
Translating your Pas2JS application

Michaël Van Canneyt

October 19, 2022

Abstract

Web Applications and websites are often visible to the world, and allowing
the user to use your application or website in his/her own language is clearly
improvement of the user interface. Here we show how you can translate your
pas2js application.

1 Introduction

If you have a public website or public web application, it is visible to the whole
world. Users with any mother tongue will be able to access it, and of course it is
more pleasant for them if they can use your site in their familiar language, rather
than the lingua franca on the internet: english.

When translating a web application, there are 2 parts to consider when you want
the user to be able to use your site:

1. The messages generated from code.

2. The texts that are inserted in the HTML.

Both kinds of translation require a different approach.

2 Translating messages in code

Delphi and Free Pascal have long supported the concept of resource strings: These
are named string constants in code, which work almost like real constants. The
difference in code is that they are in a ’resourcestring’ section in the code instead
of a ’const’ section. The difference at runtime is that the value of a resource string
is fetched at runtime, based on its name. The mechanism to get the value of the
string at runtime is pluggable in FPC. You can get the strings from a DLL (the
default mechanism in Delphi), or a .po file (common on unix) or invent your own
mechanism. By switching the source of the resourcestrings, you can provide a
translated version of the strings.

In Pas2JS, the concept of a resourcestring is kept. The generated Javascript contains
the default version of the resourcestrings, as defined in the source code. However,
value of the strings are kept in a structured manner, and fetched using a special
helper function based on the name of the resource string constant. A method is
provided to set the values in the javascript sources at runtime: The pas2js RTL
comes with a unit that allows you to set the values of the resource strings in the
program.

1

Just as the FPC compiler does, the pas2js compiler can generate a JSON file with
the default resource string definitions. There is a command-line option that controls
the generation of this file:

-Jrnone no file is generated. This is the default.

-Jrunit The compiler generates a JSON file per used unit.

-Jrprogram The compiler generates a single JSON file with all the used resources-
trings in the program.

The JSON file has extension jrs.

The file generated with -Jrprogram looks like this:

{

"mystrings" : {

"Header" : "Translation using resource strings",

"Paragraph" : "This text will be translated.",

"TranslateDirect" : "The direct API is used for this example.",

"TranslateJSON" : "A JSON object is used for this example.",

"TranslateURL" : "A URL is used for this example.",

"Button" : "Translate this page"

},

"SysUtils" : {

"SAbortError" : "Operation aborted",

"SApplicationException" : "Application raised an exception: ",

"SErrUnknownExceptionType" : "Caught unknown exception type : "

},

"translate_basic" : {

"BasicTitle" : "Translation using resource strings - Basic API"

}

}

As you can see, the strings are grouped in a JSON object per unit, and there is a
special section used for the program.

When compiling for a single unit, the following file would be generated for the
mystrings unit:

{

"mystrings" : {

"Header" : "Translation using resource strings",

"Paragraph" : "This text will be translated.",

"TranslateDirect" : "The direct API is used for this example.",

"TranslateJSON" : "A JSON object is used for this example.",

"TranslateURL" : "A URL is used for this example.",

"Button" : "Translate this page"

}

}

This file can be used to translate the strings in an easy manner using any external
tool you want. The JSON format lends itself very well to manipulation using various
tools, and merging is easy.

To actually translate the strings, the pas2js RIL contains a unit rstranslate, which
can be used to translate the strings at runtime.

The unit contains the following definitions:

2

Type

{ TResourceTranslator }

TLoadFailEvent = Reference to Procedure (Sender : TObject;

aCode : Integer;

aError : String);

TOnTranslatedEvent = Reference to Procedure (Sender : TObject;

aURL : String);

TResourceTranslator = Class

Class Function Instance : TResourceTranslator;

Procedure Translate(Const aUnit,aString,aTranslation : String);

Procedure Translate(Const aTranslations : TJSOBject);

procedure Translate(const aURL: string;

aOnTranslated : TOnTranslatedEvent = Nil);

Procedure ResetTranslation(Const aUnit : String;

const aString : String = ’’);

\item[OnLoadFail : TLoadFailEvent;

Property OnURLTranslated : TOnTranslatedEvent;

end;

Function ResourceTranslator : TResourceTranslator;

Procedure Translate(Const aURL : String;

aOnTranslated : TOnTranslatedEvent = Nil);

Procedure Translate(Const aUnit,aString,aTranslation : String);

Procedure Translate(Const aTranslations : TJSOBject);

Procedure ResetTranslation(Const aUnit : String;

Const aString : String = ’’);

The usage of this unit is quite straightforward:

The TResourceTranslator is the class that does the actual work of translating
the resourcestring structures generated by the compiler. The unit creates a global
instance (available in TResourceTranslator.Instance, with the shortcut function
ResourceTranslator), so you don’t need to create an instance.

The Translate functions do the actual translation. The first form sets the value of
a single resource string:

Procedure Translate(Const aUnit,aString,aTranslation : String); overload;

The aUnit and aString parameters identify the resource string, and aTranslation

is the value to set for the resource string.

The second form accepts a JSON object in the same form as produced by the
compiler:

Procedure Translate(Const aTranslations : TJSOBject); overload;

It will iterate over all strings in the JSON object, and set the translation for every
string.

The last form loads a JSON file from a URL, converts the file to a JSON object,
and calls the previous function.

3

procedure Translate(const aURL: string; aOnTranslated : TOnTranslatedEvent = Nil); overload;

Since loading a file from a URL is asynchronous, there is a callback: when done, the
aOnTranslated event is called. The objects event OnURLTranslated is also called.

If loading of the JSON file fails, the OnLoadFail event is called.

The translation mechanism used by Pas2JS does not destroy the original values of
the resource strings. They can be reset to their original values if so desired. This
can be done with the ResetTranslation call. This call can be use to reset the
translation for a single unit or for a single resource string.

The translation of the resource strings can of course be done at any moment: as
of that moment, using a resource string will from then on use the translated value.
This makes the mechanism suitable for the situation where a dropdown is presented
to let the the user select his preferred language.

To demonstrate, let’s look at the following small webpage, which we will save in a
file called index.html:

<!doctype html>

<html lang="en">

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet" href="bulma.min.css">

<title id="translate-title"></title>

<script src="translate.js"></script>

</head>

<body>

<div class="section">

<div class="box">

<h2 class="title is-2" id="translate-header"></h2>

<p class="block"id="translate-text"></p>

<button id="btn-translate" class="button is-link"></button>

</div>

</div>

<script>

window.onload=rtl.run;

</script>

</body>

</html>

You can see that there are no texts in this HTML page. The texts will be entered
in the tags by the program.

Here is part of the program. It has a mystrings unit which contains the most of
the resource strings. The PageTitle resource string is in the program, in order to
demonstrate the different sections in which the resource strings are located.

The program has some variables that correspond to the various HTML tags with
an ID attribute, the variables are initialized in the Init routine:

program translation;

{$mode objfpc}

uses

JS, Classes, SysUtils, Web, mystrings, rstranslate;

4

ResourceString

PageTitle = ’Translation using resource strings - Manual’;

Var

aHeader : TJSHTMLELement;

aPar : TJSHTMLELement;

aButton : TJSHTMLButtonELement;

IsDutch : Boolean;

procedure SetTexts;

begin

aHeader.InnerHTML:=Header;

aButton.InnerHTML:=Button;

aPar.InnerHtml:=Paragraph+’ ’+TranslateDirect;

Document.title:=PageTitle;

end;

Procedure Init;

function GetEl(const aName: string): TJSHTMLELement;

begin

Result:=TJSHTMLELement(Document.getElementById(aName));

end;

begin

aHeader:=GetEl(’translate-header’);

aPar:=GetEl(’translate-text’);

aButton:=TJSHTMLButtonELement(GetEl(’btn-translate’));

aButton.onclick:=@DoTranslation;

end;

begin

Init;

SetTexts;

end.

The actual texts of the HTML page are set in the SetTexts routine: as you can
see, the texts are in constant (resource)strings, located in the MyStrings unit. The
resulting page looks like figure 1 on page 6.

The onclick handler of the aButton button (DoTranslation) was omitted from
the code for clarity. Clicking the button will translate the page from the default
(English) to Dutch and vice versa. The handler can be implemented as follows:

function DoTranslation(aEvent: TJSMouseEvent): boolean;

begin

IsDutch:=Not IsDutch;

if IsDutch then

begin

Translate(’program’,’PageTitle’,’Vertaling met resourcestrings - directe API’);

Translate(’mystrings’,’Button’,’Vertaal deze pagina’);

Translate(’mystrings’,’Header’,’Vertaling met resourcestrings’);

Translate(’mystrings’,’Paragraph’,’Deze tekst wordt vertaald.’);

5

Figure 1: The page in its default language

Translate(’mystrings’,’TranslateDirect’,’De directe API wordt gebruikt voor dit voorbeeld.’);

Translate(’mystrings’,’TranslateJSON’,’Een JSON object wordt gebruikt voor dit voorbeeld.’);

Translate(’mystrings’,’TranslateURL’,’Een URL wordt gebruikt voor dit voorbeeld.’);

end

else

begin

// Single string of a module

ResetTranslation(’program’,’PageTitle’);

// All strings in a module

ResetTranslation(’mystrings’);

end;

SetTexts;

end;

As you can see, all the strings are translated manually to dutch by directly setting
the dutch value for the resourcestring using the translate call. To go back to
English, the ResetTranslation routine is called.

At the end, the SetText routine is called, which simply re-applies the resource
strings. The page will then look like figure 2 on page 7.

Obviously, the above is not a recommended method to translate your program: If
you need to support lots of languages and have lots of strings to translate, the
amount of code needed to do so would become really big. Rather, it is better to
load the translations in some structured format (JSON) and have a small routine
that translates the strings. The rstranslate routine unit contains a routine which
accepts a JSON object with the same format as the file that the compiler creates,
and uses that to translate all strings.

One way to do this is to include the translation in the HTML page. For this, we
create a small Javascript file that defines the JSON object with the translations:

var dutch = {

"program" : {

6

Figure 2: The page in dutch

"URLTitle":"Vertaling met resourcestrings - URL API"

},

"mystrings": {

"Button":"Vertaal deze pagina",

"Header":"Vertaling met resourcestrings",

"Paragraph":"Deze tekst wordt vertaald.",

"TranslateDirect":"De directe API wordt gebruikt voor dit voorbeeld.",

"TranslateJSON":"Een JSON object wordt gebruikt voor dit voorbeeld.",

"TranslateURL":"Een URL wordt gebruikt voor dit voorbeeld."

}

};

We include this in the HTML file by adding the following line:

<script src="dutch.js"></script>

and to be able to access the dutch variable in our program, we define an external
variable in our pascal program as follows:

Var

Dutch : TJSObject; external name ’dutch’;

The value of the Dutch variable is then the JSON object with the translations.

The DoTranslate routine now becomes simply the following:

function DoTranslation(aEvent: TJSMouseEvent): boolean;

begin

Result:=True;

IsDutch:=Not IsDutch;

if IsDutch then

Translate(Dutch)

7

else

begin

ResetTranslation(’program’,’PageTitle’);

ResetTranslation(’mystrings’);

end;

SetTexts;

end;

By defining variables for different languages, one can switch between different lan-
guages. Of course, at the startup of the program, all languages will be loaded.

This can be avoided by dynamically injecting the script tag in the HTML as soon as
the language needs to be switched: the browser will then load the new translations.
By giving all translations the same name for the variable that holds the JSON
object, only the last injected language will be kept in memory in the browser.

A disadvantage of this method is still that you need an extra Javascript source file.
This necessitates the conversion of a JSON file as produced by the compiler to a
Javascript source file. It would be easier if the JSON file could be used directly.
Fortunately, this is possible.

The Translate call has an overloaded version which can be passed an URL: this
URL should point to a JSON file with the translations of all strings, in the format
that the compiler provides. The call will download this file and use the translations
to translate the strings found in the JSON file. There is callback that can be used
to be notified when the translation is complete (downloading a file is asynchronous),
this callback can be used to refresh the display.

The third version of our program shows how this can be used. Adapting our program
consists of 3 steps:

1. Remove the script tag with the reference to the dutch.js file.

2. Remove the external variable definition Dutch

3. Change the DoTranslation routine to use the URL.

The DoTranslation routine will now look as follows:

function DoTranslation(aEvent: TJSMouseEvent): boolean;

Procedure DoTranslated(Sender : TObject; aURL : String);

begin

SetTexts;

end;

begin

Result:=True;

IsDutch:=Not IsDutch;

if IsDutch then

Translate(’dutch.json’,@DoTranslated)

else

begin

ResetTranslation(’program’,’PageTitle’);

ResetTranslation(’mystrings’);

SetTexts;

end;

end;

8

Note that the SetTexts must be called from the OnTranslated callback when
loading the JSON file (because only then will the texts actually be translated), but
can be called directly when resetting the translations.

3 Translating HTML content

In practice, you will probably not fill up your HTML page with texts from resource
strings. One disadvantage is that every location that needs to be translated needs
an ID attribute. Second disadvantage is that the Javascript must be loaded before
the text appears in your HTML page. If formatting is applied, then the text will
be cut into different bits, which is unnatural.

Instead, your HTML will most likely contain the texts in the default language when
the page is loaded.

So, how can we translate the texts in the HTML ? There are many possibilities. We
could use resource strings and by assigning an ID to all html tags we can translate
all texts. This has much of the disadvantages of the previous method. We can make
a HTML page for every language; This is a long and cumbersome process.

Here we’ll present an alternate approach, implemented in the Rtl.HTMLTranslate

unit.

The first problem is that we need to know what texts we need to translate. We can
simply scan the HTML text and extract all text fragments: this is simple enough.

Then we need to find the translation. Using a hash mechanism, we can quickly
search for translations in a file with translations. This has the disadvantage that
all context is lost, risking to simply translate wrongly in the case of single words.
For example, the english word ’Save’ can be translated in several ways to Dutch.
Which translation to use depends on the context, and cannot be determined from
the hash alone.

A better approach is to give a unique identifier to all texts that needs to be used,
so the context of the word or sentence can be looked up. But preferably not the ID,
to avoid clashes in case various HTML fragments are combined into a single page.
We can use the data attribute for this, it is treated specially in the Javascript DOM
API.

Practically, this means that all tags that need translation must be marked as follows:

<h2 data-translate="Header">

Translation using HTMLTranslator

</h2>

The data-translate attribute is set to header Header. The translation routine will
look for a text named Header and when found, will replace the elements InnerText
or InnerHTML with the translated text.

Sometimes, one needs to translate not the inner text, but an attribute of the HTML
tag. A prime example is the placeholder attribute of the Input and TextArea

tags.

For this, the Rtl.HTMLTranslate unit uses a convention: the name of attribute is
part of the translate name: everything after the first dash is considered an attribute
name.

<textarea data-translate="memo-placeholder"

placeholder="Type your remark here">

9

Translation using HTMLTranslator

</textarea>

When the translation engine encounters this, it will look for a translation named
’memo-placeholder’ in the translated texts, and will place whatever it finds in the
placeholder attribute. This convention of course means that you cannot use dashes
in your translation names.

The TextArea can potentially have 2 texts to translate: the placeholder attribute
and the actual text in the text area. Depending on how HTML is used, more
attributes may need translation. Since we have only a single data attribute, how
can we cater for this ? Simple: the data-translate mechanism can handle multiple
names, separated by a semicolon.

<textarea data-translate="memo;memo-placeholder"

placeholder="Type your remark here">

Translation using HTMLTranslator

</textarea>

When handling this tag, the translation engine will replace the inner text with the
contents of the named translation memo, and will replace the placeholder with the
content of memo-placeholder.

Many Javascript APIs use data- tags to configure their rendering (for example grid
APIs commonly use this to configure columns), and the above mechanism can be
used to translate these attributes as well.

The API of the Rtl.HTMLTranslate unit is quite simple:

THTMLTagTranslator = class(TComponent)

Public

procedure SetLanguageData(aData : TJSObject);

Procedure TranslateHTMLTag(aEl : TJSHTMLElement; aScope : String = ’’); overload;

Procedure TranslateBelowHTMLTag(aEl : TJSHTMLElement; aScope : String = ’’); overload;

function GetMessageByName(const aScope, aName: string): String; overload;

Function GetMessageByName(aRoot : TJSObject; const aScope,aName: string): String; overload;

Function GetMessageByName(aScope : TJSObject; aName : string) : String; overload;

Function GetMessageByName(aScope,aSeealsoScope : TJSObject; aName : string) : String; overload;

Function HasLanguage(aLanguage : String) : Boolean;

Function GetScope(const aScope : String) : TJSObject; overload;

Function GetScope(aRoot : TJSObject; const aScope : String) : TJSObject; overload;

Property CurrLanguageStrings : TJSObject Read FCurrLanguageStrings;

Published

Property DataTagName : String Read GetDataTagName Write FDataTagName;

Property DefaultScope : String Read FDefaultScopeName Write FDefaultScopeName;

Property ContinueKey : String Read FContinueKey Write FContinueKey;

Property Language : String Read FLanguage Write SetLanguage;

Property LanguageSource : TLanguageSource Read FFileMode Write FFileMode;

Property LanguageFileURL : String Read FLanguageFileURL Write FLanguageFileURL;

property LanguageVarName: String read FLanguageVarName write FLanguageVarName;

Property TextMode : TTextMode Read FTextMode Write FTextMode;

Property OnLanguageLoaded : TLanguageLoadedEvent;

Property OnLanguageLoadError : TLanguageLoadErrorEvent;

end;

The class has the following public/published properties:

10

CurrLanguageStrings the data for the current language.

DataTagName Data attribute name. You can change this to use another data
attribute. Default is ’translate’.

DefaultScope Default scope to use when looking for translations. First the scope
passed in TranslateHTMLTag is checked, then the default scope, then ContinueKey

is used.

ContinueKey Continue key name: When set, indicates the name of a scope in
which to continue searching for a translation term. This can be used for form
inheritance; ContinueKey can be set to continue searching in the inherited
scope. By default it is empty.

Language Current Language name (will be lowercased)

LanguageSource Language source: All languages in a single file (lsSingle), lan-
guages reside in multiple files (lsMulti) or a variable in the Javascript global
Scope (lsScoped) contains all languages.

LanguageFileURL The URL to the file to load language strings from. If LanguageSource=lsMulti
this should be a format template with the language code is done (use for Ex-
ample: /lang-%s.json.

LanguageVarName if LanguageSource=lsScoped then LanguageVarName is the
name of the global Window property that contains the translations.

TextMode Textmode determines whether the translator uses InnerText (tmText)
or InnerHTML (tmHTML) to set the translated text. Note that using tmHTML

can result in a security leak as Javascript could be injected.

OnLanguageLoaded An event triggered when a language is loaded (whatever the
mechanism).

OnLanguageLoadError An event called when an error occurs during loading of
a language file.

The class has the following public methods:

SetLanguageData Directly set the language data object to aData instead of using
an URL. The data will be interpreted according to LanguageSource.

TranslateHTMLTag Translate a single HTML tag aEl, using indicated scope
aScope. If the scope is not given, the root scope of the current language is
used or the default scope.

TranslateBelowHTMLTag Translate the HTML tag aEl and everything below
it, using indicated scope aScope. If the scope is not given, the root scope of
the current language is used.

GetMessageByName Search for a message named aName in the indicated aScope,
optionally aSeeAlsoScope. In case the scope name is given you can start the
search for the scope in aRoot The message is empty if no message was found.

HasLanguage check if the given language is available. In case of lsMulti, the
current language must match the passed aLanguage.

GetScope find the scope object named aScope. if aRoot is given, start the search
at aRoot.

11

Note that the notion of ’scopes’ is used. This is done for use in SPA applications:
each ”page” in the SPA can use its own scope when looking for translations: this
means that there is no need to invent globally unique names for the texts: names
only need to be unique in a scope.

So, how to use this API to translate our application ? First of all, our HTML must
be extended with the data-translate attribute:

<!doctype html>

<html lang="en">

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet" href="bulma.min.css">

<title data-translate="Title">Translation using resource strings - Manual</title>

<script src="translate.js"></script>

</head>

<body>

<div class="section">

<div class="box">

<h2 class="title is-2"

data-translate="Header">

Translation using HTMLTranslator

</h2>

<p class="block"

data-translate="Paragraph">

This text will be translated using data-translate.

</p>

<div class="field is-horizontal">

<div class="field-label is-normal">

<label class="label"

data-translate="Name">

Name

</label>

</div>

<div class="field-body">

<div class="field">

<p class="control">

<input class="input"

type="text"

placeholder="Type your name"

data-translate="Input-placeholder">

</p>

</div>

</div>

</div>

<button

id="btn-translate"

class="button is-link"

data-translate="Button">

Translate this page

</button>

12

</div>

</div>

<script>

window.onload=rtl.run;

</script>

</body>

</html>

Secondly, we need to create a file with the translations. Note that, contrary to
the resource string mechanism, all translations must be present, also the original
language: there is no way to reset the translation.

The file looks as follows:

{

"nl" : {

"html" : {

"Title":"Vertaling met HTMLTranslator",

"Button":"Vertaal deze pagina",

"Header":"Vertaling met resourcestrings",

"Paragraph":"Deze tekst wordt vertaald.",

"Input-placeholder":"Typ uw naam",

"Name":"Naam"

}

},

"en" : {

"html" : {

"Title" : "Translation using HTMLTranslator",

"Header" : "Translation using HTMLTranslator",

"Button": "Translate this page",

"Paragraph" : "This text will be translated using data-translate",

"Input-placeholder":"Type your name",

"Name":"Name"

}

}

}

As you can see, we’ve elected to use the scope ”html”. We save this file as
lang.json, next to our index.html page.

Lastly, we adapt the code. The program starts by initializing an instance of
THTMLTagTranslator. It sets the default scope to ’html’ and set the LanguageSource
to lsMulti, since we have multiple languages in our file.

The LanguageFileURL is set to lang.json, the name of the file we saved the trans-
lations in, it will be downloaded from the same location as the index.html page.

uses

JS, Classes, SysUtils, Web, Rtl.HTMLTranslate;

Var

aButton : TJSHTMLButtonELement;

aTranslator : THTMLTagTranslator;

IsDutch : Boolean;

// some code removed for clarity...

Procedure Init;

13

begin

aTranslator:=THTMLTagTranslator.Create(nil);

aTranslator.LanguageSource:=lsMulti;

aTranslator.LanguageFileURL:=’lang.json’;

aTranslator.OnLanguageLoaded:=@DoLangLoaded;

aTranslator.DefaultScope:=’html’;

aButton:=TJSHTMLButtonELement(Document.GetElementByID(’btn-translate’));

aButton.onclick:=@DoTranslation;

end;

begin

Init;

end.

As you can see, the code to translate is quite simple. As soon as the language is
set, the DoLangLoaded is triggered, and the TranslateBelowHTMLTag can be used
to do the actual translation. Note that the code does not pass a scope to use
to the TranslateBelowHTMLTag call: the default scope is set to html, and this is
sufficient. Lastly, the OnLanguageLoaded is set to DoLangLoaded, where we do the
actual translation:

procedure DoLangLoaded(Sender: TObject; aLanguage: String);

begin

aTranslator.TranslateBelowHTMLTag(TJSHTMLElement(Document.body));

aTranslator.TranslateBelowHTMLTag(TJSHTMLElement(Document.head));

end;

As you can see, we call the TranslateBelowHTMLTag method twice:

� once for the body element.

� once for the head element. This call will translate the title tag, thus setting
the page title.

Note that we do not pass a scope name to the TranslateBelowHTMLTag call. This
will cause the code to use the default scope, ’html’.

The onclick handler of our button is now quite simple:

function DoTranslation(aEvent: TJSMouseEvent): boolean;

begin

Result:=True;

IsDutch:=Not IsDutch;

if IsDutch then

aTranslator.Language:=’nl’

else

aTranslator.Language:=’en’

end;

Setting the language will load the translation file if necessary, and when loaded, will
call our DoLangLoaded event handler.

That’s all there is to it.

14

4 Creating a file with translations

It is not necessary to create the JSON file completely by hand: the pas2js repository
contains a tool that allows you to extract all texts that must be translated from
the HTML files. The tool is called extractlang, it can be found under the tools

directory of the pas2js distribution.

Currently, only a command-line tool is available. When running it with the -h

command-line option, it displays a help page:

Usage: /home/michael/P2JS/main/tools/extractlang/extractlang [options]

Where options is one or more of:

-h --help This help text

-c --clear Clear output JSON file

(Default is to update existing file).

-d --html-dir=DIR Directory with HTML files to scan

-f --file-mode=MODE Set file mode: one of single or multiple

-o --output=FILE File to write JSON translations

(may get suffix depending on file mode)

-l --languages=LIST Comma-separated list of languages to create

-m --minify Minify output

-n --name=NAME Set name of data-tag to NAME (data-NAME)

-r --recurse Recurse into subdirectories of the HTML directory

-s --single-scope=SCOPE Put all translation names in a single scope

-t --trash-values Trash values for other languages

To operate, the tool needs at least 2 options: -d and -o. The -d option specifies a
directory where the tool will look for HTML files. The -o option specifies the name
of a JSON language file to create or update.

With these options, the tool will scan the directory for HTML files (and subdirecto-
ries if -r is specified), collect all HTML tags with attribute data-translate, and
will write the inner text of this tag in a JSON file. By default, only a en language
will be created. But you can also create the text for additional languages using the
-l option: for each language, the tool will check if the named text is there, and if
not, it will add the text.

If we run the program in the directory of our sample application using the following
command-line:

extractlang -d . -o lang.json -l ’en,nl’ -s html

We specify the -s option because that’s the scope we used in code. If no scope is
specified, for each processed HTML file a separate scope will be used, where the
scope name is the HTML filename, lowercased and without extension.

The tool will give you some diagnostic output:

Searching ./index.html for translatable terms, adding to scope : html

Found 6 translatable terms

Collected 1 message scopes

Copied 1 new scopes with 6 words, added 0 new words in existing scopes.

And we will end up with the following file:

{

15

"en" : {

"html" : {

"Title" : "Translation using resource strings - Manual",

"Header" : "Translation using HTMLTranslator",

"Paragraph" : "This text will be translated using data-translate.",

"Name" : "Name",

"Input-placeholder" : "Type your name",

"Button" : "Translate this page"

}

},

"nl" : {

"html" : {

"Title" : "Translation using resource strings - Manual",

"Header" : "Translation using HTMLTranslator",

"Paragraph" : "This text will be translated using data-translate.",

"Name" : "Name",

"Input-placeholder" : "Type your name",

"Button" : "Translate this page"

}

}

}

This file is ready to be translated. (note that if you use the minify option, the
output is not human-readable and difficult to translate manually)

By default, the tool will load an existing file and will simply add new texts, which
makes it suitable for updating existing translations.

As an aid in translating, you can specify the -t (trash) option. In that case, the first
language will contain the original text from the HTML file, and all new words in
other languages will contain some chinese characters. Doing so can aid as a visual
check when changing the language in the actual HTML page: any non-translated
terms will appear as Chinese characters which (for western people) will stand out.

5 Conclusion

Pas2js offers all tools needed to make a localized application. The mechanisms for
translation of resource strings and HTML pages are similar in the sense that they
use a JSON file: this allows you to have translations of both resourcestrings and
HTML tags in a single JSON file.

As always, there is some room for improvement, such as integration in the Lazarus
IDE, a GUI program for the extractor tool and a tool to manage translations. These
will be created in time. But all the basic mechanisms are there, so the impatient
developer can already get started.

16

	Introduction
	Translating messages in code
	Translating HTML content
	Creating a file with translations
	Conclusion

