
Extended RTTI in pas2js

Michaël Van Canneyt

April 21, 2025

Abstract

Extended RTTI exists since a long time in Delphi. Since some time, it also
exists in FPC, and now it has also arrived in Pas2JS.

1 The history of RTTI

Since the first version of Delphi, RTTI exists: this is the mechanism provided by
Delphi to get information about published fields, properties and methods in a class.
The whole concept of streaming as implemented in the classes unit is built on this:
A component publishes some properties. The list of properties can be queried by
the object inspector and displayed, and the values of the properties can be retrieved
or set. When you are done designing, the properties are written to the form file,
and at runtime the form is recreated based on what was written in the form file.
Free Pascal also introduced these concepts, and thus enabled the construction of
Lazarus’ LCL and the IDE.

For a long time, this was sufficient: the VCL and LCL work like this still today.

At some point, the authors of Delphi decided that having information about pub-
lished properties, fields and methods was not enough, and they introduced Extended
RTTI: From that point on, information of all fields, properties and methods in a
class could be retrieved, regardless of their visibility. Because adding all this in-
formation to the binary increases the binary size, generation of this RTTI was put
under control of the programmer, using the RTTI directive: It allows the program-
mer to specifiy exactly for which visibilities the RTTI must be generated. This can
be specified for methods, fields and properties.

The default is:

{$RTTI INHERIT

METHODS([vcPublic, vcPublished])

FIELDS([vcPrivate..vcPublished])

PROPERTIES([vcPublic, vcPublished])

}

This means that by default, RTTI information is available for public and published
methods and properties, and for all fields regardless of their visibility.

So from one day to the next, a lot more RTTI was made available to the programmer.

The original published RTTI was limited to simple values and classes: it was not
possible to publish e.g. arrays or records. Instead, the array was simulated by the
TCollectionItem and TCollection classes, and the record was simulated by the
TPersistent class. The programmer had to make sure that the TPersistent and

1

TCollectionItem were properly behaved, i.e. he had to implement a method to
copy one TPersistent to another (the Assign method).

With the introduction of Extended RTTI, RTTI information for all types was sup-
ported, including records and arrays. The original API for retrieving the infor-
mation (in the TypInfo unit) was in need of an update to support all this new
information. The System.Rtti unit was created to handle all this new RTTI infor-
mation. The API was modernized, instead of a procedural API now a set of objects
exist that allow you to retrieve the RTTI and manipulate all types. Additionally,
the Invoke function was created, to allow the programmer to call any method based
on its RTTI.

Because all types were supported by Extended RTTI, a new data structure to handle
a value of any possible type was needed: The ’Variant’ record would fit this purpose,
and so the TValue type was introduced: The TValue type allows you to store and
manipulate a value of any type in Pascal.

Additionally, it became possible to introduce attributes: These are annotations to
the code, which can be retrieved at run-time using RTTI.

All these new features offered new possibilities: It now became possible to introduce
a ORM (Object Relational Mapping) and handle RPC (Remote Procedure Call)
mechanisms with much less effort.

Introducing all these new possibilities in Free Pascal has taken a long time and
progressed in several stages. The support for attributes was added quite quickly
after Delphi introduced them, but only for published properties and classes. At the
same time, the beginnings of the rtti unit were made. Over time the rtti unit
was extended, and recently the FPC compiler was adapted to generate Extended
RTTI.

For backwards compatibility the Extended RTTI in Free Pascal is not generated by
default for TObject, only when you compile the RTL and packages with a special
define, will the extended RTTI be activated for TObject and hence all objects.
This special define (ENABLE DELPHI RTTI) is activated if you compile the so-called
unicode RTL, which was introduced for maximum compatibility with recent versions
of Delphi.

2 RTTI in Pas2JS

With FPC able to handle Extended RTTI, Pas2JS could not stay behind. Thanks
to some sponsoring, the extended RTTI has been implemented in Pas2JS as well:

� The pas2js transpiler now recognizes the RTTI directive and adapts the RTTI
generation accordingly.

� The RTTI unit has been enhanced to allow the use of the new RTTI.

The implementation in Pas2JS is not binary compatible with the implementation
in Free Pascal or Delphi: In Delphi and FPC the RTTI is encoded in special data
structures in the binary. Pas2js does not create binary code, it translates pascal to
Javascript, and it makes more sense to encode the RTTI in lightweight Javascript
objects.

Pas2js does not create pre-compiled units. This means that when you compile, it
does a complete build. So, order to have Delphi-Compatible RTTI available in all
objects, it is sufficient to define ENABLE DELPHI RTTI when compiling your project.

2

Figure 1: Enabling generation of Extended RTTI

On the command-line this means adding -dENABLE DELPHI RTTI to the command-
line options:

pas2js -dENABLE_DELPHI_RTTI yourproject.pas

if you use the Lazarus IDE, then you can add the define to your project settings,
as shown in figure 1 on page 3. After that, the use of the rtti is the same as in FPC
or delphi.

To demonstrate this, we’ll create a small demo program. So, we start a ’Web
Browser Application’ in Lazarus, tell it to create a HTML file and use the ’Browser-
Console’ unit to write output to the console.

In the new project, we define the following class:

TIntegerObject = class(TObject)

Private

FValue : Integer;

Public

procedure WriteValue(const aValue : string);

property Value : Integer Read FValue;

end;

The following routine will find the RTTI information for the ’FValue’ private field,
sets the value, and then writes the ’Value’ property to verify that the correct value
has been set.

3

procedure TestField;

var

C : TRTTIContext;

Info : TRttiType;

LClassInfo : TRttiInstanceType absolute Info;

Field : TRttiField;

Obj : TIntegerObject;

lValue : TValue;

begin

Obj:=TIntegerObject.Create;

C:=TRTTIContext.Create;

Info:=C.GetType(TypeInfo(TIntegerObject));

if not (Info is TRttiInstanceType) then

Writeln(’No class info available for TIntegerObject’)

else

begin

Field:=LClassInfo.GetField(’FValue’);

If not assigned(Field) then

Writeln(’Class has no field named FValue!’)

else

begin

lValue:=TValue.FromOrdinal(TypeInfo(Integer),123);

Field.SetValue(Obj,lValue);

Writeln(’New value is : ’,Obj.Value,’ (expected 123)’);

end;

end;

end;

As always when working with Rtti, it starts by creating a Rtti context, which is
used to keep the created Rtti info while using Rtti. It then proceeds by querying
the RTTI info for the TIntegerObject class and it’s FValue private field. If all info
has been found, it constructs a TValue record holding an integer value of 123. The
SetValue method of the TRttiField class can then be used to set the value.

A second demo is to call a method using ’Invoke’. For this, we fetch the method’s
RTTI in the same way as was done for the field.

procedure TestMethod;

var

C : TRTTIContext;

Info : TRttiType;

LClassInfo : TRttiInstanceType absolute Info;

lMethod : TRttiMethod;

Obj : TIntegerObject;

lValue : TValue;

begin

Obj:=TIntegerObject.Create;

C:=TRTTIContext.Create;

Info:=C.GetType(TypeInfo(TIntegerObject));

if not (Info is TRttiInstanceType) then

Writeln(’No class info available for TIntegerObject’)

4

Figure 2: The Extended RTTI in action

else

begin

lMethod:=LClassInfo.GetMethod(’WriteValue’);

If not assigned(lMethod) then

Writeln(’Class has no method named WriteValue!’)

else

begin

lValue:=TValue.specialize From<string>(’abc’);

lMethod.Invoke(Obj,[lValue]);

end;

end;

end;

The TValue is constructed slightly differently (using ObjFPC’s syntax for specializ-
ing a generic), but other than that the code is quite similar. Adding a main program
source to call these procedures is simple, and with some additional HTML and CSS
we can obtain an output as shown in figure 2 on page 5.

3 Conclusion

With the support for extended rtti, the Delphi compatibility of pas2js has been
much improved. It should be noted that adding Extended RTTI increases the size
of the generated javascript dramatically. For a desktop application this probably
does not matter so much, but the size of the generated Javascript has a negative
impact on HTML page loading times. So limiting the use of RTTI to the classes
that actually need it may be a good idea.

5

	The history of RTTI
	RTTI in Pas2JS
	Conclusion

