parameters: a file with words to ignore, the language code.

� Select a PDF file or a directory with PDF files to index.

� Press the ’Index PDFs’ button to start the indexing process.

When the form is created, it creates an instance of the TPDFIndexer class:

procedure TMainForm.FormCreate(Sender: TObject);

begin

FIndexer:=TPDFIndexer.Create(Self);

FIndexer.OnLog:=@DoIndexLog;

if FileExists(SIniFile) then

ConfigDB(SIniFile)

end;

If a config file (SIniFIle) exists, it is read and used to restore the contents of the
various inputs: this way the user does not need to fill in this data every time. This

16

is simply reading the contents of an .ini file, and the interested reader can consult
the sources of the sample program.

The operation of the program is quite simple: All connection data must be filled
in. Using the Test Connection button, the connection can be tested. When the
test is successful, the database tables can be made, or, if the tables are known to
exist, the index button can be used to start indexing files.

The test connection button executes the TestConnection method:

procedure TMainForm.TestConnection;

begin

ConfigConnection;

Try

FIndexer.Indexer.Connect;

FIndexer.Indexer.Disconnect;

FCanConnect:=True;

SaveDBConfig(SIniFile);

except

on E : Exception do

ShowMessage(’Could not connect to index database:’#10+E.Message);

end;

end;

The configconnection method simply transfers the data entered in the edits to the
various properties of the indexer:

procedure TMainForm.ConfigConnection;

begin

With Findexer.Indexer do

begin

DatabasePath:=edtDatabaseName.Text;

Hostname:=edtHostname.Text;

UserName:=edtUserName.Text;

Password:=edtPassword.Text;

end;

end;

The main method of this program is the actIndexExecute method. This the
OnExecute event handler of the actIndex action.

It starts by setting the language property and reading the list of words to ig-
nore. After that it either indexes the requested file using IndexFile, or calls
IndexDirectory: a routine that retrieves all PDF file names from the selected
directory, and calls IndexFile using the found names.

procedure TMainForm.actIndexExecute(Sender: TObject);

Var

Msg : String;

begin

if (FEIgnoreWords.FileName<>’’) and FileExists(FEIgnoreWords.FileName) then

FIndexer.IgnoreWords.LoadFromFile(FEIgnoreWords.FileName);

FIndexer.Language:=edtLanguage.Text;

17

FFileCount:=0;

FLastError:=’’;

if RBFile.Checked then

IndexFile(FEPDF.FileName)

else

IndexDirectory(DEPDFs.Directory);

Msg:=Format(’Done indexing %d files.’,[FFileCount]);

if FlastError<>’’ then

Msg:=Msg+#10’There were errors:’#10+FLastError;

ShowMessage(Msg)

end;

At the end of the routine, some statistics are shown. The IndexFile is simplicity
itself. The main logic consist of catching possible errors and displaying them in the
output log.

procedure TMainForm.IndexFile(const aFile : string);

Const

ErrMsg = ’Error %s while indexing %s: %s’;

begin

try

FIndexer.Connect;

try

Inc(FFileCount);

FIndexer.IndexPDF(aFile);

finally

Findexer.Disconnect;

end;

except

On E : Exception do

begin

FLastError:=Format(ErrMsg,[E.ClassName,aFile,E.Message]);

DoLog(FLastError);

end;

end;

Application.ProcessMessages;

end;

These are the main methods of the program. The indexer is shown in figure 2 on
page 19.

6 Conclusion

In this article, we constructed a PDF indexing program using units provided with
Free Pascal and Lazarus. Along the way, we touched upon many subjects: the
structure of a PDF file, the many objects needed to extract text from a PDF file.
We also showed the classes made available by Free Pascal to create an indexing
database. This database is now ready to be used in a searching program: this
can be a native program or a pas2js program. That is the subject of a second
article. Note that the indexer created by Free Pascal is pretty straightforward and
the design is limited: only full words can be searched. For more powerful searching,

18

Figure 2: The PDF indexer program

a full-text indexer such as manticore search must be used. We’ll investigate that in
a separate contribution.

19

	Introduction
	Dissecting a PDF file
	Extracting text from a PDF file
	A class to index words
	The PDF indexer program
	Conclusion

