
lazarus and dabatases

Michaël Van Canneyt

September 30, 2012

Abstract

In previous articles, a motion detection system was created that sends a picture to a
mail address. In this article, it will be shown how to store the picture in a database as
well. Standard Lazarus components will be used for this. A program to view the stored
images will be created as well.

1 Introduction

Often, an application must connect to a database: One or more tables with tabular data in
them, possibly made accessible with an SQL language.

The concept of a set of records fetched from a database (in whatever form) is encapsulated
in a single class in the Free Component Library: TDataset. This class embodies the idea
of tabular data: rows are represented as records. The columns in a row are fields. When
fetching records from a SQL database, the set of records is also represented by TDataset.
The class offers methods for editing the fetched data, and posting the changes back to the
database.

This abstract class serves as the parent for many classes that fetch data from a variety
of databases. Lazarus has support for databases through many freely or commercially
available component sets: Zeos works with lazarus. AnyDAC also works with Lazarus, as
well as Advantage Database.

Lazarus also comes with a default database access technology, called SQLDB. As the name
indicates, it is focused on SQL databases. Out of the box, SQLDB has support for sev-
eral popular databases: Firebird, MySQL, Postgres, Oracle, MS SQL server, SQLite. The
ODBC connector allows to connect to any database for which an ODBC driver is available
(for instance MS-Access).

Other than offering components that connect to a database, it has also DB-Aware controls:
these are controls that can display data from a dataset. If the control allows some form of
editing, the changes can be posted back to the dataset. All this can be accomplished without
writing a single line of code.

This technology will be demonstrated by enhancing the motion detection program, so it
stores a picture in a database. A small separate program will be constructed to view the
stored pictures.

2 SQLDB archtitecture

A program that makes use of SQLDB always uses 3 components:

A TSQLConnection descendent is always needed: it represents the connection to the database.

1



A different connection component must be used for each database type: for Firebird this
component is called TIBConnection. For PostGres the component is called TPQConnection.

As descendents TSQLConnection, these components inherit the following properties:

HostName The name of the machine the database is on.

DatabaseName The name of the database to connect to.

Username The username to connect to the database with.

Password The password that goes with the user.

Connected If set to True, a connection will be established with the SQL server. Setting
it to False will disconnect from the server.

After all these properties are set up properly, the Connected property can be set to True.
For database types that support this (many do), the connection component can also be used
to create a new database using the CreateDB method. The connection component also
has some methods to retrieve metadata from the database (lists of tables, fields etc.).

To fetch data from the SQL server, a TDataset descendent called TSQLQuery must be
used. It sends a SQL statement to the SQL server and retrieves the result, if any. It has the
following main properties:

SQL a stringlist containing the command that must be sent to the SQL server. Only a
single SQL command may be entered.

Database The TSQLConnection descendent on which to execute the SQL command.

Params An SQL command can be parametrized. The Params property is a collection
of named values that will be subsitituted for the parameters. If the SQL server has
native support for parametrized queries, this support will be used.

Transaction the transaction in which the SQL statement must be executed.

Active if set to True, the SQL command will be sent to the server, and the result will
be fetched. Calling the Open method has the same effect. The Close method will
discard the results, if any, from memory.

If no data is expected from the SQL command (e.g. for an INSERT or CREATE statement)
then the ExecSQL method must be used to execute the statement. Note that SQLDB does
not attempt to offer a uniform SQL syntax which is valid for all database connection types:
the SQL as it was typed will be sent to the SQL engine. That means that, while it is possible
to simply switch connection components to select another database type, the SQL must be
checked to see if the syntax is accepted by the new database type.

The third component that is needed is a TSQLTransaction component. SQLDB has a
powerful transaction mechanism: multiple transactions on a single database can be handled
simultaneously in a single application. If the underlying engine cannot handle this natively,
it is emulated by opening multiple simultaneous connections. The transaction is controlled
through the StartTransaction, Commit and RollBack methods, or the Active
property.

The relation between the 3 components is depicted in figure 1 on page 3

2



Figure 1: The relation between the 3 components used in SQLDB

3 Saving pictures in a database

The motion detection program that was developed in the previous articles of this series,
sends a picture whenever motion was detected. Armed with the SQLDB components, the
program can be enhanced to store the picture in a database as well. Firebird will be used,
but doing the same on another database just requires changing the connection component
to the appropriate descendent of TSQLConnection

The database will contain a single table called MOTION, with 2 fields:

M_TIMESTAMP The timestamp when motion was detected.

M_IMAGE A blob field containing the picture.

Before anything can be stored in a database, a database must be created. The TIBConnection
component has the capacity to create a database using the CreateDB method. To add this
functionality to our program, we drop a TIBConnection component (DBIB), a transac-
tion component (TRDB), and 2 query components: QCreateTable and QCreateIndex.
We connect the transaction and query components to the database component. The SQL
properties of the 2 SQL components are set to:

CREATE TABLE MOTION (
M_TIMESTAMP TIMESTAMP,
M_IMAGE BLOB

);

and

CREATE INDEX I_TIMESTAMP ON MOTION(M_TIMESTAMP);

Then, a TFileNameEdit control (FEDB) and a button BCreateDB are placed on the
main form of the motion detection program. The OnClick event handler of the button
executes the following code:

procedure TMainForm.BCreateDBClick(Sender: TObject);
begin

CreateDatabase(FEDB.FileName);
end;

The CreateDatabase method takes care of actually creating the database if necessary.
After the database was created, it asks for a list of tables using the GetTableNames
method:

3



procedure TMainForm.CreateDatabase(Const AFileName : String);

Var
L : TStrings;

begin
IBDB.DatabaseName:=AFileName;
If Not FileExists(AFileName) then

IBDB.CreateDB;
IBDB.Connected:=True;
L:=TStringList.Create;
try

IBDB.GetTableNames(L);
if L.IndexOf(’MOTION’)=-1 then

CreateMotionTable;
finally

L.Free;
end;

end;

If the motion table does not yet exist, it is created by executing the 2 SQL statements in
QCreateTable and QCreateIndex in the following method:

procedure TMainForm.CreateMotionTable;

begin
QCreateTable.ExecSQL;
QCreateIndex.ExecSQL;
TRDB.Commit;

end;

The last statement commits the transaction and thus makes sure the table defintions are
committed to the database.

When all this is done, the database to store motion detection pictures can be created. Storing
the pictures in a database is controlled by a checkbox CBSTorePicture. When checked,
the program will store the pictures it sends by email in the database as well. The timer event
used to detect motion, must be adapted for this:

procedure TMainForm.TMotionTimer(Sender: TObject);

begin
Inc(FTicks);
SaveTempFrame;
if CheckDifferent then

begin
If MinutesBetween(Now,FLastSend)>1 then

begin
FLastSend:=Now;
SendPicture;
If CBStorePicture.Checked then

InsertPicture;
end;

end;
end;

4



The InsertPicture method will save the temporary frame in the database using a
TSQLQuery component called QInsertImage. Its SQL property is set to:

INSERT INTO MOTION VALUES (’NOW’,:IMAGE)

The colon (:) in :IMAGE indicates to SQLDB that IMAGE is a parameter, whose value must
be set from the Params property of QInsertImage. Parameters can appear wherever
the SQL statement expects a single value. The InsertPicture will first check whether
a connection to the database must be established, and then sets the value of the parameter
prior to executing the SQL Statement using the ExecSQL method:

procedure TMainForm.InsertPicture;

Var
P : TParam;

begin
// Connect to database if needed.
if not IBDB.Connected then

begin
IBDB.DatabaseName:=FEDB.FileName;
IBDB.Connected:=True;
end;

P:=QInsertImage.ParamByName(’IMAGE’);
P.LoadFromFile(FFrameFile,ftBlob);
// start transaction if needed.
If Not TRDB.Active then

TRDB.StartTransaction;
QInsertImage.ExecSQL;
// Commit data.
TRDB.Commit;

end;

The ParamByName function looks in the parameter collection for the parameter with the
appropriate name, and returns it. The LoadFromFile method of TParam will load the
parameter value from a file, and sets the type of parameter to ftBlob: each parameter
has a type, so the SQLDB engine knows how to pass the parameter value to the database
engine.

4 Fetching data from a database

Now that the program to detect motion can store the images in a database, a mechanism
is needed to view the stored pictures. This can also easily be done in Lazarus: It offers
components that cooperate with SQLDB (or any other dataset technology that descends
from TDataset) and that allow the data in a TSQLQuery to be displayed and edited. These
components are so-called DB-Aware versions of the regular controls: These controls are
descendents of TEdit, TCheckBox, TLabel, which can be bound to a dataset (through
their Datasource property) and a particular field in the dataset (using the DataField
property). When the dataset is opened, these controls will display the contents of current
record in the dataset; Each will display the field they are bound to.

There are also some specialized controls, such as the TDBNavigator, which can be used
to navigate through the data, and TDBGrid, which will display the data of a TDataset
in a tabular manner.

5



Figure 2: The image viewing program in the designer

The DataSource property of all these controls points to a TDatasource component.
This component is connected to the TDataset descendent, and acts as a mediator between
the dataset and the various controls: it passes notifications from the dataset to the controls
in case something changed (current record was changed, a field changed value) or allows
the controls to notify the dataset of changes, for instance when the user edited something.

To create a program that views the pictures captured by the motion detection program is
quite simple: A TFileName edit is needed to specify the location of the database. 2
TDateEdit controls are added to enter a period of time (dates): Only images captured
between these 2 moments will be shown. Then, a grid is added to display the various
timestamps for which an image is available, and a TImage control to show the image. A
label to show the timestamp corresponding to the currently showing image is also added.
All this is shown in figure 2 on page 6.

Naturally, a TIBConnection component as well as a TSQLTransaction and TSQLQuery
component (named QImages) will be needed to fetch the data. The data is fetched with
the following SQL command:

SELECT
M_TIMESTAMP,
M_IMAGE

FROM
MOTION

WHERE
(M_TIMESTAMP BETWEEN :Start and :Stop)

When the ’Show List’ button is clicked, the parameters are copied to the query and the

6



query is opened:

procedure TForm1.Button1Click(Sender: TObject);
begin

ShowImagesBetween(DEStart.Date,DEStop.Date);
end;

procedure TForm1.ShowImagesBetween(AStart,AStop : TDateTime);

begin
if not IBDB.Connected then

begin
IBDB.DatabaseName:=FEDB.FileName;
IBDB.Connected:=true;
end;

With QImages do
begin
Close;
ParamByName(’START’).AsDateTime:=AStart;
ParamByName(’STOP’).AsDateTime:=AStop;
Open;
end;

end;

The only thing done by the code is connecting to the database if no connection was present,
and set the parameters. Note the AsDateTime used to pass the parameter values: Using
this form tells SQLDB that the parameters must be passed on to the SQL engine as times-
tamp values.

The following code

With QImages do
begin
Close;
ParamByName(’START’).AsString:=DateToStr(AStart);
ParamByName(’STOP’).AsString:=DateToStr(AStop);
Open;
end;

end;

Would pass the parameter values as string values to the SQL engine, leaving it to the engine
to figure out how to convert the string values to timestamps. This is in general a bad
idea, since each engine handles date/time localization issues differently. Passing the values
explicitly as timestamps makes sure the database engine gets a correct value.

Notice that the transaction is not activated: the TSQLQuery component will do that if
necessary.

After the Open method is called, the data is fetched from the server. The grid is set up to
display only the value of the M_TIMESTAMP field in the data. As a result, it will show a
list of times. TDataset and TSQLQuery have a concept of Cursor: this is the current
record of the dataset. The cursor can be moved from one record to the next using the Prev
and Next methods of TDataset. When the end of the data has been reached, the EOF
property will return True. When the beginning has been reached, the BOF property will
be True. When the dataset is empty, both BOF and EOF will be True.

A typical way to perform some actions on all records in a dataset will then look like:

7



With SomeQuery do
While not EOF do

begin
// Do something with the current record
Next;
end;

Clicking a row in the grid will move the dataset cursor to the record that corresponds
to the clicked row: the current record will change, and the label showing the timestam
(LTimeStamp) will display the value for the current record. It is posible to react to such
events in the dataset: it has a lot of event handlers (AfterOpen, AfterScroll, AfterEdit) that
allow the programmer to respond to all these events and take whatever action is needed.

One of these events is AfterScroll. It is called whenever the dataset cursor loca-
tion changes. This event can be used to show the current in a TImage control (called
IMotion):

procedure TForm1.QImagesAfterScroll(DataSet: TDataSet);

Var
M : TMemoryStream;
F : TBlobField;

begin
M:=TMemoryStream.Create;
try

F:=(QImages.FieldByName(’M_IMAGE’) as TBlobField);
F.SaveToStream(M);
M.Position:=0;
IMotion.Picture.LoadFromStream(M);

finally
M.free;

end;
end;

The code is quite simple: the blob field containing the image (M_IMAGE) is retrieved, and
its contents is saved to a stream (M). The picture is then loaded from this stream.

The code demonstrates an important aspect of TDataset: when the query is opened,
an array (or list) of TField instances is constructed. Each element in the array repre-
sents a column in the result data, and provides access to that column’s data in the cur-
rent record. The TField instances are not all of the same class: for integer columns, a
TIntegerField instance is created. For timestamp columns a TDateTimeField is
created. For Blob fields, a TBlobField instance is used: this class has a method to save
the content of the blob field to a stream (and one to load it from a stream).

The result of all this can be seen in action in figure 3 on page 9.

5 conclusion

It is easy to access data in SQL-based databases using Lazarus: various mechanisms exist
to extract and manipulate the data exist. In this article, the basics of SQLDB have been
explained. SQLDB is shipped standard with Lazarus, and can therefor easily be used for
small (or even large) projects.

8



Figure 3: The image viewing program in action

9


	Introduction
	SQLDB archtitecture
	Saving pictures in a database
	Fetching data from a database
	conclusion

