
More OpenAPI support in FPC and Lazarus

Michaël Van Canneyt

January 4, 2025

Abstract

In a previous article, we introduced the OpenAPI support of Free Pascal
and Lazarus. In this article, we introduce some additions and improvements
which make the use of OpenAPI in Lazarus/FPC even easier.

1 Introduction

Since the previous article on OpenAPI, there have been some improvements to the
Free Pascal and Lazarus support for OpenAPI. In this article we’ll show some of
these improvements and treat some points that were not treated in the previous
article:

� Making sure GUIDs do not change when regenerating the API units.

� Providing custom names for APIs.

� New support for YAML files.

� New support for a server proxy datamodule.

� Lazarus ’new OpenAPI project’ wizard.

We’ll start with the existing things before proceeding to the improved things.

2 Immitable GUIDs

. For each service in the OpenAPI description file, an interface definition is gener-
ated. An interface definition in Delphi normally has a GUID associated with it, to
uniquely determine the interface on the system.

In the previous article, the example file resulted in an interface definition as follows:

// Service ISimpleService

ISimpleService = interface [’{65F57AF1-9184-481F-B55E-E0DF8284821A}’]

Function List() : TaServiceResult;

end;

Note the GUID in the interface definition. The OpenAPI specification does not
have the notion of a GUID for an API, but the interface support in Object Pascal
does need this GUID. So the openapi converter generates a GUID for you: this is a
randomly generated GUID. Because it is random, this also means that every time
you invoke the converter tool, a new GUID is generated.

1



This is not very practical: it is better if a code generater is idempotent: A generated
file remains exactly the same if it is regenerated. If the GUID changes every time
the file is regenerated, it becomes more difficult to tell the actual changes. What is
more, if the GUID is used in the code that makes use of the generated units, the
code may simply stop working.

To remedy this, the OpenAPI to pascal conversion tool keeps a mapping to map
service names to GUIDS. This mapping can be loaded from file and can be saved
to file when done.

In the command-line utility you can specify the file name using the -u or --uuid-map
command line argument: this can be used to specify the filename to load the map
from and to save the map to when done, for example like this:

openapi2pas -i simpleservice.json -o simple -u guid.map

If the map file does not exist yet, it will not be read, but it will be created with all
generated GUIDs when the converter is done. If the map file exists, it will be read
before generating code, and it will be updated when the code is generated: if new
interfaces were added to the API, the GUIDs that were generated will be added to
the file.

The map file can be edited, it is a simple key=value format:

ActivitiesService={1528B206-7C98-458A-8A80-E1DF06834B78}

ContactsService={647E5197-7462-41CA-B39C-BF0D014FAC28}

DevicesService={3501BB33-B0DD-4E3C-AE3E-0078E15C364A}

LoginService={4296BFFC-978B-4465-9A9E-0AAC750F7644}

CalendarService={5826D547-3973-4869-B813-D187968E460B}

SettingsService={3161DE5B-D92A-49E5-A696-9D14F17CECCD}

SignupService={0B1220DD-A3D8-4F07-A848-9F9AEB08CED1}

UsersService={84F369FB-4FC0-4BED-9110-8CFDE1890683}

In the Lazarus OpenAPI code generation wizard, you have the option of editing the
GUIDs manuall, on the ’GUID map’ tab page of the wizard, see figure 1 on page
3. The editor allows you to set the mapping if you so desire: this is useful when a
service name changes.

3 Providing custom names for APIs

In the previous article, we described the algorithm that the code converter uses to
create services and method names. If you don’t like the mechanism that is used, or
you wish to assure yourself that the interface and method names remain the same,
you can specify a service map. This service map maps a service operation to a
service (or interface) name and method.

As explained in the previous article on OpenAPI support, a service operation is
identified in one of 2 ways, just as the code generator identifies methods:

OperationId the OperationId can be specified in the various operations in the
OpenAPI file:

"paths": {

"/simple": {

"get": {

2



Figure 1: GUID map editor

3



"operationId": "list",

}

}

}

HttpVerb:URL the operation can be identified using the verb and URL: in the
above example get:simple.

The map file is a simple key=value file, where the key is one of the above, and
the value is the combination of service name and method, separated by a dot. The
following is an example:

deleteActivity=SimpleActivitiesService.DeleteActivity

getAllActivities=SimpleActivitiesService.GetAllActivities

delete:/activities=SimpleActivitiesService.DeleteAllActivities

patch:/activities=SimpleActivitiesService.PatchActivities

get:/activity/info=SimpleActivitiesService.GetActivityInfo

post:/contact.accept=SimpleContactsService.AcceptContact

get:/contacts=SimpleContactsService.GetAllContacts

post:/contact=SimpleContactsService.AddContact

delete:/contact=SimpleContactsService.DeleteContact

The first two lines in this example show how to use the operation ID, the others
identify an operation using the HTTPVerb:URL pair as a key.

The map can also be useful to move methods from one service to another, allowing
you for example to regroup the methods in services that make more sense to you.

The command-line utility allows you to specify a filename for the service map using
the -s or --service-map command-line options, for example like this:

openapi2pas -i simpleservice.json -o simple -s servicenames.map

Note that in difference with the GUID file, the specified file must exist. Also the
code generator will not modify the file. It is only used to read the mapping. If no
mapping is present for a given operation, the default mechanism is used to determine
the service name and method name.

In the lazarus IDE, the service name map tab of the OpenAPI wizard allows you
to load and edit the service map, as shown in figure 2 on page 5.

4 YAML support

The OpenAPI specification document uses the YAML format as the format for
descibing an API using OpenAPI. YAML is a format that was introduced as an
easier to read and write version of JSON. Where JSON is written with delimiter
characters for fields, sequence items and objects, such as

{

"openapi": "3.1.0",

"info": {

"title": "Tic Tac Toe",

"version": "1.0.0"

},

servers : [

4



Figure 2: Service name map editor

5



{ "url": "http://localhost:8089/" },

{ "url": https://localhost:443/" }

]

}

YAML does away with all these delimiters. It relies on dashes (-) and colon (:)
characters to indicate sequences and values, and relies on spaces to indicate nested
structures and end-of-lines to indicate the end of values. The above would be written
as

openapi: 3.1.0

info:

title: Tic Tac Toe

version: 1.0.0

servers:

- url: http://localhost:8089/

- url: https://localhost:443/

Which is indeed easier on the eye as JSON. However, this apparent simplicity comes
also with some drawbacks and ambiguities, aggravated by the fact that YAML has
2 modes: ”Flow” mode (which is actually JSON) and block mode, which can be
nested. Whether the original goal of having something simpler than JSON has been
accomplished, is therefore debatable, but as a consequence, any JSON document is
’automatically’ a valid YAML file.

Whatever your preference, YAML or JSON, FPC now has you covered: a YAML
parser has been added to FPC, and the tool to read an OpenAPI description can
now also handle OpenAPI specifications written using the YAML file format. There
is therefore no need anymore to use an external tool to convert the YAML to JSON.

There is no class that specifically translates the YAML file to an OpenAPI doc-
ument. Instead, the fpyaml.json unit contains a routine that converts YAML to
JSON. So if you want to read an OpenAPI description from a YAML file, this is
what you must do:

First, convert the YAML to JSON:

uses fpyaml.parser, fpyaml.data, fpyaml.json, fpopenapi.reader, fpopenapi.objects;

Function GetJSONFromYAML(const aOpenAPIFile : string) : TJSONStringType;

var

lParser : TYAMLParser;

lYAML : TYAMLStream;

lJSON : TJSONData;

begin

lYAML:=Nil;

lJSON:=Nil;

lParser:=TYAMLParser.Create(aOpenAPIFile);

try

lYAML:=lParser.Parse;

lJSON:=YamlToJSON(lYAML);

Result:=lJSON.FormatJSON();

finally

lYAML.Free;

6



lJSON.Free;

lParser.Free;

end;

end;

and then use this to read the OpenAPI from the JSON data. The following routine
will detect the file format from the filename, and do the necessary conversion if
needed:

Procedure ReadOpenAPI(const aOpenAPIFile : string) : TOpenAPI;

var

Loader : TOpenAPIReader;

API : TOpenAPI;

lJSON : String;

begin

Loader:=Nil;

Result:=TOpenAPI.Create;

try

Loader:=TOpenAPIReader.Create(Nil);

if TYAMLParser.IsYamlFileName(aOpenAPIFile) then

begin

lJSON:=GetJSONFromYAML(aOpenAPIFile);

Loader.ReadFromString(ResultAPI,lJSON);

end

else

// Assume JSON

Loader.ReadFromFile(Result,aOpenAPIFile);

finally

Loader.Free;

end;

end;

The TYAMLParser.IsYAMLFileName will return True if the file name extension is
.yaml or yml.

Note that not all YAML can be converted to JSON, as a YAML file can contain
multiple YAML documents, and YAML allows sequences and objects to be used as
keys in an object: a concept not translatable to JSON.

5 Creating a server proxy datamodule

An OpenAPI description can contain multiple services offered by a server. Each
service is an interface, and each operation is a method of that service. In order
to execute a service method, you need to create a service implementation instance,
configure it with a web client to offer HTTP Services, and then call the method you
want. If there are lots of services, then this becomes tedious.

The code generator has been enhanced to generate a ’server proxy’: this is a data-
module which has a property for each service offered by the server. Each property is
an interface as generated by the OpenAPI code generator. It will also create a web
client, and offers a BaseURL property, which, when set, will set the property of the
same name on each of the services. If so desired, the code generator will generate a

7



.lfm form file, so you can inherit visually from this module and add additonal code
to it. By default, this datamodule descendant is called TProxyServer, but you can
change this in the configuration file.

For the example service we showed in the previous article, this is the code that is
generated:

Type

TServerProxy = class(TDataModule)

private

FWebClient : TAbstractWebClient;

FSimpleService : TSimpleServiceProxy;

FBaseURL : String;

function GetSimpleService : ISimpleService;

Procedure SetBaseURL(const aValue : string);

protected

Procedure CreateServices; virtual;

public

constructor Create(aOwner : TComponent); override;

Property SimpleService : ISimpleService read GetSimpleService;

Property BaseURL : String Read FBaseURL Write SetBaseURL;

Property WebClient : TAbstractWebClient Read FWebClient;

end;

var ServerProxy : TServerProxy;

The ServerProxy variable is only generated if you ask for a form file.

To use this module, you can simply create it, set the base URL, and you’re ready
to execute methods:

var

proxy : TServerProxy;

begin

Proxy:=TServerProxy.Create(Nil);

Proxy.BaseURL:=’http://localhost:8089/REST’;

Proxy.SimpleService.List;

end;

6 OpenAPI support for Lazarus projects

In the previous article on OpenAPI, we introduced a tool in the Lazarus ’Tools’
menu. This allowed you to generate a set of units from an OpenAPI api description.

Meanwhile the OpenAPI support for lazarus has been improved, now you can create
a complete project based on an OpenAPI description. 3 items have been added to
the ’New project’ dialog in the IDE:

� OpenAPI client application.

� OpenAPI server application.

� OpenAPI client and server application.

8



Figure 3: New OpenAPI based application

The first two of these items start a client or server application, generates the Ope-
nAPI units according to the options as specified in the dialog (presented below) and
then adds the units to the project. The last item creates both projects, and puts
them in a project group.

All three items start with the same dialog, shown in figure 3 on page 9.

In this dialog, you specify the same information as in the wizard shown in the
previous article, and some more:

Project base directory This is the directory in which all files will be created.
If you create only a client or a server project, then all files will be in this
directory. If you create both projects, then 3 subdirectories will be made:
client, server and common. The former will contain the project-specific
code, the common directory will contain the generated OpenAPI files.

Base name for units this is the base name for the units, to which the usual
suffices will be appended. The units will be generated in a directory based on
the Project base directory setting.

Client project type Here you can specify the type of project to create for the
client. You have the choice between a GUI or a Console project (see figure 4
on page 10).

Server project type Here you can specify the type of project to create for the
server project. You have again the choice between a GUI and a Console
project, but additionally you can choose a HTTP server project (see figure 5
on page 11).

9



Figure 4: Specify the client project type

The console application for the client is almost identical to the application we built
in the previous article on OpenAPI. The ’HTTP server project’ is identical to the
server application presented in the previous article. The GUI application is a normal
Lazarus application as you would get when you choose the ’Application’ type in the
’New project’ wizard.

For the client project, if you asked to create a server proxy module (as introduced in
the previous section), code will be added to instantiate the module, and if a Server
URL is present in the OpenAPI document it will be set as the value of its BaseURL
property. So the module will be ready to use.

Once you have finished the wizard, the project wizard will create a client.lpr

and/or a server.lpr project in the indicated directory. (in a later version, you’ll
be able to specify the names of the projects. For the moment, they are hard coded.).

All the information you entered in the new project wizard will be saved in a file
next to the project. The file can be read by the openapi2pas command-line tool,
but can also be used in the IDE:

In addition to the configuration file, the wizard will save some extra information in
the project .lpi file(s). This extra information will allow you to easily regenerate
the OpenAPI unit files using the project inspector. In the project inspector popup
menu, there will be a ’Regenerate OpenAPI units’ menu item (figure 6 on page
12), which will simply regenerate the files with the info given when the project was
generated.

If you somehow move or rename the project and the extra information is no longer
correct, then you can correct the information in the ’Project Options’ dialog (figure

10



Figure 5: Specify the server project type

7 on page 13). There is little enough information to be managed on this page:

OpenAPI file The full path to the OpenAPI file.

Generator configuration This is the name of the configuration file for the Ope-
nAPI code generator, as created by the IDE when you start the project.

Base unit filename This is the base unit filename to which a suffix will be ap-
pended when generating all the individual units.

The majority of the information needed to regenerate the files correctly is in the
generator configuration file.

Last but not least, the ’Tools’ dialog presented in the previous article will pick up
all this info and save it so you don’t need to re-enter the information every time
you start the dialog: it also allows you to change the mapping or change some other
settings.

7 Conclusion

With all this in place, it becomes easy to maintain an application that serves or
consumes a REST api described by an OpenAPI document. As described in the
previous articles, there are still some enhancements planned for the OpenAPI gen-
erator. You’ll be able to read on these enhancements in a future article.

11



Figure 6: Regenerate the OpenAPI units in the project inspector

12



Figure 7: Editing the extra info for OpenAPI projects

13


	Introduction
	Immitable GUIDs
	Providing custom names for APIs
	YAML support
	Creating a server proxy datamodule
	OpenAPI support for Lazarus projects
	Conclusion

