
Design-time components for pas2js

Michaël Van Canneyt

September 1, 2022

Abstract

In this article we present a visual way to use some components that have
been introduced in previous articles: While WYSIWYG is not yet possible
for HTML applications, it is perfectly possible to use the object inspector in
Lazarus for pas2js projects, thus speeding up development of pas2js applica-
tions considerably.

1 Introduction

In the previous articles about programming with pas2js, everything was always
done in code: with the exception of some wizards to generate or update code,
everything had to be done in the source editor. However, Delphi and Lazarus are
RAD environments. There is no intrinsic reason why RAD development should not
be possible for pas2js applications.

The RAD mechanism in Delphi and Lazarus is based on a streaming mechanism:
a form file contains definitions for all components placed on a form or datamodule.
At runtime, the components are created by the streaming mechanism, and the
published properties which you manipulate using the object inspector are set from
the values found in the .dfm or .lfm file .

The streaming mechanism exists in pas2js as well. That makes it possible to create a
form file in the IDE and use it to recreate at runtime - in the Javascript environment
- the form definition that you created in the IDE. Indeed, all classes presented in the
previous articles - in particular, the widgets - have been created as descendents of
TComponent, with the intent that one day they would usable in the Object Inspector
of the IDE.

There is only one problem: The components in the pas2js world assume a browser
and do their work with the browser classes. So how can we compile these compo-
nents for installation in the IDE, where the browser environment is not available
?

At this moment, this is not directly possible. But, a trick can be used that will
allow us to manipulate components meant for pas2js in the IDE.

2 Stub components

In order to use the object inspector for a component, the IDE only needs the
published properties of a component. It does not need (all) the actual functionality
of the components to be able to display them in the object inspector.

1

Keeping this in mind, it is possible to create a ’stub’ component: this is a component
(a native class) that has the same published properties as the pas2js class, and
enough code to set the various properties and make them behave as they would at
runtime: if changing the value of a property changes another property, then the
stub code should reflect this.

The stub component can be created in at least 2 ways:

1. By taking the actual class and put all code that somehow refers to the browser
in a conditional define:

Procedure TMyLabel.SetCaption(aCaption : string);

begin

FCaption:=aCaption;

{$IFDEF PAS2JS}

// FElement is a TJSHTMLElement instance

if Assigned(FElement) then

FElement.InnerText:=FCaption;

{$ENDIF}

end;

This approach has the advantage that only 1 set of source files is needed: one
for in the browser, one for in the IDE. The disadvantage is that it is a lot of
work to keep the code compilable on both platforms.

2. By taking a copy of the class and removing all code that is not directly in-
volved in the handling of the published property: all public, private and
protected methods can be removed. Obviously, properties that descend from
TPersistent must still be created. The advantage is that the code is simple,
the disadvantage is that there are 2 sets of files to be maintained.

Pas2js comes with a tool (makestub) which helps creating such a stub class using
the second method: it scans the original file for classes and outputs a new class
with only the published properties. It is not perfect, but can be used to make a
first version of a stub.

Once the stub component is made, the component can be installed in the IDE,
property and component editors can be registered and it can be dropped on a
datamodule or a form.

Currently, the trunk version of the lazarus IDE comes with 15 components that
were made this way. They will be presented in the below.

3 Data Modules and Forms

A data module is a container for components that is not visible: it can be created
like a form, components can be dropped on it, but at runtime it exists only in
memory, it has no visible counterpart. It should not come as a surprise then that
using a TDatamodule is possible in pas2js: you can create a datamodule in the IDE,
drop some components on it and compile it. If the components are supported by
Pas2JS (or have a stub), the data module can be created at runtime, the form file
will be read, and all will be as in a native application.

But how to do forms ?
Forms are deeply embedded in the VCL or LCL, and there is no HTML counterpart
for this concept. Indeed, what would constitute a form in the browser ? The

2

complete browser HTML window area or just a part of it ? Various answers are
possible.

It would be possible to mimic TForm and most of its properties in the browser, but
this would be enforcing an alien concept on the browser:

Visually, the browser is simply a powerful engine to display HTML in a window.
Trying to hide the use of HTML in LCL-like components is maybe not the best
idea: rather, the power of HTML and CSS should be embraced. The internet is full
of beautiful frameworks, many components that render HTML directly. It makes
sense to allow us to be able to use of this rich ecosystem.

So, how can we visually represent a part of the browser window in the IDE as if it
were a form and allow the user to use the object inspector and component palette?

The answer is the THTMLFragment ”form” component. In the IDE, this is currently
simply a TDataModule descendant, so you can create it with the ’File-New’ menu;
and drop components on it and manipulate them in the IDE: it has a form file as
a datamodule or form, so it can be streamed.

You will notice the familiar resource directive in the source code:

{$R *.lfm}

Pas2js will recognize this directive and will link in the resource (more about that
later in this article)

With the THTMLFragment component, you can associate a fragment of HTML. At
runtime, this HTML fragment will be inserted in the browser DOM tree, at a
location that you specify: much like the ’form’ classes presented in the previous
articles.

At the same time a component has been developed that allows to associate HTML
elements to a pascal identifier, and attach event handlers for most common HTML
events to this tag in a visual manner using the object inspector. This component is
called the THTMLElementActionList and can be found on the component palette.
Its workings are analogous to the TActionList class found in the LCL and VCL.

4 The pas2jscomponents package.

The concepts presented in the previous sections have been implemented in a package
pas2jscomponents. The package is available in the trunk version of Lazarus in the
directory Components/Pas2js/Components. When installed in the IDE, (currently)
15 components are installed on the component palette on 4 different tabs:

Pas2js Some general purpose components, plus some Bootstrap CSS based UI-
omponents.

The components are (in order of appearance on the component palette tab):

THTMLElementActionList a component to access the HTML tags and
associate events handlers to various events in a visual manner.

TBootstrapModal a bootstrap modal dialog component.

3

TBootstrapToastWidget a bootstrap toast message component.

TPas2JSRPCClient The RPC Client presented in the previous pas2js arti-
cle. The name is changed to prevent a clash with the native TRPCClient

class.

THTMLEditor a component for a simple HTML editor.

Pas2js Bulma A dialog and toast component based on Bulma CSS

2 components based on Bulma CSS:

TBulmaModal a Bulma-based modal dialog component.

TBulmaToastWidget a Bulma-based toast message component.

Pas2js Data access Components for data access.

This tab contains 3 components for data access:

TSQLDBRESTConnection The connection component for a SQLDBRest
server, presented in the previous article.

TSQLDBRESTDataset The dataset component for a SQLDBRest server,
presented in the previous article.

TLocalJSONDataset A local dataset component: you can use this for stor-
ing local data, by defining a set of fields, like in TClientDataset in Del-
phi, or TBufDataset in Lazarus. The component can load and save the
(JSON) data from and to the browser’s local storage.

Pas2js Data Controls These controls are data-aware: they generate HTML based
on the contents of a dataset.

The components are (in order of appearance on the component palette tab):

TDBBootstrapTableWidget Fill a grid based on a dataset. It uses bootstrap-
table for the styling and handling.

TDBLoopTemplateWidget Repeat a HTML snippet for every record in
a dataset, replacing template variables based on the field values in the
dataset.

TDBSelectWidget Fill a HTML SELECT tag with OPTION tags, based
on records in a dataset.

4

Figure 1: The HTMLFragment menu item

In addition to the components, the pas2jscomponents package registers the THTMLFragment
as an item in the ’File’ - ’New’ dialog, as shown in figure 1 on page 5.

5 A demo application

To demonstrate the use of these components and the visual HTML, we’ll rewrite
the application we created in the previous article using the HTMLFragment and
the visual components. For some components, nothing changes: instead of creating
them in code and setting the properties, this can now simply be done visually. For
some others, some changes are needed.

As a quick reminder, the application was a small blogging application. The server
part has an RPC mechanism to log in, the client has several forms:

1. A data module which has a RPC client and the SQLDB Rest connection.

2. A main form to handle the main HTML page (index.html)

3. A form to log in.

4. A form to show an overview of available posts

5. A form to view or edit a post.

The server part does need one change: the sqldbrestcds unit must be added to
the uses clause. The reason for this is that the design-time support for various
components queries the server and expects data to be returned in the format read
by TBufDataset format. Adding the sqldbrestcds unit to the server enables the
support of this format.

So the server program can be compiled as it was (with the added sqldbrestcds

unit), and started - this is needed to enable some of the data handling functionalities
described below.

The client part needs more changes, obviously.

5

Figure 2: The context menu of the RPCClient component

.

To get started, you need of course to have the latest trunk version of lazarus (see
the article that explains how to do this) and the package pas2jscomponents needs
to be installed.

Just as in the original application, we again start with creating a new pas2js browser
application, and we set the option to use the TBrowserApplication class. Af-
ter this, we use the ’File - new’ dialog to create a data module: we will name it
ServerModule and save the unit with the name dmServer.

On this data module, we drop 2 components from the Pas2js and Pas2js Data

access tab:

1. a TPas2JSRPCClient component. We call it RPCClient set the URL property
to

http://localhost:8080/RPC

if you used another port than 8080 for the server application, obviously you
must set the URL property accordingly.

2. a TSQLDBRestConnection component. We call it RestConnection and set
the BaseURL property to

http://localhost:8080/REST

Here as well, the port number must be changed if necessary.

The IDE support for TPas2JSRPCClient contains a wizard to generate the service
definition: in the context menu of the RPCClient (see figure 2 on page 6), select
’Create Service Client component’. This will bring up the ’Service Client generation’
dialog.

This dialog does the same as the apiclient website page presented in the second
article in this series: based on the RPC service URL, it creates a unit with a client-
side proxy class for the service that has all the calls presented by the service. It has
some options, most of which are obvious in what they do:

1. The URL of the service, this is taken from the RPCClient component.

2. The name of the unit to generate.

6

Figure 3: The dialog to generate a client class

.

3. The file name of the unit to generate.

4. Options which influence the code: use NativeInt for number-typed arguments
and an option to force the use JSValue for result values in callbacks.

5. A button to show a preview of the code in a memo.

6. Options to add the unit to the project, and copy the code to the clipboard.
The latter is useful if you want to have multiple services in 1 unit: you can
simply paste the declaration into an already existing unit.

All these options can be seen in figure 3 on page 7.

The class can be generated and renamed (TUserService) to match the class name
used in the previous version of the project. In the data module, we define again a
variable for the service, and add the login method with 2 events to signal success
and failure, just as in the previous version of this program. The OnCreate event of
the data module can be used to configure the connection at runtime:

Const

ServerURL = ’http://localhost:8080/’;

procedure TServerModule.DataModuleCreate(Sender: TObject);

begin

FUserService:=TUserService.Create(Self);

FUserService.RPCClient:=RPCClient;

RPCClient.URL:=ServerURL+’RPC/’;

RestConnection.BaseURL:=ServerURL+’REST/’;

7

end;

The login method remains exactly as it was in the first version of our application:
we can simply copy and paste it: no code changes are necessary.

procedure TServerModule.DoLogin(const aUserName, aPassword: String);

procedure DoOK(aResult: NativeInt);

begin

FUserInfo.Login:=aUserName;

FUserInfo.ID:=aResult;

if Assigned(FOnLogin) then

FonLogin(Self);

end;

procedure DoFail(Sender: TObject; const aError: TRPCError);

begin

FUserInfo.Login:=’’;

FUserInfo.ID:=-1;

If Assigned(FOnInvalidLogin) then

FOnInvalidLogin(Self);

end;

begin

UserService.Login(aUserName,aPassword,@DoOK,@DoFail);

end;

6 Accessing HTML elements

In the previous articles we used the lazarus IDE wizard to generate a ”form” class
definition from a HTML page, where the form would have a field for every HTML
element in the HTML page. We could do the same here and tell the wizard to use
the THTMLFragment class as a parent.

Doing so leads to a small problem: the wizard does not generate a form file, a
problem which still needs to be solved.

But there is another way: we can do this differently and in a manner which will
allow us to work in visual (point-and-click) manner for creating the HTML element
events. We will show this by starting with the main html file (index.html).

As a reminder: The index HTML file serves as the shell for the various forms in
the application, and contains the application menu as well as the login menu and
hamburger menu for responsive design. It also contains the parent HTML tag where
the various pages of the Single Page Application are shown. These HTML tags are
accessed from the login page to enable/diasble the menu and login menu items. So
we make a ’form’ for this page.

The ’File’ - ’New’ menu item ”Pas2JS HTML fragment module” can be used to
create a form-like enviromnent. The THTMLFragment class corresponds to a ’form’:
a fragment of HTML that will be downloaded and inserted in the main html page.

This form (we’ll call it ”form” for ease of use) has several properties.

HTMLFileName if set, this is the HTML file that will be downloaded by the
template loader. If not set, the name of the file is the TemplateName, in

8

lowercase and with extension .html

ParentID The ID of the parent HTML element for this form. This is the element
below which the HTML for this form will be inserted.

TemplateName if set, this is the name of a global template that will be used as
the HTML form.

UseProjectHTMLFile If set, no extra HTML will be loaded, and the main
HTML file of the project will be used to find IDs for tags etc.

There are some events:

OnAllowUnrender This will be called before unrendering (removing) the form’s
HTML, and can be used to disallow unrendering: in case there is data to be
saved.

OnRendered This event will be called when the form HTML is inserted in the
parent HTML tag. At this moment, the HTML is inserted in the DOM.

OnHTMLoaded This event will be called when the form HTML has been down-
loaded but is not yet inserted in the parent HTML tag.

OnUnRendered This event will be called when the form HTML has been removed
from the browser’s DOM tree.

It has few methods:

Render Render the HTML by inserting it in the DOM tree. This method is
synchronous and can only be called if the HTML for the form has already
been downloaded.

UnRender Remove the form’s HTML by removing it from the DOM tree. This
method is synchronous.

Show Download and subsequently render the HTML by inserting it in the DOM
tree. This method can be asynchronous and can be called even if the HTML
for the form is not yet available: it will use the HTMLFileName and TemplateName

to use the global templateloader (presented in an earlier article in this series)
and download the necessary HTML.

Hide Will check if the form is rendered and if so, unrenders it.

The reason that there are so little properties and methods is simple: There is not
much else to do in the concept of a HTML Fragment. Designing the form is expected
to happen in a HTML editor (you can use the Lazarus IDE for this). For capturing
events, we can use another component described below.

Once the THTMLFragment is created, we will name it TIndexForm and call the
unit frmIndex. Then we can drop a THTMLElementActionList component on it
from the ’Pas2js’ tab of the component palette.

This component is modeled after the TActionList component: it has a component
editor that allows to create items for the various HTML elements in the form’s
HTML. When you display the context menu of this component, there will be 2
menu items, as shown in figure 4 on page 10:

HTML Element Actionlist Editor this will show the element actionlist editor,
a component editor that closely resembles the TActionList editor found in
the LCL.

9

Figure 4: The THTMLElementActionList context menu.

.

Create actions for HTML tags this will scan the HTML file for HTML element
tags that have their id attribute set, and will create an action for each of them.

There are various action classes possible: a THTMLElementAction is a TComponent,
just like TAction in the LCL. As such, it will be inserted in the form and hence is
available in code, you can do code completion on it etc.

When you select the Create actions for HTML tags menu item, a dialog will pop
up that shows the ids of HTML tags for which no THTMLElementAction definition
exists yet. The dialog is shown in figure 5 on page 11.

As can be seen in the editor, you can set an option to use Data-aware actions:
setting this option this will instruct the wizard to use data aware actions for all
input elements and buttons. You can select the action class to use for each element.
Once done, the necessary component definitions will be inserted in the form. The
wizard will choose default names for the various actions: ’act’ appended with the
id attribute of the tag (suitably modified so it is a valid pascal identifier).

The THTMLELementAction class has the following published properties:

Events A set of events for which you want to create an event handler. One event
handler is created that handles all events.

CustomEvents The names of custom events, not present in the standard events
list. These event names must be separated by commas or spaces.

ElementID The ’id’ attribute of the HTML tag to which to bind this action. This
will result in a single HTML tag being bound.

CSSSelector a CSS selector: this will be used using querySelectorAll to bind
one or more HTML tags to this action.

PreventDefault when set to True, the preventDefault method of the event ob-
ject will be called after the OnExecute event was executed.

10

Figure 5: The ’Add HTML Element actions’ dialog.

.

11

StopPropagation when set to True, the stopPropagation method of the event
object will be called after the OnExecute event was executed.

OnExecute This event handler is executed for all selected events. You can see
which event was executed by examining the event parameter.

BeforeBind This event is executed just before the action is bound to the HTML
tags.

AfterBind This event is executed just after the action is bound to the HTML
tags.

Note that only a single event handler is created for all possible HTML events. It is
possible to create 2 actions for the same HTML tag, and handle different events in
each action. Besides the published properties, there are also some public properties
which can be used in code:

ActionList The action list of which the action is part.

Element In case an was specified, the HTML element (of type TJSHTMLElement)
to which the action is bound.

Elements An array of HTML Elements corresponding to the CSS Selector. In case
an element ID was specified, the array will contain 1 element, corresponding
to the Element property;

Index The index of this action in the ActionList

Value When the property is read, this returns the value of the first element in the
Elements array. In case of writing to the property, the value will be set for
all elements in the array.

Value can be set on any HTML element: For Input and Select HTML tags, Value
is the value property of the tag. For all other tags, this is the value of the InnerHtml
property.

It is possible to manipulate the HTML tag using the Element property. For ease of
use, there are some methods in the action:

Bind Call this to bind the action again to the HTML tags: This is called automat-
ically when the form is rendered, but you can call it again after the HTML
inside the form has dynamically changed. For instance, it can be used to bind
the onclick event to all rows of a table using the selector ’#mytable tr’. If the
table was filled with rows dynamically, you would call Bind to get the array
of row elements.

ClearValue Clear the value of the element.

FocusControl Focus the element.

BindEvents Bind all events for a given element.

HandleEvent Handle an event and call the event handlers

ForEach execute a callback for each element in the array of elements for this action.
Optionally a Data object can be specified which is passed to the callback.

AddClass add a class to the list of CSS classnames for the HTML tag(s). The
argument must be a single CSS class name.

12

RemoveClass remove a class from the list of CSS classnames for the HTML tag(s).
The argument must be a single CSS class name.

ToggleClass toggle a class in the list of CSS classnames for the HTML tag(s).
The argument must be a single CSS class name.

Descendents of THTMLElementAction may have more properties and methods.

These action classes can be used to interact with the HTML; just like for classical
controls, the events can be created in a point-and-click manner. If the form HTML
has a toplevel tag with an ID attribute, events can be handled for the whole form as
well: In that case you may need to set the StopPropagation to True on individual
elements to prevent the event from being handled twice.

For the index form, the actions can be created, but no events are needed: the
events will be handled in the login form. The menu is initially disabled, so we do
add a method to show the menu when the user logs in. This method (StartLogin)
demonstrates some of the methods and properties of the action class:

procedure TIndexForm.StartLogin(const aUserName: String);

begin

mnuUser.RemoveClass(’is-hidden’);

mnuLogout.removeClass(’is-hidden’);

mnuLogin.AddClass(’is-hidden’);

lblUser.Value:=aUserName;

end;

For the login form, we do the exact same as for the index form. But in this case,
we fill in the TemplateName and HTMLFileName.

The context menu for the THTMLElementActionList and in particular the ’Create
actions for HTML tags’ menu item will know in what file to look for the HTML
tags and their ID attributes: the wizard will create actions for the login button and
the input tags for username and password.

Only the login button needs an ’onclick’ event handler:

procedure TLoginForm.actbtnDoLoginExecute(Sender: TObject;

Event: TJSEvent);

begin

server.DoLogin(edtEmail.Value,edtPassword.value);

end;

The server module still has the OnLogin and OnInvalidLogin events, which we
assign in the OnCreate event of the login form:

procedure TLoginForm.DataModuleCreate(Sender: TObject);

begin

Server.OnInvalidLogin:=@DoLoginFailed;

Server.OnLogin:=@DoLoginOK;

end;

7 Toast components

In the OnLogin or OnInvalidLogin event handlers, a Bulma toast was shown. The
Pas2js tab of the component palette contains a TBootstrapToastWidget, and the

13

Pas2js Bulma tab contains a TBulmaToastWidget. These components can be used
to show a toast message. The bulma toast has the following properties:

Header A string with the HTML for the toast’s header.

Body A string with the HTML for the toast’s body.

HeaderImage An URL used to add an image to the header.

CloseButton A boolean indicating whether to show a close button or not.

Contextual Set the color scheme for the toast: The TContextual type is an enu-
merated with the primarys colors used in Bulma: link, warning, danger etc.

HideDelay The delay - in milliseconds - to wait before hiding the toast. Only
effective when AutoHide is True.

AutoHide A boolean to indicate whether the toast must hide automatically after
some delay.

Animate A boolean to indicate whether to use an animation to show or hide the
toast.

MinWidth An integer indicating the minimal width of the toast.

Single single toast or multiple toasts ?

Position The position of the toast on the browser form: An enumerated that can
be set to top-left, bottom-right etc.

ParentID The ID of the HTML Element where the toasts will be rendered. If
none is set, the ParentID of the toast manager (toasts) will be used, if that is
not set, the body element is used.

The Bootstrap toast component has the same properties.

So, to show a toast on succesful login, we drop 2 bulma toasts on the form, enter
some text in the Body and Header properties and set the parameters for Contextual,
autohide. The resulting form in the designer looks as in figure 6 on page 15.

All that’s left to do is to call Refresh in the appropriate places, which will actually
render the toast:

procedure TLoginForm.DoLoginFailed(Sender: TObject);

begin

FailedToast.Refresh;

end;

procedure TLoginForm.DoLoginOK(Sender: TObject);

begin

OKToast.Body:=’Hello, ’+Server.UserInfo.Login;

OKToast.Refresh;

IndexForm.StartLogin(Server.UserInfo.Login);

Router.RouteRequest(’/articles’,True);

end;

As you can see, at the end of the DoLoginOK we have the same code as in the
previous version of the application: a call to route the brower to the articles form.

14

Figure 6: The login form in the designer

The form manager class we introduced in the article on routing remains as it was,
but there is a minor change: the TBaseForm form that underpins all forms is now a
descendent of the THTMLFragment class.

We just need to make sure that our forms are descendents of TBaseForm. Ideally,
we could create a Lazarus IDE wizard to create a descendent of TBaseForm, but a
simpler method can also be used.

We simply create an alias for the THTMLFragment class:

uses

SysUtils, Rtl.HTMLActions, htmlfragment, Web,

bulmawidgets, frmBase;

type

THTMLFragment = TBaseForm;

TLoginForm = class(THTMLFragment)

// etc.

Using this method, all the code for displaying forms as it was presented in the article
on routing remains functional, but behind the scenes the THTMLFragment class is
used, which allows us to remove the code to actually download the html from the
TFormManager class, as this part is now handled by the THTMLFragment class.

8 Using Data-aware components

The article list form used a dataset to fetch a list of articles, which were subse-
quently shown with the TDBLoopTemplateWidget component class. Since the tem-

15

Figure 7: The TSQLDBRestDataset component context menu

plate widget is a component, it is available on the component palette. The same
can be said for the TDBSelectWidget that is used to display a select element to
filter the authors. Recreating the article list form with these components is easy to
do:

� We create a pas2js HTMLFragment form and set the HTMLFilename property
to articles.html.

� We create a THTMLElementActionList on the form and let it create actions
for all elements.

� We drop 2 datasets (for articles and authors) on the form and connect them
to the connection component on the server datamodule.

� We drop 2 datasources (dsArticles and dsAuthors) and connect them to
the datasets.

� We drop a TDBLoopTemplateWidget component (ltwArticlesList) and con-
nect it to the dsArticles datasource.

� We drop a TDBSelectWidget component (dswAuthors) and connect it to the
dsAuthors datasource.

The TSQLDBRestDataset component has a context menu with a Pas2JS REST sub-
menu in it (figure 7 on page 16). This submenu has 2 entries:

Create field defs Using this menu you can create fielddefs for the REST resource
indicated in ResourceName. After this, the fields editor can then also be used
to create persistent fields for the dataset.

Show data Using this menu you can actually see the data of the REST resource
in a grid, as shown in figure 8 on page 17.

Note that the SQLDBRest server must be running for these menu items to work.

The various template properties of the TDBSelectWidget and TDBLoopTemplateWidget

component can now be edited using the Object Inspector: a property editor that
shows a HTML editor with syntax highlighting is available for editing the HTML
snippets, as shown in figure 9 on page 17.

The author selection dropdown (dswAuthors) contains a ItemField property which
determines the field to show in the dropdown. It is set to u author.

16

Figure 8: Showing the REST resource data

Figure 9: Editing the HTML templates using a property editor

17

This is a calculated field which we calculate in the OnCalcFields event of the
rdsAuthors dataset:

procedure TArticleListForm.rdsAuthorsCalcFields(DataSet: TDataSet);

var

aAuthor : String;

begin

aAuthor:=rdsAuthorsu_firstname.AsString;

aAuthor:=aAuthor+’ ’+rdsAuthorsu_lastname.AsString;

if (rdsAuthorsu_id.AsLargeInt=Server.UserInfo.ID) then

aAuthor:=’You (’+aAuthor+’)’;

rdsAuthorsu_author.AsString:=aAuthor;

end;

Here we take advantage of the persistent fields: the compiler will check all code,
and code completion helps us not to make any mistakes against the fieldnames.

The OnChange event handler of the dswAuthors element can now be implemented
much as it was in the previous version of our program:

procedure TArticleListForm.dswAuthorsChange(Sender: TObject;

Event: TJSEvent);

Var

aAuthorID : Integer;

begin

aAuthorID:=StrToIntDef(selAuthor.value,-1);

With rdsArticles.ParamByName(’a_author_fk’) do

begin

AsInteger:=aAuthorID;

Enabled:=(aAuthorID<>-1);

end;

rdsArticles.Close;

rdsArticles.Load;

end;

Note that we do not create the parameter a author fk in code, because we can use
the object inspector to create it, as seen in figure 10 on page 19.

The AfterOpen event handler of the dataset can now also be created using the
object inspector:

procedure TArticleListForm.rdsArticlesAfterOpen(DataSet: TDataSet);

begin

if Dataset.IsEmpty then

divNoArticles.RemoveClass(’is-hidden’)

else

divNoArticles.AddClass(’is-hidden’);

end;

As you can see the divNoArticles component (of type THTMLELementAction) has
a convenience method to add or remove CSS classes.

18

Figure 10: Creating filter parameters using the Object Inspector

Last but not least, the OnRendered method of the form can be used to load the
data:

procedure TArticleListForm.DataModuleRendered(Sender: TObject);

begin

if Server.UserInfo.ID>0 then

divNewArticle.removeClass(’is-hidden’);

rdsArticles.Load;

rdsAuthors.Load;

end;

A word of caution: do not load the data in the OnCreate method. After the create,
the form HTML is not yet rendered, and the data-aware components will not be
able to render the data if the data arrives before the HTML fragment. Similarly,
the divNewArticle element action is not yet bound to the HTML tag, and the
removeClass method will not work yet.

9 Ready to run

The last form to convert is the article form. In fact, it is completely similar to
converting the article list, no new mechanisms are used, so we will not present it
here.

The application class of our application can remain exactly the same as it was
before, and with this the application is ready. Compile and running will however
result in an error in the browser, as shown in figure 11 on page 20. The reason for
this is that the pas2js compiler allows 2 kinds of resources:

� Resources added as Javascript in the application javascript files.

19

Figure 11: An error when running the application in the browser

� Resources added as link elements using a data url.

Since we didn’t tell the compiler which resource mechanism to use, the compiler
did not include our form files in the application. The solution is to add the -JRjs
option in the custom compiler options, as can be deen in figure 12 on page 21. once
that is done, compiling and running the program will work as before, see figure 13
on page 21

10 Conclusion

The support for visually designing HTML applications in the Lazarus IDE is a work
in progress: although the current state is not yet WYSIWYG, the use of 2-way code
editing tools is already possible. It makes working on an HTML application easier,
and reduces the need for writing code considerably. The same components will be
usable once the actual HTML designer works, so the way of working presented here
will not change once the HTML editing is actually available: at that point you will
simply be able to see the HTML in the designer, instead of a white background.

20

Figure 12: Adding the resource type to the compiler options

Figure 13: The reworked program in action

21

	Introduction
	Stub components
	Data Modules and Forms
	The pas2jscomponents package.
	A demo application
	Accessing HTML elements
	Toast components
	Using Data-aware components
	Ready to run
	Conclusion

