
Lazarus Fishfacts: Paradox support for
Lazarus/Free Pascal

Michaël Van Canneyt

January 29, 2008

Abstract

Delphi sill ships with the BDE engine and it’s support for Paradox files. The use of
the pxlib library now enables the use of Paradox files in Free Pascal and Lazarus.

1 Introduction

A regular question to the Free Pascal and Lazarus developers is: does Free Pascal/Lazarus
support handling of Paradox files? Finally, this question can be answered in the affirmative.

Support for Paradox files has been in the Delphi IDE since the very beginning, using the
BDE (Borland Database Engine), making it a popular format for many desktop applica-
tions. Indeed, it’s FishFacts demo database was often used to showcase the database con-
nectivity possibilities.

Finally, Free Pascal and Lazarus now also support handling of Paradox files: Thanks to the
open source pxlib library (a C library), paradox files can now be handled: both the low-level
pxlib API and a TDataset descendent have been implemented and can be installed in the
Lazarus IDE. This means that people who have Paradox-based applications can think about
moving to the cross-platform Lazarus environment: Even if the paradox files themselves
are no longer wanted, the paradox support can still come in handy to move the Paradox
data to a newer database using Lazarus/Free Pascal. A good idea in itself, because Paradox
is no longer maintained. Worse still, it’s file format was never properly documented.

Obviously, the lack of proper documentation also means that there may be Paradox files
around that are not handled well by pxlib. At least the Borland FishFacts database (which
showcases memos and graphic blobs) can be opened and viewed with the TParadox com-
ponent presented here; Also on 64-bit systems.

2 Installation

To install the paradox support, a version of the pxlib library must be present on the system.
This library is not shipped with Free Pascal or Lazarus, but can be downloaded freely from

http://pxlib.sourceforge.net/

Unpacking the library should not be a problem, and a simple

./configure
make all
make install

1



should configure, build and install the library on any unix system, including mingw for
Windows. (Microsoft Visual studio is also reported to work). For 32-bit windows, a pre-
built dll is available as well.

The Free Pascal unit is called (logically) pxlib. It is a simple translation of the C header
files; The TDataset descendent is called TParadox and is in a unit paradox. They
are currently only in subversion and the daily source snapshots of FPC, but a copy has been
provided on the CD accompagnying this issue.

A Lazarus package (lazparadox) has been created which registers the TParadox component
in the IDE, and puts it in the component palette. There is also a small demo application
available.

3 Using the low-level API

The low-level API of the pxlibrary is quite straightforward and simple. The pxlib unit
does not link the pxlib library statically, so the first thing to do is to call loadpxlib:

LoadPXLib(pxLibrarName);

This will load the PX library. The pxLibraryName is a pre-defined constant with the
default library name of pxlib for the platform the program is compiled for. When the
library is no longer needed, it can be unloaded with FreePXLib (this function is called
automatically by the finalization section of the pxlib unit).

After loading the library, it must be initialized with the PX_Boot call. Similarly, it must
be shutdown with the PX_Shutdown call prior to unloading it.

A paradox file is represented by the PPX_Doc type. It is a pointer to an (opaque) record,
and must be allocated with the PX_New function. Once the record is reserved in memory
in this way, a paradox file can be really opened with the PX_open_file call.

Putting all this together, the following minimalistic program will open and close a paradox
file:

Var
Doc : PPX_Doc;

begin
LoadPXlib(pxlibraryname);
PX_Boot;
try
Doc:=px_new();
Try

px_open_file(Doc,ParamStr(1));
try

// Do things.
Finally

PX_close(Doc);
end;

Finally
PX_Delete(Doc);

end;
finally

PX_Shutdown;
end;

2



end.

As can be seen, the file is closed with PX_Close and the record is disposed of with
PX_Delete; Note that PX_Delete will not delete the file from disk; It just removes the
file’s representation from memory.

Once the paradox file was opened, it’s internal structure can be examined: the PX_Get_Num_fields
call returns the number of fields in the file. The PX_Get_Fields call will retrieve a
pointer to a series of C records describing the fields in the paradox file. Each record has a
couple of fields describing a fields in a paradox record:

px_fname the name of the field.

px_flen the declared length of the field.

px_ftype the type of the field.

px_fdc number of decimals in a BCD field.

This means that the structure of a paradox file can be displayed with the following routine:

procedure DumpInfo (Doc : PPX_Doc);

Var
I : Integer;
S : String;
pxf : Ppxfield_t;

begin
I:=1;
pxf:=PX_get_fields(Doc);
While I<=PX_get_num_fields(Doc) do

begin
Write(’Field ’,I:3,’: ’,strpas(pxf^.px_fname):18,’ : ’);
S:=’’;
Case (pxf^.px_ftype) of

pxfAlpha: S:=Format(’char(%d)’,[pxf^.px_flen]);
pxfDate: S:=Format(’date(%d)’,[pxf^.px_flen]);
pxfShort: S:=Format(’int(%d)’,[pxf^.px_flen]);
pxfLong: S:=Format(’int(%d)’,[pxf^.px_flen]);
pxfCurrency: S:=Format(’currency(%d)’,[pxf^.px_flen]);
pxfNumber: S:=Format(’double(%d)’,[pxf^.px_flen]);
pxfLogical: S:=Format(’boolean(%d)’,[pxf^.px_flen]);
pxfMemoBLOb: S:=Format(’memoblob(%d)’,[pxf^.px_flen]);
pxfBLOb: S:=Format(’blob(%d)’,[pxf^.px_flen]);
pxfFmtMemoBLOb:

S:=Format(’fmtmemoblob(%d)’,[pxf^.px_flen]);
pxfOLE: S:=Format(’ole(%d)’,[pxf^.px_flen]);
pxfGraphic: S:=Format(’graphic(%d)’,[pxf^.px_flen]);
pxfTime: S:=Format(’time(%d)’,[pxf^.px_flen]);
pxfTimestamp: S:=Format(’timestamp(%d)’,[pxf^.px_flen]);
pxfAutoInc: S:=Format(’autoinc(%d)’,[pxf^.px_flen]);
pxfBCD: S:=Format(’decimal(%d,%d)’,[pxf^.px_flen*2,

pxf^.px_fdc]);
pxfBytes: S:=Format(’bytes(%d)’,[pxf^.px_flen]);

else

3



S:=Format(’Unknnown type (%d) (%d)’,[pxf^.px_ftype,
pxf^.px_flen]);

end;
Writeln(S);
Inc(I);
Inc(pxf);
end;

end;

Note the pre-defined constants for each of the known field types.

A paradox file is a file with a sequential structure. This means that records in the file are
numbered, starting at record number zero. Reading a file is therefore a matter of retrieving
the needed record, and extracting the data from a record. The number of records in a file
can be retrieved with the PX_get_num_fields function. The size of a single record can
be retrieved with the PX_get_recordsize function: this size can be used to reserve a
memory buffer for the contents of a record, which can subsequently be retrieved with the
PX_get_record function.

To scan over the records in the paradox file, these 3 functions can be used to compose an
algorithm like the following:

Procedure ScanRecords(Doc : PPX_Doc);

var
I : Integer;
buf : Pchar;

begin
I:=0;
Buf:=GetMem(PX_get_recordSize(Doc));
For I:=0 to px_get_num_records(Doc)-1 do

begin
PX_get_record(Doc,I, Buf);
// Do something with buf
end;

end;

The buffer contains the fields in paradox format, one after the other. To access the value,
the correct offset in the buffer must be obtained: the offset is simply the sum of the lengths
of the preceding fields. Dumping the field contents can therefor be done as follows:

Procedure DumpRecordContents(Doc : PPX_Doc; Buf : PChar);

Var
I,flen : Integer;
fbuf : PChar;
pxf : Ppxfield_t;

begin
pxf:=PX_get_fields(Doc);
fbuf:=Buf;
For I:=0 to PX_get_num_fields(Doc)-1 do

begin
flen:=pxf^.px_flen;

4



DumpField(Doc,FBuf,pxf);
Inc(fbuf,Flen);
Inc(Pxf);
end;

end;

In each iteration, the fbuf pointer is shifted with the lengh of the field that was just dumped.

The contents of each field is placed in the buffer in a specific manner: how this is done
depends on the type of the field. pxlib provides functions to retrieve each of the possible
field types, these functions are called PX_get_data_XYZ, where XYZ is the name of
the type to retrieve. Each of these functions is documented, and has it’s own semantics. It
would lead too far to cover all functions.

The DumpField function will therefor be a function that scans the type of the field to
dump, and calls the appropriate function to retrieve the field’s data from the buffer:

Procedure DumpField(Doc : PPX_Doc; FBuf : PChar; pxf : PPxField_t);

Var
Flen : Integer;
s : string;
value : Pchar;
longv : clong;
y,m,d : cint;

begin
flen:=pxf^.px_flen;
Case (pxf^.px_ftype) of

pxfAlpha:
if PX_get_data_alpha(Doc,fbuf,flen,@value)>0 then

begin
S:=Strpas(value);
doc^.free(doc,value);
end;

pxfDate:
if PX_get_data_long(Doc,fbuf,flen,@longv)>0 then

begin
PX_SdnToGregorian(longv+1721425,@Y,@M,@D);
S:=DateToStr(EncodeDate(Y,M,D));
end;

pxfAutoInc,
pxfLong:

if (PX_get_data_long(Doc,fbuf,flen,@longv)>0) then
S:=IntToStr(Longv);

end;
WriteLn(strpas(pxf^.px_fname):18,’ = ’,S);

end;

For the pxfAlpha (string) type field, the pxlib library expects a pointer to the address of
a PChar value. On return of the PX_get_data_alpha, the PChar will point to a null-
terminated buffer of characters. As can be seen, the buffer is converted simply to a string.
Since pxlib has allocated this buffer, it must be freed with a call to PPX_Doc.̂Free. The
date in a paradox buffer is encoded in a special way, and the PX_SdnToGregorian
function can be used to convert this to a year/month/day triplet. A longint is stored as-is,
and the PX_get_data_long function will return the value directly in it’s last argument.

5



Note that these functions all accept a pointer to the exact location of the field in the buffer:
no checks are done to assure that these locations are correct. It is therefore possible to
call e.g. PX_get_data_alpha with the location of an integer field, which will yield
garbage, of course.

There are more types than shown here, but the complete program can be found on the CD
accompagnying this issue: all possible types are treated there.

4 TParadox: A TDataset descendent

All this handling of buffers and memory management is of course tedious and error-prone.
That is why a TDataset descendent was created, called TParadox which presents the
contents of the file in a more known and usable format. Besides all the well-known methods
from TDataset, it offers some additional properties:

LibraryName the name of the pxlibrary to use. Initially this is set to the default value for
the platform for which the component is compiled. The library is loaded when the
first paradox file is opened.

FileName the name of the paradox file to open.

BlobFileName the name of the file containing the BLOB data for the paradox file. If none
is specified, the component tests for the existence of a file with extension .mb (or
.MB). If it is found, then it is opened as well and the BlobFileName is set to the
name of the found file.

TableName after the file is opened, this property is filled with the table name as stored in
the paradox file (it need not be the same as the file name).

targetencoding encoding to be used when reading data from the file. If this property is
left empty, it will be filled with a default value after opening the file.

inputencoding encoding to be used when writing data to the file. If this property is left
empty, it will be filled with a default value after opening the file.

Filter a filter expression (a string). If set, and Filtered is set to True, only records
matching the criterium will be shown.

Filtered If set to True, the filter in the Filter property is applied.

When reading character data from the file, the data is converted from the encoding used
in the file to the encoding specified in the TargetEncoding property: this is handled
transparantly by the pxlib library.

Use of the component in the lazarus IDE is extremely simple: drop it on a Lazarus form,
attach a TDatasourceto it, and attach several DB-Aware components to it. Set the
FileName property, and set the Active property to True.

A sample program is included on the CD-ROM accompagnying this issue. It allows to se-
lect a filename using a TFileNameEdit, and shows the contents of the file in a DBGrid.
If the file is determined to be the ’biolife.db’ file that comes with the BDE sample data,
then the DBMemo and TImage on the form are hooked up to the description of the fish,
and the bitmap of the fish:

procedure TMainForm.Button1Click(Sender: TObject);
begin

FPX.FileName:=FEPX.FileName;

6



Figure 1: The FishFacts demo file opened in a Lazarus program

FPX.Open;
If FPX.FindField(’Notes’)<>Nil then

DBMemo1.DataField:=’Notes’;
If FPX.FindField(’Graphic’)<>Nil then

DBImage1.DataField:=’Graphic’;
end;

The result can be seen in figure 1 on page 7, showing that blob and graphic data are sup-
ported for Paradox files.

5 Conclusion

While it is unlikely that anyone will start new development using Paradox files as a database
back-end, supporting Paradox tables still has it’s uses: simply viewing or converting legacy
data in Paradox format is now possible using the Free Pascal and Lazarus toolchain, with
no more effort than is needed to view data in any other format: the ever-increasing number
of supported databases using a unified TDataset approach is just one of the many strong
points of the Lazarus/Free Pascal tandem.

7


	Introduction
	Installation
	Using the low-level API
	TParadox: A TDataset descendent
	Conclusion

