
Handling multiple forms or pages in Pas2JS

Michaël Van Canneyt

March 14, 2022

Abstract

In this article we show how to reduce coding when creating forms in a Pas2JS web
application. Additionally we show how routing can be used to show multiple forms in
an SPA (Single Page Application) and keep the browser experience of the user intact.

1 Introduction

The previous articles showed how to implement a Pas2JS dialog, and how to switch to
another dialog when the user logged in. All the examples shared a common approach:
whether they used the WebWidget components or plain HTML classes, they always had
one field per HTML tag element in the web page: the field was either a TWebWidget
component or one of the HTML classes found in the Web unit. This is identical to how
Delphi code deals with forms.

For example, the login page resulted in this declaration:

TMyApplication = class(TBrowserApplication)
edtEmail: TJSHTMLInputElement;
edtPassword : TJSHTMLInputElement;
btnLogin : TJSHTMLButtonElement;
procedure doLoginClick(aEvent: TJSEvent);

This is of course similar to a form declaration in Delphi. In the previous articles, these
"form declarations" were created manually. In the below, we show how to generate such a
declaration directly from the HTML file.

In Delphi, it is very common to show a second form with code like this:

Procedure TMainform.mnShowUserClick(Sender : TObject);

var
frm : TUserForm;

begin
frm:=TUserForm.Create(Self);
frm.Show;

end;

It is possible to mimic this behaviour in a web application. But this is in fact not really
how a user will expect a web application to function: when the user form appears as shown
in the code, the user expects to be able to use the browser’s back button to return to the
previous form, or to reload the page using the refresh button.

The solution for this problem is called routing. With each form of the application, a URL
is associated. The URL must contain enough information to reconstruct the form. For

1

example, the following 3 URLs could be used to respectively show the overview of users,
create a new user and edit user with ID 123:

/users/
/users/new
/users/123

If the user is currently viewing URL /users, and navigates to the details of user 123
then the URL becomes /users/123. When the user wants to go back to the overview
of users, he’ll press the back button. The application should catch this event and present
the user again with the overview of the users. We’ll explain how this can be achieved in a
Pas2JS application.

2 Generating form declarations

To avoid having to manually create a form declaration for each HTML file in a web appli-
cation, a tool called html2form has been created. Its sources are distributed with Pas2JS, in
the directory tools/html2form. It is a command-line application. When executed with the
-h command-line option, you get some help messages which explain the various options:

help show a help message

below-id=ID Only create fields for child elements of element ID in the HTML page.

formclass=NAME The name of the pascal "form" class to create.

form-file Generate also a form .frm file (see below).

getelementfunction=NAME Name of getelementByID function: this is the function
that is used in a BindElements method to look up an HTML element based on
their ID attribute.

events When specified, the tool will emit code to bind event handlers to methods.

input=file With this option, you specify the html file to read.

map=file Read a mapping file, which is used to map HTML tags to Pascal classes, based
on tag and attributes. By default, the tool maps HTML tags to the native Javascript
HTMLElement child classes.

no-bind By default, the BindElements call which maps variables to actual instances is
called from the class constructor. When this option is specified, the call to BindElements
is omitted from the constructor

output=file The pascal file to write a unit to.

parentclass=NAME Name of pascal "form" parent class. There is no fixed TForm class
in Pas2JS, so the tool needs a class name. By default, this class is TComponent.

exclude=List You can specify a comma-separated list of IDs to exclude: for these IDs, no
field will be created. If the value for this option starts with @, then the remainder of
the option is assumed to be a filename, and the list is loaded from the file.

These options give you an idea of the possibilities.

So, how to use this tool? Let’s take the index.html file from our previous examples – it
contains a login dialog – and run it through the tool using the following command-line:

2

html2form --input=index.html -o frmlogin.pas -f TLoginForm

The result is a file that looks like this (some comments have been removed):

unit frmlogin;
{$MODE ObjFPC}
{$H+}

interface

uses js, web,Classes;

Type
TLoginForm = class(TComponent)
Published

edtEmail : TJSHTMLInputElement;
error : TJSHTMLElement;
edtPassword : TJSHTMLInputElement;
btnContinue : TJSHTMLButtonElement;

Public
Constructor create(aOwner : TComponent); override;
Procedure BindElements; virtual;

end;

implementation

Constructor TLoginForm.create(aOwner : TComponent);

begin
Inherited;
BindElements;

end;

Procedure TLoginForm.BindElements;

begin
edtEmail:=TJSHTMLInputElement(document.getelementByID(’edtEmail’));
error:=TJSHTMLElement(document.getelementByID(’error’));
edtPassword:=TJSHTMLInputElement(document.getelementByID(’edtPassword’));
btnContinue:=TJSHTMLButtonElement(document.getelementByID(’btnContinue’));

end;

end.

This "form" declaration will compile as-is and can be added to the Pas2JS project.

Many controls on a page need some kind of event handler: a button without event handler
is of little use. Luckily, the html2form tool can also generate event handlers for you. For
this, a convention is used. when looking at a tag, all attributes that begin and end with an
underscore character (_) are considered event names. The value of the attribute is the event
handler method name.

To demonstrate this, we modify the index.html a little. The login button becomes:

<button id="btnContinue"

3

class="button is-block is-info is-large is-fullwidth"
click="DoLoginClick">
Continue <i class="fa fa-sign-in aria-hidden="true"></i>

</button>

The idea is that the ’click’ event for the btnContinue button is handled by a method
called DoLoginClick.

We run again the html2form tool on this file, but we also pass the -event command-line
option:

html2form --input=index.html -o frmloginbase.pas --event -f TBaseLoginForm

As you see, we also specify another name for the class file and the unit name. The reason
for this will become apparent soon.

The resulting class has more methods:

TBaseLoginForm = class(TComponent)
Published

edtEmail : TJSHTMLInputElement;
error : TJSHTMLElement;
edtPassword : TJSHTMLInputElement;
btnContinue : TJSHTMLButtonElement;
Procedure DoLoginClick(Event : TJSEvent); virtual; abstract;

Public
Constructor create(aOwner : TComponent); override;
Procedure BindElements; virtual;
Procedure BindElementEvents; virtual;

end;

The BindElementEvents is where the events are bound to the callbacks:

Procedure TBaseLoginForm.BindElementEvents;

begin
btnContinue.AddEventListener(’click’,@DoLoginClick);

end;

Note that the callbacks are marked virtual; abstract;. This is configurable: If you
prefer, you can also simply generate virtual methods with an empty body.

But there is a reason for making these methods abstract: The class above is not meant to
be used directly: If you generate a class from the HTML file, it can happen that the HTML
changes, and you must change the class definition. If you do this and regenerate the file,
any changes you made to the file will be lost. This is of course not very convenient.

Instead, the above file is generated with abstract methods. To actually code the form’s
business logic, you create a new unit with a descendent of TBaseLoginForm:

unit frmlogin;
{$MODE ObjFPC}
{$H+}

interface

uses js, web, Classes, frmloginbase;

4

Figure 1: override abstract methods

Type
TLoginForm = class(TBaseLoginForm)
Public
end;

implementation

end.

In this ’form’ class, we override the abstract methods, and implement the GUI logic of the
form. Now, when the HTML File changes, we can simply regenerate the frmloginbase
unit, and continue to work in the frmlogin unit.

Overriding the abstract methods can be done trivially in the Lazarus IDE: The dialog under
the Source - Refactoring - Abstract methods menu (see figure 1 on page 5) allows you to
do this with a couple of mouseclicks. This dialog is also available from the source editor
context menu popup, or you can attach a shortcut key to it.

The resulting code looks like this:

TLoginForm = class(TBaseLoginForm)
procedure DoLoginClick(Event: TJSEvent); override;

Public
end;

5

Figure 2: Create a class definition from an HTML File

implementation

procedure TLoginForm.DoLoginClick(Event: TJSEvent);
begin

end;

All that is needed is to code the necessary UI or business logic. If you forget to implement
some abstract methods, the compiler will warn you about this when you create an instance
of a class which has abstract methods:

frmlogin.pas(29,14) Warning:
Constructing a class "TLoginForm" with abstract method "DoLoginClick"

If you have the latest development version of Lazarus, this whole process has been au-
tomated in the IDE. In the File-New dialog, you can choose the Pas2JS Class
definition from HTML file option (see figure 2 on page 6). When you choose
this, you will be presented with a dialog that allows you to enter all possible options for
the generating of the class definition, see figure 3 on page 7 and figure 4 on page 7. In this
dialog, you can also opt to add the HTML file to the Lazarus project.

Once all the options have been set, the IDE will create the unit with the class declaration,
and adds the new file to the project. In figure 4 on page 7 you can see that more options are
available in the dialog than on the command-line.

In these screenshots, you see 2 toolbuttons: With these buttons you can load and save the
options set in this dialog: this allows you to quickly re-use the same options for all forms
in your application, and also allows you to use the saved options in an automated build
procedure: the command-line appplication can read this file as well.

To ensure that you can recreate the class definitions at any given moment, the IDE automat-
ically stores the options used to generate the unit in the Lazarus project file (the .lpi file). In
the project inspector, you can use the context menu to regenerate one or more (the selected
units) or all html form class files (see figure 5 on page 8).

6

Figure 3: Options for creating a class definition from an HTML File

Figure 4: More options for creating a class definition from an HTML File

7

Figure 5: Quickly regenerate the class definitions from their HTML files

8

3 Navigating from one form to the next

A web application usually shows one form at a time: for instance, an overview of projects
is shown, and when the user clicks a project, the overview disappears, and the details for
the selected project is shown.

In a SPA (Single Page Application) this usually happens by showing all ’forms’ below
a designated HTML tag (let’s give it an id: form-parent). This operation resembles
docking a form in a main form in Delphi.

There are several ways to do this: all forms can be made part of the html - you just insert
their HTML below the designated tag form-parent, give each form’s top level HTML
an ID. Then we can just show or hide parts of the HTML by adding or removing the
following style element to the top level tag of the forms:

style="display: none;"

You could make the routine that does this part of the form constructor, and just create the
form you need.

This is easy and convenient if there are only a few forms in your application. But in an
application with many forms, the page’s HTML will become unwieldy. Far better and
easier is to have the HTML for each form in a separate file; By loading the HTML file at
runtime, we can replace the HTML below the form-parent tag, and the browser will
happily refresh the screen with your new form.

A difficulty with this approach is that loading a file from the server is an asynchronous
operation; it takes some time. But this is not a big issue: we can start loading the forms as
soon as the page is loaded. A second issue is of course that we should not reload a form
each time it is opened: once it was loaded, we better keep the HTML somewhere in the
browser, so we don’t need to download it again next time the form is shown.

To help with all this, Pas2JS comes with a unit called Rtl.TemplateLoader. This
unit will load a bunch of files (called templates) and keep them in some memory structure.
When it is time to load a form, the needed template is requested from the template loader,
and the form can be shown. If the template loader does not have it yet, you will need to tell
it to load it and wait till it is loaded: the component will notify you when it was loaded so
you can display the form.

The TTemplateLoader class is defined as follows:

TTemplateLoader = Class(TComponent)
Procedure RemoveRemplate(aName : String);
Function FetchTemplate(Const aName,aURL : String) : TJSPromise;
Procedure LoadTemplate(Const aName,aURL : String;

aOnSuccess : TTemplateNotifyEvent = Nil;
AOnFail : TTemplateErrorNotifyEvent= Nil);

Procedure LoadTemplates(Const Templates : Array of String;
aOnSuccess : TTemplateNotifyEvent = Nil;
AOnFail : TTemplateErrorNotifyEvent= nil);

Property BaseURL : String ;
Property Templates[aName : String] : String ;
Property OnLoad : TTemplateNotifyEvent;
Property OnLoadFail : TTemplateErrorNotifyEvent;

end;

The method names speak for themselves:

RemoveTemplate clears the template with name aName.

9

FetchTemplate Loads the template from URL aURL and stores the template with name
aName. Returns a promise you can use to wait for the result.

LoadTemplate Loads the template from URL aURL and stores the template with name
aName. You can optionally specify 2 event handlers, which will be called when the
template is loaded or when the load fails.

LoadTemplates Passes a list of strings, strings at even indexes are the names of templates,
strings at odd indexes are the URLS to load. You can optionally specify 2 event
handlers, which will be called when a template is loaded.

The property names are equally clear:

BaseURL All urls in FetchTemplate, LoadTemplate(s) are relative to this URL.

Templates Here you can access a loaded template by name. If the template does not exist,
an empty string is returned.

OnLoad Allows you to set a global template load notification event. This is called in
addition to the ones specified in the load call.

OnFail Allows you to set a global template load failure notification event.

To demonstrate the use of this component, we’ll make a web page with 3 "forms" – actually
an HTML template file, and a button to show each form. The HTML template files will have
an accompanying form declaration (we now know how to generate one quickly), which we
will instantiate once the HTML has been loaded. For this, we need 3 html files:

1. The global HTML file. We’ll name it index.html, and it will contain the buttons
to display the 2 forms. This file would normally contain a menu, nav bar etc: the
things which are always the same in every form.

2. The HTML file for the first form, a login page: we’ll name it login.html.

3. The HTML file for the second form, a projects list page: we’ll name it projects.html.

4. The HTML file for the third form, a users list page: we’ll name it users.html.

Each HTML file will be accompagnied by a class form file, and we’ll add some events to
it, to demonstrate the capability of the html-to-form converter.

The index.html file is quite simple (we show just the HTML body):

<div class="container">
<div class="box">

<button class="button is-primary" id="btnLogin"
click="DoLoginClick">Login</button>

<button class="button is-info" id="btnProjects"
click="DoProjectsClick">Projects</button>

<button class="button is-info" id="btnUsers"
click="DoUsersClick">Users</button>

</div>
<div class="box form-container" >

<div id="form-parent" >
<div class="notification is-info is-light">

Click one of the buttons above.
</div>

10

</div>
</div>

</div>

As you can see, there are 3 buttons, plus some tags that use Bulma CSS to create a visually
more pleasing HTML page.

From this we use the File-New wizard to create a frmIndex.pp unit with the following
class:

TIndexForm = class(TComponent)
Published

btnLogin : TJSHTMLButtonElement;
btnProjects : TJSHTMLButtonElement;
btnUsers : TJSHTMLButtonElement;
form_parent : TJSHTMLElement;
procedure DoLoginClick(Event : TJSEvent);
procedure DoProjectsClick(Event : TJSEvent);
procedure DoUsersClick(Event : TJSEvent);

Public
constructor create(aOwner : TComponent); override;
procedure BindElements; virtual;
procedure BindElementEvents; virtual;

end;

We do the same for the login, projects and users HTML files: For these files, the IDE will
generate a class definition that looks much like the above. After doing this, we end up with
4 units in our project: frmIndex, frmLogin, frmProjects and frmUsers.

For simplicity, we will deviate from the ’proper’ way to do things and simply implement
the needed functionality in the units themselves.

The TIndexForm class is the ’main’ form of our application. In this form, we must
implement the logic for navigation between the login, projects and users form. Here is the
logic to show the login page:

procedure TIndexForm.DoLoginClick(Event: TJSEvent);

Procedure ShowLogin;
begin

form_parent.innerHTML:=GlobalTemplates.Templates[’login’];
FreeAndNil(FCurrentForm);
FCurrentForm:=TLoginForm.Create(Self);

end;

procedure DoShowLogin(Sender: TObject; const aTemplate: String);
begin

ShowLogin;
end;

begin
if GlobalTemplates.Templates[’login’]<>’’ then
ShowLogin

else
GlobalTemplates.LoadTemplate(’login’,’login.html’,@DoShowLogin);

end;

11

Figure 6: Multi-form project with projects tab

The code is quite straightforward. GlobalTemplates is a global instance of the TTemplateLoader
class, defined in the Rtl.TemplateLoader unit. If the template is known, then the
ShowLogin is called. If the template is not yet known, it is loaded, and in the success
handler, ShowLogin is called. For simplicity, we didn’t use a failure event handler.

The ShowLogin routine enters the template HTML below the HTML tag with id form-parent.
It then destroys any previous form instance in FCurrentForm - a variable that keeps the
current form. Finally it creates the new form class and saves it.

That’s all there is to it. For the Projects and Users pages, a similar routine is made,
only the names differ. The result after pressing the Projects button is shown in figure 6
on page 12.

4 Using a factory pattern

The routines to show the login, projects, and users pages are the same. All that differs is
the class name, and the name of the template and html file. If there are a lot of forms, then
repeating the above code is of course not very efficient.

So, an obvious improvement to reduce code is to create a routine (or better, a class) which
does all this in one call. It would also be nice if we could just pass a form name which says
which form must be shown, without having to specify a class or a HTML file name.

To achieve this, we create a TFormManager class in a frmBase unit, which looks like
this:

TFormManager = Class(TComponent)
Public

Procedure RegisterForm(aClass : TBaseFormClass;
const aName : String = ’’;
aHTMLFile : String = ’’);

Procedure UnregisterForm(aName : string);
Procedure ShowForm(aName : string;

OnShow : TFormProcedure = nil);
Property CurrentForm : TBaseForm;

12

Property FormParent : TJSHTMLElement;
Class property Instance : TFormManager;

end;

The Instance class property returns a global instance, which can be used to manage all
forms.

With the RegisterClass routine, we can register a form class, using a name with which
it can be shown, and a HTML file with which to load the HTML for the form. You can
choose these last 2 parameters at will, but if you don’t specify them, some defaults will be
taken.

The ShowForm method can then be used to show a form using just the name used to
register the form; A callback handler can be specified: it will be called when the form is
shown.

The ShowForm routine looks much like the OnClick handler which we presented before,
with as an addition a call to the OnShow handler that can be passed to the method:

procedure TFormManager.ShowForm(aName: string; OnShow: TFormProcedure);

Var
Idx : Integer;
Reg : TFormRegistration;

Procedure ShowForm;
var

html : string;

begin
If Assigned(FCurrentForm) then

FreeAndNil(FCurrentForm);
html:=GlobalTemplates.Templates[’form:’+Reg.Name];
FFormParent.innerHTML:=html;
FCurrentForm:=Reg.FFormClass.Create(Self);
If Assigned(OnShow) then

OnShow(Self,FCurrentForm);
end;

procedure FormFailed(Sender: TObject;
const aTemplate, aError: String;
aErrorcode: Integer);

begin
Writeln(’Error loading form template’,aTemplate,’ : ’,

aError,’ (Code:’,aErrorCode,’)’);
end;

procedure HaveForm(Sender: TObject; const aTemplate: String);
begin

ShowForm;
end;

begin
Idx:=FForms.IndexOf(aName);
if Idx=-1 then

Raise EForms.CreateFmt(SErrUnknownForm,[aName]);

13

Reg:=TFormRegistration(FForms.Objects[Idx]);
if GlobalTemplates.Templates[’form:’+Reg.Name]=’’ then

GlobalTemplates.LoadTemplate(’form:’+Reg.Name,Reg.HTML,
@HaveForm,@FormFailed)

else
ShowForm;

end;

The OnClick handlers of our menu buttons in the index form can now be reduced to the
following:

procedure TIndexForm.DoLoginClick(Event: TJSEvent);

begin
FormManager.ShowForm(’login’);

end;

procedure TIndexForm.DoProjectsClick(Event: TJSEvent);

begin
FormManager.ShowForm(’projects’);

end;

procedure TIndexForm.DoUsersClick(Event: TJSEvent);

begin
FormManager.ShowForm(’users’);

end;

Obviously, before this can work, the login, projects and users forms need to be registered.

In the RegisterForm method of the TFormManager class, the aClass parameter is
of type TBaseFormClass. This class reference type is also defined in the frmBase
unit:

TBaseForm = class(TComponent)
Public

Class Function FormName : String; virtual;
Class Function FormHTMLFileName : String; virtual;
Class Procedure Register;

end;
TBaseFormClass = class of TBaseForm;

The Register class method looks like this:

class procedure TBaseForm.Register;
begin

With TFormManager.Instance do
RegisterForm(Self,FormName,FormHTMLFileName);

end;

The FormName and FormHTMLFileName look like this:

class function TBaseForm.FormName: String;

14

Var
P : integer;

begin
Result:=LowerCase(ClassName);
if Result.StartsWith(’tfrm’) then

Result:=Copy(Result,5,Length(Result)-4)
else if Result.StartsWith(’t’) then

Result:=Copy(Result,2,Length(Result)-1);
if Result.EndsWith(’form’) then

begin
P:=Pos(’form’,Result);
Result:=Copy(Result,1,P-1);
end;

end;

class function TBaseForm.FormHTMLFileName: String;
begin

Result:=FormName+’.html’;
end;

The result of all this code is that the line

TFrmLogin.Register;

will register the form class TFrmLogin with name login and html file login.html.
The mechanism presented here is of course just a convention which makes life easier; you
can perfectly invent other algorithms.

The start of our program becomes therefore:

TUsersForm.Register;
TProjectsForm.Register;
TLoginForm.Register;
FIndex:=TIndexForm.Create(Self);
FormManager.FormParent:=FIndex.form_parent;

Note that the TIndexForm is not registered: It has no associated HTML which must be
loaded: the index.html file is already loaded.

5 Routing

We have now reduced the code it takes to show a form to a one-liner in an onclick
handler. However, this does not solve our principal problem: the use of the back and
forward buttons in the browser: if the user first opens the projects list and then goes to the
users list, he will naturally assume he can go back to the projects list by hitting the back
button.

With the application as it is coded now, if you press the back button while the users list is
shown, either

• Nothing will happen if the demo is the first page loaded in your browser.

• Or you will be taken back to the website you were looking at before you opened the
demo.

15

The solution to this problem is called routing: with each form we associate an URL. As
the user navigates between the forms, the URL changes. This is easy with a website where
each form is an actual and separate HTML page. But how to do this in a Single Page
Application (SPA)?

Luckily, in HTML 5, this is possible: the browser offers access to the history mechanism
of your browser page. You can be notified if the URL changes, and you can also change
the URL. Since we are creating a SPA (Single Page Application) we must of course try to
avoid a page reload, and remain in the current page.

But how to stay on the same page when we require that the URL must change when nav-
igating from one form to another? This also is possible: the hash part of the URL can be
used.

The following 3 URLs are the same page:

http://localhost:3000/index.html#/login
http://localhost:3000/index.html#/users
http://localhost:3000/index.html#/projects

These are 3 different URLs, but they all refer to the same HTML page. When you are on
the last URL in the list, and press the back button, the browser will see that the previous
URL is actually the same page, and will not reload the page from the webserver.

This mechanism can be further expanded, you can pass more information in the URL.

The following can refer to 1 page (a fictitious project detail page), which will – in turn –
show the details for project 1, a new project and project 2.

http://localhost:3000/index.html#/project/1
http://localhost:3000/index.html#/project/new
http://localhost:3000/index.html#/project/2

What is more, the user can copy the URL, send it to someone else, and the receiver can
open the application and be presented with the same page.

So, how to achieve this? The Pas2JS RTL comes with a webrouter unit, which implements
a TRouter class. This class allows you to associate a callback with a route. A route is
simply an URL fragment: when the URL changes, the router will catch the browse event
for it, and match the new URL with the list of known routes. If it finds a route definition
that matches the URL, it will call the registered callback for that route.

For example, these are possible routes for our application:

/login
/project
/project/new
/project/:ID
/user
/user/:ID/Tab/:TAB
/user/:ID/
/*

Notice the :ID and :TAB in these routes. They present parameters: any string that does
not contain a / character. When the router matches the URL, it will replace ID with what
was actually in the URL. This means that the following URL fragments:

/project/123
/project/789

16

will result in a match for the route /project/:ID, but with ID set to 123 and 789,
respectively.

You can also use the wildcard character * to match any URL fragment. This can be used
for example to register an error page if no matching URL was found, or to handle all URLS
that start with a certain fragment in a single route definition.

The following is the declaration of the TRouter class, with only the most important meth-
ods:

TRouter = Class(TComponent)
Procedure DeleteRoute(aIndex : Integer);
Function RegisterRoute(Const aPattern : String;

aEvent: TRouteEvent;
IsDefault : Boolean = False) : TRoute;

function FindHTTPRoute(const Path: String;
Params: TStrings): TRoute;

function GetRoute(const Path: String;
Params: TStrings): TRoute;

Function RouteRequest(Const aRouteURL : String;
DoPush : Boolean = False) : TRoute;

Property Routes [AIndex : Integer] : TRoute ;
Property RouteCount : Integer;
Property BeforeRequest : TBeforeRouteEvent;
Property AfterRequest : TAfterRouteEvent;

end;

The purpose of these methods should be clear:

DeleteRoute Delete given route by index.

RegisterRoute Register a callback for a route: the aPattern is a pattern to match with
the URL. If the URL matches the route, then aEvent is called. If isDefault
is True then this route is used if no matching route can be found for a given URL
fragment.

FindHTTPRoute Find a route definition for Path, and return parameter values in Params.
Returns the route definition. If no route is found, Nil is returned.

GetRoute calls FindHTTPRoute, and raises an exception if no route was found.

RouteRequest Perform the routing for a request with URL frament aRouteURL. If DoPush
is true, the new route is pushed onto the browser’s URL history.

Routes Array access to the registered routes.

RouteCount The number of known routes.

BeforeRequest An event that is fired before handling a routing request.

AfterRequest An event that is fired after handling a routing request.

How can we use this object to show our forms automatically in the application ? A simple
mechanism suggests itself: each form registers a route starting with the form name used to
create the form. This means that our three forms must register 3 routes:

/login
/projects
/users

17

Now we can pluck additional fruits of the factory pattern that we introduced earlier. We
can use the RegisterForm call to register a route for the form.

To allow a form to register multiple routes for itself, we create a FormRoutes method in
TBaseForm:

class function TBaseForm.FormRoutes: TStringDynArray;
begin

Result:=[FormName];
end;

This method (which can return multiple routes) is then used to register the routes for the
form in the form manager’s RegisterFormmethod. This method starts with some sanity
checks, before adding a form registration object to a list. The FormRoutesmethod is then
used to register the various routes for the form:

function TFormManager.RegisterForm(aClass: TBaseFormClass;
const aName: String;
aHTMLFile: String):
TRouteDynArray;

Var
aRoute,N,H : String;
aRoutes : TStringDynArray;
aReg : TFormRegistration;
Idx : Integer;

begin
// Some cleanup
N:=aName;
if N=’’ then N:=aClass.FormName;
H:=aHTMLFile;
if H=’’ then H:=aClass.FormHTMLFileName;
// Create and save form registration.
aReg:=TFormRegistration.Create(aClass,N,H);
FForms.AddObject(N,aReg);
// Register routes
aRoutes:=aClass.FormRoutes;
SetLength(Result,Length(aRoutes));
Idx:=0;
for aRoute in aRoutes do

begin
Result[Idx]:=Router.RegisterRoute(aRoute,@DoFormRoute,False);
Inc(Idx);
end;

// Save routes in registration.
aReg.FRoutes:=Result;

end;

As a last step, the created routes are saved in the form registration. This is needed in the
DoFormRoute method, which will be called when the route is matched.

In the DoFormRoute method, we start with looking up the form registration associated
with the route. The HasRoute helper function checks if the given route is in the array of
routes for that form registration.

18

procedure TFormManager.DoFormRoute(URl: String;
aRoute: TRoute;
Params: TStrings);

Var
Idx : Integer;
Reg : TFormRegistration;

begin
// Find the form registration for this route:
Reg:=Nil;
Idx:=FForms.Count-1;
While (Reg=Nil) and (Idx>=0) do

begin
Reg:=TFormRegistration(FForms.Objects[Idx]);
if Not Reg.HasRoute(aRoute) then

Reg:=Nil;
Dec(Idx);
end;

// If we found a registration, show the form
if Assigned(Reg) then

ShowForm(Reg.Name,
procedure (sender: TObject; aForm : TBaseForm)
begin
aForm.ShowRoute(URL,aRoute,Params);
end);

end;

Finally, if a valid form registration is found, then we show the form using the existing
ShowForm method. In the OnShow callback we call a new method of our base form
class, ShowRoute:

procedure TBaseForm.ShowRoute(const aURL: String; aRoute: TRoute;
aParams: TStrings);

begin
Writeln(’Showing route for URL ’,aURL,’ with pattern: ’,

aRoute.FullPath,’ and params : ’,aParams.CommaText);
end;

This virtual method can be overridden to let the form act on the particular route that was
used to show the form. For instance, to react on parameters in the route.

So, now that we have our routing in place, how to use it? This is simple, and we actually
end up with less code. The 3 buttons in the index.html page to show our 3 forms can now
be replaced with 3 anchor elements:

<div class="box">
Login
Projects
Users

</div>

As you can see, the button HTML tag has been replaced with an anchor HTML tag (a).
In the anchor tag’s href attribute, we enter the route for the form that must be shown: #/,
followed by the form name. The click handler has also been removed: it is no longer

19

Figure 7: Multi-form project using routing

needed. If we now regenerate the class file associated with our index.html file, we notice
that the click handlers are gone. The navigation is now handled by the router.

The result can be seen in figure 7 on page 20. Notice how in in the address bar of the
browser, the route is now displayed within the URL’s hash. As you navigate between
forms, the URL will change as you switch forms. Additionally, if you now use the back
and forward buttons of the browser, you will actually switch forms ! With this mechanism,
you are giving the user a real browser experience.

Incidentally, note that the hyperlink elements look exactly like button elements used before:
this is one of the perks of using a CSS framework.

6 Route parameters

To demonstrate the use of parameters in the URL, we change the projects overview page to
show links to a ’project details’ page for a project:

<tr>
<td>
Implement interfaces

20

</td>
<td>
May 2018
</td>

</tr>

The HTML of the project detail page (project.html) looks like this:

<h1 id="pagetitle"
class="title is-3">Project:

?
</h1>
<div id="lblNotFound"

class="notification is-danger is-light is-hidden">
Project %d not found !</div>

<div class="field">
<label class="label">Project Name</label>
<div class="control">
<input class="input"

id="edtProjectName"
type="text"
placeholder="Project name">

</div>
</div>

<div class="field">
<label class="label">date due</label>
<div class="control has-icons-left">

<input class="input is-success"
type="text" id="edtDueDate"
placeholder="project due date">

<i class="las la-calendar-check"></i>

</div>

</div>

<div class="field is-grouped">
<div class="control">

<button id="btnSave"
class="button is-link">

Save
</button>

</div>
<div class="control">

<button id="btnCancel"
class="button is-link is-light">

Cancel
</button>

</div>
</div>

When we generate the form for this HTML, we call the form class TProjectDetailForm,
and we override the following methods:

21

Procedure ShowRoute(Const aURL : String;
aRoute : TRoute;
aParams : TStrings); override;

Class function FormHTMLFileName: String; override;
Class function FormRoutes: TStringDynArray; override;

Since the form class name differs from the html file name (the convention that was pre-
sented earlier), we need to give the form factory the correct HTML file name:

class function TProjectDetailForm.FormHTMLFileName: String;
begin

Result:=’project.html’;
end;

Since we wish to obtain the value of the form ID as a parameter in the URL, we must
register a fitting route for this:

class function TProjectDetailForm.FormRoutes: TStringDynArray;
begin

Result:=[’/project/:ID’]
end;

The result is that project ID will be passed to the ShowRoute in the ID parameter.

We can now use this parameter to load the correct project data. If a wrong ID or a false ID
is loaded an error message is displayed: The user can type an arbitrary or outdated URl in
the browser address bar, and we must be prepared to deal with errors. With a simple Bulma
CSS class (is-hidden), a HTML element can be shown or hidden. Showing a warning
is thus simply a matter of removing the is-hidden CSS class from the HTML element
that shows the warning.

The data is loaded from 2 arrays of values (ProjectNames and ProjectDates).

procedure TProjectDetailForm.ShowRoute(const aURL: String;
aRoute: TRoute;
aParams: TStrings);

Const
NotFound = ’Project "%s" not found!’;

Var
aID : NativeInt;
aError,aName,aDue : String;

begin
aID:=StrToInt64Def(aParams.Values[’ID’],-1);
// Show an error if the ID is unknown.
if (aID<1) or (aID>ProjectCount) then

begin
aError:=Format(NotFound,[aParams.Values[’ID’]]);
lblNotFound.innerText:=aError;
lblNotFound.classList.remove(’is-hidden’);
Exit;
end;

// Show project data

22

Figure 8: Routing parameters in action

aName:=ProjectNames[aID];
aDue:=ProjectDates[aID];
hdrProjectName.InnerText:=aName;
edtProjectName.value:=aName;
edtDueDate.value:=aDue;

end;

The last lines are not very different from what you would do in a regular VCL Class: only
the property names are different.

The result of this code can be seen in figure 8 on page 23. Note the URL which contains
the project ID. As you navigate between the various projects, you can always go back to a
previously visited project with the browser’s back button.

7 Conclusion

In this article, we’ve shown how to present the user with an actual browser experience:
back and forward buttons for navigation now work. In doing so, the work needed to show
forms was significantly reduced: Using a router and changing buttons to anchor elements
in the html reduces code.

There are still small glitches: when reloading the page, you will return to the initial page,
even though the URL contains the route for the last visited page. It would also be nice
if data for the projects could be loaded from an actual database. We will deal with these
issues in a next contribution.

23

	Introduction
	Generating form declarations
	Navigating from one form to the next
	Using a factory pattern
	Routing
	Route parameters
	Conclusion

