
Break-in detection using Lazarus

Michaël Van Canneyt

September 5, 2012

Abstract

A laptop or desktop computer can - using a simple lazarus program - easily be
transformed to a burglar alarm. The Windows API allows to create pictures of a room,
and using a simple algorithm, changes in the pictures can be detected and an e-mail
notification can be sent.

1 Introduction

Most, if not all, laptops or tablets have a webcam. Modern webcams have built-in move-
ment sensors, but also older webcams can easily be used as a motion detector using some
simple home-cooked algorithms. This article shows such an algorithm, using Lazarus and
Object Pascal.

Lazarus does not have ready-to-use components for accessing webcams. The Lazarus-CCR
site does contain a sample program (written by Bogdan Razvan Adrian) that demonstrates
using the Windows API for video. For the purpose of this article that sample program will
be adapted to serve as a motion detector, which will send an e-mail with an attached image,
if motion has been detected.

Windows offers 2 APIs for working with video and webcams. An older, legacy API (Video
For Windows) and a new one: DirectShow (part of van DirectX). The new API is much
more powerful, but is closer to the hardware and requires the use of callbacks and interfaces.
This API is more difficult to use than the older Video For Windows. For simplicity’s sake,
the older API is used, as it still works under Windows 7.

Sending an e-mail using Lazarus has been discussed in detail in a previous article, and will
not be explained again here.

2 Video For Windows

The video for Windows interface is quite simple. A window handle is created, and in this
window, the video stream of the webcam is shown. The webcam (or another video source)
is controlled by sending Windows messages to the handle of the webcam. There are plenty
of messages that can be sent to the webcam window handle, and only a few of them will be
used here.

The Video For Windows API has been translated to Object Pascal: the macros that appear
in the C/C++ interface, have also been translated: these macros hide the use of messages
and present a procedural API. All this is available in the VFW unit, which is available
together with the sources that accompany this article. All functions start with the prefix
cap, from capture.

1

The most important functions (or messages) that are needed for the sample program, are
the following:

capCreateCaptureWindow Creates a window handle which will show the camera’s video
stream. The resulting handle is needed for all other operations described here.

capDriverConnect Connects the window handle with a camera. Up to 10 cameras can be
connected.

capDriverDisconnect Disconnects a camera from the window.

capDriverGetCaps Retrieves some of the properties of the camera.

capOverlay Starts or stops the display of the camera image in the window. The display is
accomplished through video overlay (i.e. using the hardware).

capPreview Starts or stops the display of the camera image in the window. The display is
accomplished through software rendering.

capPreviewRate Sets the framerate of the camera.

capPreviewScale Sets the scale of the camera image.

capGrabFrameNoStop Saves the current frame in a buffer, but does not stop the capturing
process.

capFileSaveDIB Saves the frame in the buffer in a .bmp file.

capFileSetCaptureFile Sets a temporary filename for recording a video (.avi).

capCaptureSequence Starts recording a video. The filename of the video must be set
using capFileSetCaptureFile.

capFileSaveAs Save the recorded video to file.

capCaptureStop Stop recording video.

More functions are available, but the ones described above are sufficient to make a small
application. The purpose of the functions is clear, and normally do not need any further ex-
planation. Except for the capCreateCaptureWindow function, each function expects
the handle of the capture window as the first argument.

3 A sample program

The demonstration application is very simple really: a form with a panel that will display
the output of the web camera. Some buttons to start and stop the camera, and to show
some default windows dialogs that can be used to set the properties of the camera. There is
one button that starts and stops the motion detection algorithm. A status bar to show some
status messages completes the user interface.

When the main form of the application is started, the windows video handle is created,
using the capCreateCaptureWindow function. This function gets the handle of a
parent window - in this case the handle of the pCapture panel:

procedure TMainForm.CapCreate;
begin

// Destroy if necessary
CapDestroy;

2

with pCapture do
FCapHandle := capCreateCaptureWindow(’Video Window’,

WS_CHILDWINDOW or WS_VISIBLE or WS_CLIPCHILDREN or WS_CLIPSIBLINGS
, 5, 5, Width-10, Height-10, Handle, 0);

if Not CapCreated then
stCapture.Caption := ’ERROR creating capture window !!!’;

end;

The capture window handle is created as a child window of the pcapture panel using
a 5-pixel border. The CapCreated function is a method of the TMainForm class, it
checks whether the FCapHandle differs from zero: if the handle is zero, the creation of
the video capture window failed.

After the capture window was created, a connection with the webcam driver can be estab-
lished. This is done in the CapConnectmethod of the form. It uses the capDriverConnect
function of the VFW API, using the capture window handle as an argument:

procedure TMainForm.CapConnect;

Var
l : integer;
m : sTRING;

begin
if Not CapCreated then Exit;
// Disconnect if necessary

CapDisconnect;
// Connect the Capture Driver
FConnected:=capDriverConnect(FCapHandle, 0);
if Not FConnected then

M:=’ERROR connecting capture driver.’
else

begin
L:=SizeOf(TCapDriverCaps);
capDriverGetCaps(FCapHandle,@FDriverCaps,l);
if FDriverCaps.fHasOverlay then

M:=’Driver connected, accepts overlay’
else

M:=’Driver connected, software rendering’;
end

stCapture.Caption:=M;
end;

If the driver was connected succesfully, the capDriverGetCaps function is used to
fetch the driver properties: The FDriverCaps record of type TCapDriverCaps is
filled with the properties of the webcam. This is then used to check whether the camera
driver can render the image directly in the video card’s memory (fHasOverlay): if so,
the capability is used, as it works considerably faster.

After the connection with the webcam is made, the actual rendering of the camera’s image
can start. The rendering is done using the capPreview or capOverlay functions:

procedure TMainForm.CapEnableViewer;

Var

3

M : String;

begin
FLiveVideo := False;
if Not FConnected then

Exit;
capPreviewScale(FCapHandle, True); // Allow stretching
if FDriverCaps.fHasOverlay then // Driver accepts overlay

begin
capPreviewRate(FCapHandle, 0); // Overlay framerate is auto
FLiveVideo:=capOverlay(FCapHandle,True);
M:=’Hardware’;
end

else // Driver doesn’t accept overlay
begin
capPreviewRate(FCapHandle, 33); // Preview framerate in ms/frame
FLiveVideo:=capPreview(FCapHandle, True);
M:=’Software’;
end;

if FLiveVideo then
M:=Format(’Video Capture - Preview (%s)’,[M])

else
M:=’ERROR configuring capture driver.’;

stCapture.Caption :=M
end;

Note that the capOverlay or capPreview are passed the True value. After these
functions were called (all this happens in the OnCreate event of the main window), the
camera is active, and the image is shown in the main form.

The bReconnect button also calls these 2 functions - this can be used to activate the
camera in case something went wrong.

To stop showing the camera’s captured images, the functions capOverlay and capPreview
can again be used. Instead of passing True, the value False must be passed to stop the
display. The CapDisableViewer method calls the correct function:

procedure TMainForm.CapDisableViewer;
begin

if FLiveVideo then
begin
if FDriverCaps.fHasOverlay then

capOverlay(FCapHandle,False)
else

capPreview(FCapHandle,False);
FLiveVideo := False;
end;

end;

To record a video, it suffices to call the capFileSetCaptureFile, capCaptureSequence
and capFileSaveAs functions. During the recording, it is advisable to stop displaying
the captured image for performance reasons. This happens using the above capDisableViewer
method.

As a filename, a name is created that contains a timestamp:

procedure TMainForm.CapRecord;

4

Const
FN = ’"Clip-"yyyy-mm-ss-hh-nn-ss".avi"’;

begin
// Stop if not yet stopped.
CapStop;
CapDisableViewer;
// Construct filename
FFileName:=ExtractFilePath(Application.ExeName);
FFileName:=FFileName+FormatDateTime(FN,Now);
stCapture.Caption:=’Recording ’+FFileName;
bRecord.Caption := ’S&top’;
// Set filename
capFileSetCaptureFile(FCapHandle,PChar(FFileName));
// Start recording
capCaptureSequence(FCapHandle);
// Save file.
capFileSaveAs(FCapHandle, PChar(FFileName));
FRecording := True;

end;

Stopping the video record is done using the capCaptureStop function. As soon as the
recording is stopped, the filename of the video is changed so it also contains the end time
of the recording, and the image of the camera is again showed on screen:

procedure TMainForm.CapStop;

Const
FN = ’"---"yyyy-mm-ss-hh-nn-ss".avi"’;

Var
RFN : String:

begin
if Not FRecording then

Exit;
FRecording := False;
// Stop recording
capCaptureStop(FCapHandle);
// Rename file with timestamp
RFN:=ChangeFileExt(FFileName, FormatDateTime(FN,Now));
RenameFile(FFileName, RFN);
// Show preview again on screen
CapEnableViewer;
stCapture.Caption := ’Recording stopped’;
bRecord.Caption := ’&Record’;

end;

4 Motion detection

Using all this, the camera can be used to create video, and store it on disk. But how to use
the camera as a motion detection device ?

5

The camera API of Video For Windows can also save the current frame as an image. By
doing this at regular intervals, and checking the consecutive images for a meaningful dif-
ference, motion can be detected. Once motion is detected, a mail with the image can be
sent. To avoid sending too many mails, at most one mail is sent per minute.

To do this, a timer is needed (TMotion). The timer is initially disabled, and a push on a
button activates the timer. The timer event contains the following code:

procedure TMainForm.TMotionTimer(Sender: TObject);

begin
Inc(FTicks);
SaveTempFrame;
if CheckDifferent then

begin
If MinutesBetween(Now,FLastSend)>1 then

begin
FLastSend:=Now;
SendPicture;
end;

end;
end;

FTicks is a counter. The SaveTempFrame function writes the current camera frame
to file. The CheckDifferent function checks whether there is a previous image, and
returns True if there is significant difference between the previous and current image. If
a difference (and hence motion) is detected, a mail is sent if at least a minute has elapsed
since the last mail.

The interesting functions are SaveTempFrame and CheckDifferent. The first is
quite simple:

Procedure TMainForm.SaveTempFrame;

begin
capGrabFrameNoStop(FCapHandle);
capFileSaveDIB(FCapHandle,PChar(FFrameFile));

end;

FFrameFile is the file name, calculated when the program starts.

The CheckDifferent function is the hardest part of the program: It must compare the
image that was saved in SaveTempFrame and compare it with the previous one.

This happens by converting the pixels of the image in grayscale values and compare it pixel
by pixel with the previous image, but only if there was one: obviously, the first time there
will not be a previous image. The grayscale value is calculated by taking the average of the
R,G,B values of the color.

The difference between 2 consecutive images can be expressed in 2 ways: the number of
pixels that differ, or the difference in grayscale values can be calculated.

Just counting the number of different pixels gives bad results: The colors in the images
that the camera captures, fluctuate: if the grayscale values of 2 consecutive images are
compared pixel by pixel, this results almost always in 100% different images. No 2 pixels
(in the same location) remain the same. Creating a small statistic shows that the grayscale
values fluctuate up to 5% for a stationary image. This fact can be taken into account: When
counting differing pixels, 2 pixels are only considered different if they differ more than 5%.

6

Once the number of different pixels in consecutive images has been counted, a decision
needs to be made whether the difference is meaningful. Some experimenting shows that
movement in front of the camera results in at least 10% different pixels.

Putting all this together shows that there are 2 parameters for the algorithm:

• The fluctuation allowed between 2 grayscale values of a pixel to consider them dif-
ferent.

• The relative number of differing pixels between 2 images for 2 images to be consid-
ered different.

The main form contains 2 spinedits that allow to set these 2 values (measured in %). These
percentual values are converted to absolute values in at the start of the CheckDifferent
function.

The algorithm starts by loading the image in a temporary bitmap, and allocates an array for
the grayscale values. Colors in FPC images are a record of word-sized R,G,B values, so
the array contains word-sized values for the grayscale values.

function TMainForm.CheckDifferent : boolean;

Const
MaxColor = Cardinal($FFFF);

Var
A : Array of Word;
R,C,I,PD,DC,TH,TC : Integer;
D,MD: Int64;
G : Word;
P : TFPColor;

begin
Result:=Length(FLastImage)<>0;
FTempBMP.LoadFromFile(FFrameFile);
TC:=FTempBMP.Height*FTempBMP.Width;
TH:=Round(MaxColor/100*SETreshold.Value);
MD:=TC*MaxColor;
SetLength(A,TC);

Here, MD is the maximal difference between 2 images ($FFFF multiplied by the number of
pixels). TH is the minimal difference in color between 2 pixels for them to be considered
different. FLastImage is the array of grayscale values of the previous image.

After this, the loop for comparing the pixels can be started. For each pixel, a grayscale
value is calculated, and saved in the image. At the same time, the difference with the
previous grayscale of the pixel is calculated and added to the total difference. If the pixel
is considered different, the total amount of different pixels is also increased.

I:=0;
D:=0;
dc:=0;
For R:=0 to FTempBMP.Height-1 do

For C:=0 to FTempBMP.Width-1 do
begin
P:=FTempBMP.Colors[C,R];

7

G:=(P.blue+P.red+P.Green) div 3;
P.Blue:=G;
P.Red:=G;
P.Green:=G;
FTempBMP.Colors[C,R]:=P;
A[i]:=G;
if (I<Length(FLastImage)) then

begin
PD:=Abs(G-FLastImage[i]);
If (PD>TH) then

begin
inc(DC);
D:=D+Abs(PD);
end;

end;
Inc(i);
end;

When the loop is done, the array of grayscale values is saved in FLastImage, and the
result of the function is calculated. Some statistics are shown in the status bar: the number
of different colors, and the number of different pixels. If the function result indicates that
the image is different, the image (now transformed to a grayscale image) is saved to disk:

FLastImage:=A;
STCapture.Caption:=Format(’Try %d - Color: %d (%f %%) Pixels: %d/%d (%f %%)’,

[FTicks, D, D/MD*100, DC, TC, DC/TC*100]);
if Result then

begin
Result:=(D/MD*100)>SETrigger.Value;
if Result then

FTempBMP.SaveToFile(FBWFrameFile);
end;

end;

All that needs to be done now is send the saved image to a mail address. This is done using
synapse. The workings of synapse have been explained in a previous article, so the function
SendPicture can be easily understood:

procedure TMainForm.SendPicture;

Var
Mime : TMimeMess;
P : TMimePart;
B : Boolean;
AText,AServer,ATO : String;
L : TStringList;

begin
STCapture.Caption:=’Sending picture’;
ATO:=’editor@blaisepascal.eu’;
AServer:=’mail.blaisepascal.eu’;
AText:=FormatDateTime(’dd/mm/yyyy hh:nn:ss’,Now);
AText:=Format(’Camera detected movement at %s’,[AText]);
Mime:=TMimeMess.Create;

8

try
Mime.Header.ToList.Text:=ATo;
Mime.Header.Subject:=’Motion detected’;
Mime.Header.From:=ATo;
P:=Mime.AddPartMultipart(’mixed’,Nil);
L:=TstringList.Create;
try

L.Text:=AText;
Mime.AddPartText(L,P);
Mime.AddPartBinaryFromFile(FFrameFile,P);
Mime.EncodeMessage;
B:=SendToRaw(ATo,ATo,AServer,Mime.Lines,’’,’’);

finally
L.Free;

end;
if not B then

STCapture.Caption:=’Failed to send picture’
else

STCapture.Caption:=’Sent picture to ’+ATo;
finally

Mime.Free;
end;

end;

5 conclusion

It is quite simple to record a video using a webcam and Lazarus. Using the webcam as
a motion detector is also not hard, as shown in the code of this article. The algorithm
presented here is probably not the best algorithm, but it is conceptually simple and under-
standable. It can be easily adapted: there is room for variation: the grayscale values can be
calculated differently, the difference between 2 pixels can also be calculated differently. It
is possible to consider only part of the image for comparison. There are probably also better
algorithms than a straightforward comparison: Entering the terms Motion, Detection
and Algorithm in Google results in a lot of scientific publications on the subject.

9

	Introduction
	Video For Windows
	A sample program
	Motion detection
	conclusion

