
Executing programs on the server in Pas2JS

Michaël Van Canneyt

September 8, 2023

Abstract

In this article we show how to give the user of a browser-based program
feedback from long-running processes on the server, using 2 components: one
in pas2js, one in Free Pascal/Lazarus.

1 Introduction

When using a web-based program, not everything can be done in the browser. Of-
ten, tasks are executed through some RPC (Remote Procedure Call) mechanism
on the webserver. This can be a simple task such as executing an SQL state-
ment on a database and returning a result. Or it can be a more complicated and
time-consuming task such as making a backup of a database, indexing PDF files,
compiling a software project and running a test suite, or even installing software on
the server. Ideally, the output of these remote programs should also be presented
to the user.

To keep programs scalable, these tasks should be short-lived. A return time of 1
second for a HTTP request is already a long time, so executing a time-consuming
task and waiting for the return using a single HTTP request is not a good idea:
the HTTP server is occupied with the request, the browser or any proxy servers
between the HTTP server and the browser may decide to time-out your request.

Much better is to start the process using a HTTP request, and use a mechanism
to poll the status of the executed process. In this article we present one such
mechanism.

2 Architecture

The solution we present here consists of 2 components. One component which is
used on the server, and which can be used to start a process, capture its output and
poll for the status of the process. The other component takes care of the polling
process on the client.

These components are ignorant of the communication mechanism between browser
and server, this means that they do not implement the actual RPC calls used to
start the process: There are many possible mechanisms, and some may be more
suitable for your purpose than others.

The components are called TProcessCapture for the server part and TProcessCapturePoller
for the client (pas2js) part. The server part takes care of executing a program and
redirecting the output to a file, the client part implements the polling mechanism
and some callbacks to handle the actual server calls and the result.

1

We’ll demonstrate both components with a simple set of programs:

� A test program to be executed. It is used for demonstration purposes only.

� A HTTP server program that allows to serve HTML files and that offers an
RPC mechanism to start the test program and handle status requests.

� a Simple pas2js program that will run in the browser and which will remotely
execute the test program. It will show the output of the test program in the
browser.

We’ll start with the test program.

3 The test program

To demonstrate the workings, the test program needs to do 3 things:

1. It must run for some time, several seconds at least. This is done with a simple
loop and a call to sleep.

2. needs to show that it receives command-line arguments: we will simply output
the program parameters.

3. It must demonstrate that it is run in a specific directory. We’ll just print the
working directory.

4. It needs to produce some output.

All this is easily accomplished with a trivial program:

uses sysutils;

var

i : integer;

D : TDateTime;

begin

Writeln(’Current dir: ’,GetCurrentDir);

Write(’Args:’);

For I:=1 to ParamCount do

Write(’ ’,ParamStr(i));

Writeln();

D:=Now;

For I:=1 to 150 do

begin

Sleep(100);

Writeln(’Tick ’,i);

Flush(output);

end;

Writeln(SecondsBetween(Now,D), ’ seconds elapsed’);

flush(output);

end;

2

The only noteworthy thing about this program is that it flushes standard output
after writing a line: By default, Free Pascal buffers output of writeln statements if
it detectes that it is not writing to a console. Since our program will be run with
the output redirected, the buffering will be activated, and so, in order to send the
output faster to the brouwser, we flush standard output manually.

4 The server component

Before explaining the server component, it is a good idea to explain why a new
component is needed. After all, Free Pascal ships since ages with the TProcess

component, which can be used to start a process and read its output using a stream.
So why not simply use that ? This component is not really suitable for our task,
for several reasons:

� A web server process (e.g. cgi, fastcgi) can be ended before the process has
finished. All information about the executed process would be lost.

� The component cannot be used to redirect output to a file. It would require
reading all data from the file in a separate thread, save it somewhere etc. This
complicates matters considerably, and if the HTTP program ends, all further
input/output would stop.

� similarly, no input file can be specified, it would require similar handling as
the output file.

� Item since the TProcess component is confined to a single process, there is
no way to scale your web application.

In essence, the TProcess component is stateful, and we need a stateless component
in order to work in a web environment.

So, a new component is needed.

The server component TProcessCapture has the following declaration:

TProcessCapture = Class(TComponent)

Public

Function Execute(Exe : String; Args: Array of string) : string;

Function Execute(Exe : String; Args: TStrings) : string;

Function CleanupProcess(Const AProcess : String) : Boolean;

Function GetOutputFile(Const AProcess : String) : String;

Function GetPidFile(Const AProcess : String) : String;

Function GetStatusFile(Const AProcess : String) : String;

Function GetProcessID(Const AProcess : String) : Integer;

Function IsProcessRunning(Const AProcess : String) : Boolean;

Function GetProcessExitStatus(Const AProcess : String) : Integer;

Function GetProcessOutput(Const AProcess : String; Var AOffSet : Integer) : RawByteString;

Published

Property LogDir : String Read FLogDir Write FLogDir;

Property InputFile : String Read FInputFile Write FInputFile;

Property WorkingDir : String Read FWorkingDir Write FWorkingDir;

Property OutputCodePage : TSystemCodePage Read FOutputCodePage Write FOutputCodePage;

end;

The main methods are almost self-explanatory:

3

Execute Executes the program Exe, passing it the arguments Args, which can be
given as an array of strings, or a stringlist. The return of this function is a
process identifier.

CleanupProcess will clean up the output and status files for the process identified
by AProcess. You should call this only after the process has exited.

IsProcessRunning returns True if the process identified by AProcess is still run-
ning.

GetProcessExitStatus returns the exit status of the process identified by AProcess.
if the process is still running, -1 is returned.

GetProcessOutput returns the output of the process identified by AProcess,
starting at byte offset AOffSet (zero based) till the end of available output.

There are some auxilary methods that you do not need under ordinary circum-
stances:

GetOutputFile Returns the name of the output file associated with the process
aProcess.

GetPidFile Returns the name of the process ID file associated with the process
aProcess. This file will be created as soon as the process starts.

GetStatusFile Returns the name of the status file associated with the process
aProcess. This file will only exist after the program has exited.

GetProcessID Returns the process ID of the process AProcess.

Lastly, there are some properties:

LogDir The directory where all log and status files are created. The directory will
be created if it does not exist.

InputFile A file with prepared input for the process. Note that this does not allow
you to interact with the process. This property is only used when starting the
program.

WorkingDir The working directory for the started program. This property is only
used when starting the program.

OutputCodePage The codepage in which the program writes its output.

To work with this component, you will typically perform the following steps:

1. Set appropriate values for LogDir, InputFile, WorkingDir and OutputCodePage.
They contain sensible defaults, but it is better to be explicit.

2. Start the program using the Executemethod, and save the resulting ProcessID
string.

3. initialize an offset variable to zero.

4. Check if the process is still running with IsProcessRunning, passing it ProcessID.

5. Get the output of the process using GetProcessOutput, passing it ProcessID
and the current offset. Update the offset.

4

6. Repeat the last 2 steps till the program exits.

It should be noted that you can free the TProcessCapture after every step and
recreate it before performing a call: it is stateless. This is necessary if the component
is to work in a web environment where the different steps will be performed as part
of different HTTP requests: the steps may be performed by different instances of the
application server. To work correctly, the LogDir and OutputCodePage properties
must be set to the same values between invocations.

It also means that the same component can be used to control different processes.
Although this is not recommended if you use threads: the component is not re-
entrant.

To do its work, the TProcessCapture component executes a small helper program
called taskhelper: this program does the work of launching the actual program
that needs to be executed with redirected in and output. It also takes care of
registering the exit status of the program. On Unix platforms, it is possible to
do without this program, but on Windows, the mechanism to start a new pro-
cess CreateProcess necessitates the use of an extra program. To make the be-
haviour across platforms consistent, the taskhelper program is used everywhere.
Its sources are distributed with the trunk version of FPC, but the source has been
included in the sources of this article.

5 The server program

To demonstrate the working of the component, we’ll make a small HTTP server
that executes the test program when it receives a StartProcess command from
the browser through JSON-RPC, and which has a GetStatus command to get the
status of the process. The process will also serve the files for the client application.
To do this, in the ’New project’ dialog we select ’HTTP Server application’, and
in the wizard that is shown we select ’Server files from default location’ and under
’Web module to create’ we select ’Web JSON-RPC Module’, as shown in figure 1 on
page 6. In the next dialog which creates the module to JSON-RPC Module, we only
need to register the web module (we have only 1 module in the server application),
(see figure 2 on page 7) and we’ll use the /RPC URL path to serve JSON-RPC
requests from.

Once that is done, we need 2 JSONRPCHandler components from the FPWeb tab
in the component palette, one for each request:

StartProcess this call takes 2 arguments: 2 strings, which we must define in the
Params property of the component. We’ll give them the names A and B. The
call will return the process identifier to the client application.

GetStatus this call also takes 2 arguments: a string (the ProcessID), and an Int64
number (an offset), we also define them in the Params property. The call will
return the process exit code (-1 if the process is still running), the available
output starting at the given offset identifier to the client application. It also
returns the new offset.

These 2 RPC calls are the API we expose to the browser to control our process.
The actual work is done by the TProcessCapture component.

The TProcessCapture component is not (yet) on the component palette of Lazarus,
so we create it in code in the OnCreate handler of the datamodule, and destroy it
in the OnDestroy handler:

5

Figure 1: The start of the server application

6

Figure 2: Creating the JSON-RPC webmodule

procedure Tprocesscontrol.DataModuleCreate(Sender: TObject);

begin

Capture:=TProcessCapture.Create(Self);

end;

procedure Tprocesscontrol.DataModuleDestroy(Sender: TObject);

begin

FreeAndNil(Capture);

end;

The latter is strictly speaking not necessary since the component is owned by the
datamodule and will be destroyed when the datamodule is destroyed, but for clarity
we destroy it manually anyway.

In the OnExecute event of the StartProcess handler, we collect the 2 arguments
A and B and start the test program:

const

LongProcess = ’longprocess’ {$ifdef windows} + ’.exe’ {$endif} ;

var

arr : TJSONArray absolute Params;

a, b, Exe, PID : string;

begin

Res:=Nil;

a:=Arr.Strings[0];

b:=Arr.Strings[1];

7

Figure 3: The finished JSON-RPC webmodule

Exe:=ExtractFilePath(ParamStr(0))+longprocess;

PID:=Capture.Execute(Exe,[a,b]);

Res:=TJSONString.Create(PID);

As you can see in this code, we use the Execute method of the TProcessCapture

class to start the process.

For the GetStatus call, the code is a little longer, but not so much.

The code starts by getting the arguments, and checking the whether the process is
still running. If the process is no longer running, then the exit status is retrieved.

procedure Tprocesscontrol.GetStatusExecute(Sender: TObject;

const Params: TJSONData; out Res: TJSONData);

var

arr : TJSONArray absolute Params;

PID,aOutput : string;

Offset,Status : Integer;

begin

Res:=Nil;

PID:=Arr.Strings[0];

OffSet:=Arr.Int64s[1];

if Capture.IsProcessRunning(PID) then

Status:=-1

else

Status:=Capture.GetProcessExitStatus(PID);

aOutput:=Capture.GetProcessOutput(PID,Offset);

Res:=TJSONObject.Create([’status’,Status,’output’,aOutput,’offset’,offset]);

end;

Regardless of whether the process was still running or not, finally the available
output is retrieved and all 3 elements (status, output, new offset) are returned to
the client in a JSON object.

The data module will look like figure 3 on page 8.

Before the program can be used, there are two last things to be done when using the

8

release version of FPC on linux. The HTTP connection on which requests arrive
is passed to the task helper, and as a consequence the connection is not closed
when the StartProcess call returns, causing the browser to wait till the process
exits. This of course defeats the purpose of the whole exercise. To remedy this, we
must set the Close-On-Exec flag on the socket handle. This can be done easily by
handling the OnAllowConnect handler of the HTTP server.

To do so, we add the following to the project file:

THTTPApplication = Class(fphttpapp.THTTPApplication)

constructor Create(aOwner : TComponent); override;

private

procedure DoConnect(Sender: TObject; ASocket: Longint; var Allow: Boolean);

end;

{ THTTPApplication }

constructor THTTPApplication.Create(aOwner: TComponent);

begin

inherited Create(aOwner);

OnAllowConnect:=@DoConnect;

end;

procedure THTTPApplication.DoConnect(Sender: TObject; ASocket: Longint; var Allow: Boolean);

{$IFDEF UNIX}

const

FD_CLOEXEC = 1;

{$ENDIF}

begin

{$IFDEF UNIX}

FpFcntl(aSocket, F_SETFD, FD_CLOEXEC);

{$ENDIF}

Allow:=True;

end;

Lastly, to serve the files of the client program, we set the base directory for the file
serving module to the directory with the client program files:

Function GetBaseDir : String;

begin

Result:=ExtractFilePath(ParamStr(0));

Result:=Result+’..’+PathDelim+’client’;

Result:=ExpandFileName(Result);

end;

(this code assumes there are 2 directories: one for the server, one for the client.)

Finally, we load all known mime types, and create our own HTTP application:

Var

Application:THTTPApplication;

begin

MimeTypes.LoadKnownTypes;

9

TSimpleFileModule.BaseDir:=GetBaseDir;

TSimpleFileModule.RegisterDefaultRoute;

Application:=THTTPApplication.Create(Nil);

Application.Title:=’Process server’;

Application.Port:=8060;

Application.Initialize;

Application.Run;

Application.Free;

end;

Note that we set the HTTP port to port 8060.

6 The browser client-side component

In the browser the TProcessCapturePoller component is used to help working
with the TProcessCapture component on the server. It does not start the actual
process, it just takes care of polling the server for the status of the started process,
and triggers a series of events based on results. It also handles the state of the
output offset parameter. There are properties to control how often and how long
the polling mechanism must try, and how many errors can be tolerated before the
polling is abandoned.

To be agnostic of the actual RPC mechanism used, the actual poll is also achieved
using an event. It is the responsability of the programmer to implement this event,
and to use the ReportProgress mechanism to comunicate the server results to the
component.

This component has the following declaration:

Type

TProcessStatus = (psRunning, // Process still running

psExited, // Process has exited

psError // Too many errors

);

TOnGetProcessStatusEvent = Procedure (Sender : TObject; aProcessID : String; aOffset : NativeInt) of Object;

TOnProcessDoneEvent = Procedure (Sender : TObject; aStatus : TProcessStatus; aExitCode : Integer) of Object;

TOnProcessOutputEvent = Procedure (Sender : TObject; aOutput : String) of object;

TOnStatusFailEvent = Procedure (Sender : TObject; aError : String) of object;

TProcessCapturePoller = class(TComponent)

Public

Procedure Start;

Procedure Cancel;

Procedure ReportProgress(aStatus : TProcessStatus;

aOutput : String;

aExitCode : Integer;

aOffSet : NativeInt);

Procedure ReportProgressFail(const aMessage : string);

Property Canceled : Boolean ;

Property FailCount : Integer;

Property StatusCheckCount : Integer;

Property OutputOffset : NativeInt;

10

Published

Property ProcessID : String;

Property OnGetProcessStatus : TOnGetProcessStatusEvent;

Property OnProcessDone : TOnProcessDoneEvent;

Property OnProcessOutput : TOnProcessOutputEvent;

Property OnStatusFail : TOnStatusFailEvent;

Property LinebasedOutput : Boolean;

Property PollInterval : Integer;

Property MaxFailCount : Integer;

Property MaxCheckCount : Integer;

end;

The methods perform the following tasks

Start this starts the polling process.

Cancel this cancels the polling process.

ReportProgress This method must be used when the OnGetProcessStatus event
handler received the status of the process from the server. The aStatus pa-
rameter is one of the available statuses, aOutput is the output of the pro-
cess. Parameter aExitCode is the exit code (in case status is psExited) and
aOffset is the new offset (as reported by the server).

ReportProgressFail this method must be used when the server call to get the
process status failed. The aMessage status parameter can be used to indicate
what exactly failed.

The following events can be handled:

OnGetProcessStatus This is the only event that must be implemented. It is
triggered at regular intervals, when the poller needs to inquire the status of
the server process. The poller will pass the process ID and current output
offset to the event, so the user does not need to track the state of these
parameters.

OnProcessDone This is called when the process has exited or the polling was
cancelled. It reports the status (psError in case of error) and the exit code of
the process.

OnProcessOutput This is called when output of the process was received: The
aOutput parameter contains the reported output. This event will be called
multiple times.

OnStatusFail This is called when the ReportProgressFail was called to signal
a failure of the call to get the status of the process. It can be called multiple
times, depending on the value of MaxFailCount.

The behaviour of the component is controlled by the following properties:

LinebasedOutput If set to True the component will split the received output in
lines, and will call OnProcessOutput for each line instead of reporting the
whole received output in one call (if set to False)

PollInterval the time period (in milliseconds) after which OnGetProcessStatus

event is triggered. Default is 500ms. Note that the event is only retriggered
after the result (success or failure) of the previous event has been reported.
This is done in order to avoid overlapping getstatus calls.

11

MaxFailCount The maximum number of failures that may be reported before
polling is abandoned. Default is 1.

MaxCheckCount The maximum number of times the component will poll before
reporting a timeout.

Finally, the following properties can be used to get some information about the
polling process:

Canceled The polling process was canceled.

FailCount The number of failures since the polling was started.

StatusCheckCount The number of times the status will still be checked.

OutputOffset The current output offset.

It may seem strange to have the OnProcessDone, OnStatusFail and OnProcessOutput
events if the fetching of the process status must be implemented in an event: surely
the event handler can display the output, decide when the process has ended etc.
The reason is twofold: first of all, the state logic for the output can be handled by
the component, but more importantly: by having these events available, the com-
ponent can easily be used as a parent for descendents that incorporate the polling
RPC mechanism in the component. (as will be demonstrated below).

7 The client program

Armed with this component, we can now start the client side program. In the
’Project - New project’ dialog we select the ’Web browser program’ item, and enter
the correct settings, as shown in figure 4 on page 13. The html file is best saved as
index.html.

The HTML needs 5 elements:

1. A button to start the process.

2. A button to cancel the polling process.

3. An edit for parameter A for the started program.

4. An edit for parameter B for the started program.

5. An HTML element in which the output of the program will be shown. We will
use the browserconsole unit output mechanism for this: a simple Writeln

statement will result in the appending of the output to this element.

The following simple HTML (using Bulma CSS) will do the job just fine:

<h3 class="title is-3">Process output demo</h3>

<div class="box">

<h4 class="title is-4">Start parameters</h4>

<div class="field">

<label class="label">Argument A</label>

<div class="control">

<input id="edtA" type="text" class="input"

placeholder="Enter argument A">

12

Figure 4: Creating the client program

</div>

</div>

<div class="field">

<label class="label">Argument B</label>

<div class="control">

<input id="edtB" type="text" class="input"

placeholder="Enter argument B">

</div>

</div>

<div class="field is-grouped">

<div class="control">

<button id="btnStart" class="button is-primary">

Start process

</button>

</div>

<div class="control">

<button id="btnCancel" class="button is-warning is-light">

Cancel

</button>

</div>

</div>

</div>

<div class="box">

<h4 class="title is-4">Process output</h4>

<div id="pasjsconsole">

13

Figure 5: The HTML form tags

</div>

</div>

To interact with this HTML, we first create a HTML Fragment module using the
’File - new’ dialog. We name it ’frmIndex’ and set the ’UseProjectHTML’ property
to true. On this module, we drop a THTMLElementActionList component from the
component palette. Using the component context menu ’Create actions for HTML
tags’, we can create actions for all tags in the above HTML, as shown in figure 5
on page 14. We need a TPas2jsRPCClient from the Pas2JS tab in the component
palette: this component will handle the RPC requests, and we’ll name it RPC for
short. The component can only do its work correctly if it knows where the server
is: We need to enter the URL property. As shown in an earlier article, we can
now generate a service proxy: this is a class which has correct method definitions,
reflecting the methods defined in our RPC server. Calling these service methods will
actually execute the methods on the server. Right-clicking on the RPC component
and selecting ’Create Service Client component’ shows the service generation dialog
as shown in figure 6 on page 15. We name the unit ’processservice’ and tell the IDE
to add it to the project.

Now we can start coding the application. We will create the TProcessCapturePoller
and service client in the OnCreate event of our index form module:

procedure TfrmIndex.DataModuleCreate(Sender: TObject);

begin

Service:=TprocesscontrolService.Create(Self);

Service.RPCClient:=RPC;

FPoller:=TProcessCapturePoller.Create(Self);

FPoller.OnProcessOutput:=@DoDoutput;

FPoller.OnGetProcessStatus:=@DoGetStatus;

14

Figure 6: The service generation dialog

FPoller.OnProcessDone:=@DoProcessDone;

FPoller.OnStatusFail:=@DoStatusFail;

end;

Note that we assign the RPC client to our service definition, and that we assign
events to all event handlers of the poller component.

To start the process, we add an OnClick event handler to the actbtnStart action.
In it, we collect the values for the A and B parameters from the respective input
boxes, and use these to call StartProcess on our Service component.

We take care to handle the OnSuccess and OnFail handlers of this method - re-
member, the calls to the server are asynchronous:

procedure TfrmIndex.actbtnStartExecute(Sender: TObject; Event: TJSEvent);

procedure DoStartFail(Sender: TObject; const aError: TRPCError);

begin

Writeln(’Failed to start process : ’,aError.Message);

end;

procedure DoStartOK(aResult: JSValue);

begin

FJobID:=String(aResult);

FPoller.ProcessID:=FJobID;

FPoller.Start;

end;

var

a,b : string;

15

begin

a:=actedtA.Value;

b:=actedtB.Value;

Service.StartProcess(A,B,@DoStartOK,@DoStartFail);

end;

If the start call fails, we simply log the fact. If the start call succeeds, we record
the result (a process ID) in the poller ProcessID property and start the poller.

The onclick handler for the ’Cancel’ button is much simpler: We just need to cancel
the poller.

procedure TfrmIndex.actbtnCancelExecute(Sender: TObject; Event: TJSEvent);

begin

Writeln(’Canceled wait for process.’);

FPoller.Cancel;

end;

All that remains to do is to handle the 4 events of the TProcessCapturePoller

component.

We’ll start with the simple ones, the OnProcessOutput and OnStatusFail events.
In it, we just need to output the messages that are passed to the event handler:

procedure TfrmIndex.DoStatusFail(Sender: TObject; aError: String);

begin

Writeln(’Error getting status: ’,aError);

end;

procedure TfrmIndex.DoDoutput(Sender: TObject; aOutput: String);

begin

Writeln(aOutput);

end;

The OnProcessDone event handler is equally simple, we print the status and exit
code (if there is one)

procedure TfrmIndex.DoProcessDone(Sender: TObject;

aStatus: TProcessStatus;

aExitCode: Integer);

Const

Exits : Array[TProcessStatus] of string

= (’Running’,’Exited’,’Error’);

begin

Write(’Process ’,Exits[aStatus]);

if aStatus=psExited then

Writeln(’ with exit code ’,aExitCode)

else

Writeln();

end;

Last but not least, we must handle the OnGetProcessStatus event. This simply
calls the GetStatus procedure from our service component, and handles the result
handlers: in each handler the appropriate method of the TProcessCapturePoller

component is called with the received result:

16

procedure TfrmIndex.DoGetStatus(Sender: TObject;

aProcessID: String;

aOffset: NativeInt);

procedure DoStatusFail(Sender: TObject; const aError: TRPCError);

begin

FPoller.ReportProgressFail(aError.Message);

end;

procedure DoStatusOK(aResult: JSValue);

const statuses : array[Boolean] of TProcessStatus

= (psError,psRunning);

Var

D : TJSObject absolute aResult;

aExitCode : Integer;

aNewOffset : NativeInt;

aOutput : string;

aStatus : TProcessStatus;

begin

aOutput:=String(D[’output’]);

aExitCode:=NativeInt(D[’status’]);

aNewOffset:=NativeInt(D[’offset’]);

aStatus:=Statuses[aExitCode=-1];

FPoller.ReportProgress(aStatus,aOutput,aExitCode,aNewOffset)

end;

begin

Service.GetStatus(FJobID,aOffset,@DoStatusOK,@DoStatusFail);

end;

With this, the logic of our application is ready. Remains to write the main program
routine, which is very short indeed: All we need to do is create our module and call
Show:

var

frm : TfrmIndex;

begin

MaxConsoleLines:=15;

frm:=TfrmIndex.Create(Nil);

Frm.Show;

Setting the MaxConsoleLines to 15 will make sure you can see the messages scroll
over the screen as the output of the server process comes in. The result of this code
is shown in figure 7 on page 18.

17

Figure 7: The program in action

18

8 Creating a server process execution component

Earlier in the article we mentioned that it could seem strange that there are events
to report status and output when the actual call to get the status is executed in the
form module: at that point you will already know the status, so why still report it
to the component ?

Part of the answer is that what we have shown above is just one way to use the
component. A second way is that you can also create a descendent of this component
which handles the getting of the status all by itself. In that case, the events are the
only way to get notifications of the status of the process. In the following we show
how to make such a descendent.

The TProcessCapturePoller component is actually a simple descendent of the
TCustomProcessCapturePoller component, which simply implements the method
to get the status of the process using an event.

What we can do is create a descendent of the TCustomProcessCapturePoller com-
ponent which has the TprocesscontrolService class built-in. This component will
know all by itself how to execute a process on the server. This component would
look as follows:

TRemoteExecutor = class(TCustomProcessCapturePoller)

Protected

procedure DoStatusCheck; override;

Public

Procedure Execute(a,b : String);

Published

Property RPCClient : TRPCClient Read GetClient Write SetClient;

Property OnProcessDone;

Property OnProcessOutput;

Property OnStatusFail;

Property LinebasedOutput;

Property PollInterval;

Property MaxFailCount;

Property MaxCheckCount;

end;

We left out the constructor and destructor, which simply create and destroy the
TprocesscontrolService.

constructor TRemoteExecutor.Create(aOwner: TComponent);

begin

inherited Create(aOwner);

FService:=TprocesscontrolService.Create(Self);

end;

destructor TRemoteExecutor.Destroy;

begin

FreeAndNil(FService);

inherited Destroy;

end;

The Service field is used to get and set the RPCClient property:

function TRemoteExecutor.GetClient: TRPCClient;

begin

19

Result:=FService.RPCClient;

end;

procedure TRemoteExecutor.SetClient(AValue: TRPCClient);

begin

FService.RPCClient:=aValue;

end;

The Execute method takes the correct parameters, and in essence does what was
done in the form in our original code:

procedure TRemoteExecutor.Execute(a, b: String);

procedure DoStartFail(Sender: TObject; const aError: TRPCError);

begin

SetFailCount(MaxFailCount);

ReportProgressFail(aError.Message);

end;

procedure DoStartOK(aResult: JSValue);

begin

ProcessID:=String(aResult);

Start;

end;

begin

Service.StartProcess(A,B,@DoStartOK,@DoStartFail);

end;

Note that if the process failed to start, the fail count is set to the maximum, this
will cause the ReportProgressFail method not to schedule a new check.

The DoStatusCheck method contains simply the code that was present in the form
in our first implementation:

procedure TRemoteExecutor.DoStatusCheck;

procedure DoStatusFail(Sender: TObject; const aError: TRPCError);

begin

ReportProgressFail(aError.Message);

end;

procedure DoStatusOK(aResult: JSValue);

const statuses : array[Boolean] of TProcessStatus

= (psError,psRunning);

Var

D : TJSObject absolute aResult;

aExitCode : Integer;

aNewOffset : NativeInt;

aOutput : string;

aStatus : TProcessStatus;

20

begin

aOutput:=String(D[’output’]);

aExitCode:=NativeInt(D[’status’]);

aNewOffset:=NativeInt(D[’offset’]);

aStatus:=Statuses[aExitCode=-1];

DoReportProgress(aStatus,aOutput,aExitCode,aNewOffset)

end;

begin

service.GetStatus(ProcessID,OutputOffset,@DoStatusOK,@DoStatusFail);

end;

The form code is now much simpler. We only need to create the TRemoteExecutor
component, and set its 3 events:

procedure TfrmIndex.DataModuleCreate(Sender: TObject);

begin

FRemote:=TRemoteExecutor.Create(Self);

FRemote.OnProcessOutput:=@DoDoutput;

FRemote.OnProcessDone:=@DoProcessDone;

FRemote.OnStatusFail:=@DoStatusFail;

end;

The event handler for the ’Start’ button is now a simple one-liner:

procedure TfrmIndex.actbtnStartExecute(Sender: TObject; Event: TJSEvent);

begin

FRemote.Execute(actedtA.Value,actedtB.Value);

end;

The event handler to get the status is no longer needed.

The functional working of the program is not different, but if you have a lot of
locations in your program where you need to execute programs on the server, it
makes sense to abstract away the remote execution in this manner.

9 Conclusion

In this article we’ve shown that executing programs on a HTTP Server from a
Pas2JS program does not need to be difficult. The component to automate the
process is independent of a RPC mechanism, and as such can be used as-is, or
it can be used as the parent for a more elaborate component which handles all
communication by itself.

21

	Introduction
	Architecture
	The test program
	The server component
	The server program
	The browser client-side component
	The client program
	Creating a server process execution component
	Conclusion

