
Introduction to thread programming in Lazarus

Michaël Van Canneyt

March 3, 2013

Abstract

Thread support in Free Pascal has received an update, so it is compatible to thread
support in Delphi XE3. Time to re-visit the subject of threads, and look at the possibil-
ities for those not familiar with thread programming.

1 Introduction

Recently, FPC received a substantial upgrade in its threading code. It has been made com-
patible with the Delphi XE3 threading possibilities. Time for a refreshment on how to do
threading in Lazarus/Free Pascal.

Threading means writing the code of an application so that several parts of the code are
executed simultaneously, in parallel. Each part of the code forms a thread of execution.
Threading requires support by the hardware: several processors or a processor with var-
ious cores. If the hardware does not allow it, the operating system mimics simultaneous
execution by giving the various parts of the program time to execute in an intertwined fash-
ion, much like it allows multiple programs to execute ’simultaneously’. The scheduling
of threads and programs by the operating system is a huge subject in itself, and is done
differently by each OS.

The difference between threads and multiple programs is of course that all threads in a
program all have access to the same data and memory space. Programs can share some
memory by using shared memory and special operating system calls.

Access to the shared memory by the various threads must be carefully designed, or strange
things may happen: As long as one thread only writes and another thread only reads from
a shared memory location, things will usually progress without problems. However, if 2
threads will try to update the same memory location, strange things may happen. To prevent
this, special programming is required. In this article, we’ll show how this is done.

2 Thread support classes in Free Pascal

The threading support of Free Pascal makes it relatively simple to create multi-threaded
programs. FPC provides several classes and a language construct to deal with multiple
threads in a program:

TThread This is the heart of the threading system: This class encapsulates a thread in a
program. It is declared in the classes unit.

threadvar This is a special kind of variable: global variables are normally accessible by
all threads in a program. When they are declared as threadvar instead of var,
each thread in the program will receive its own copy of the global variable.

1



TMultiReadExclusiveWriteSynchronizer This class serves to protect access to a piece
of data such that it can be read simultaneously by various threads, but can be written
only by one thread. It is declared in the sysutils unit.

TThreadList This is a special list which can be locked for exclusive access by a thread. It
is declared in the classes unit.

TCriticalSection This class can be used to make sure a particular piece of code is executed
only by one thread at a time. It is declared in the syncobjs unit.

3 The TThread class

From the classes presented above, the most important class is TThread. It has at least the
following public methods:

Start this will start execution of the thread if it was created in a suspended state.

Terminate Tells the thread to stop executing at the earliest possible time.

WaitFor This waits for the thread to end, and returns the exit code of the thread.

And some properties:

FreeOnTerminate This property is described in detail below.

Handle An operating system handle for the thread.

ThreadID An operating system ID for the thread.

ExternalThread A boolean indicating whether this thread was started outside the RTL.

Priority An indicator of the thread’s priority.

Suspended A Boolean indicating whether the thread is currently executing or not.

Finished A Boolean indicating whether the thread has finished executing.

OnTerminate An event handler that is calledwhen the thread has finished executing.

FatalException If an exception is raised during the execution of the thread, but is not
caught by user code, then it is caught and held here for inspection.

There are also some protected methods, only available inside the TThread class and its
descencents:

Execute A virtual abstract method that must be overridden.

Synchronize Allows to schedule a procedure for execution in the main thread. The thread
waits till it has finished executing.

Queue Allows to schedule a procedure for execution in the main thread. The thread does
not wait till it has finished executing, but continues at once.

And 2 protected properties:

ReturnValue This is an integer value that can be set to report back at the end of the thread.
It is the value that is reported when WaitFor is used.

2



Terminated This is a flag that must be regularly checked during execution of the thread:
when it is set to True, the thread should stop executing. It is set by the Terminate
method.

Now, how can this class be used in thread programming ? In its simplest form, to execute
code in a separate thread, a descendent of the TThread class must be made, and the
Execute method must be overridden. All code that must run in a separathe thread should
be called from inside this method.

For instance, given the following proceduree:

Procedure DoSomethingForLongTime;

begin
// Do something here

end;

If it executes for a long time, the following code can be used to run the procedure in a
separate thread:

Type
TMyThread = Class(TThread)

procedure Execute; Override;
end;

Procedure TMyThread.Execute;
begin

FreeOnTerminate:=True;
DoSomethingForLongTime;

end;

Procedure DoSomethingForLongTimeInThread;
begin

TMyThread.Create;
end;

begin
DoSomethingForLongTimeInThread;

end.

The DoSomethingForLongTimeInThread routine will return at once, but the thread
created in it will run as long as it takes to complete the task.

The Execute method starts by setting the FreeOnTerminate property. This property
determines what happens with the thread instance when the Execute method has finished
its work. By default, the thread object is not destroyed. This means that the code which
has created the thread must keep an instance of the thread and free it once the thread has
finished executing. By consequence, it must check when the thread has finished its work.
This requires some bookkeeping code.

Some tasks are fire&forget: this means that they can be started and then left to run to
completion without reporting back. For threads, this means the thread can be started, it will
do its work, and when finished, the thread instance may be freed automatically: setting the
FreeOnTerminate property to True accomplishes just this.

In the example above it is the thread code that decides that the tread instance will be freed
or not. In general, it is the calling code that will decide whether the thread instance should
be freed or not.

3



This poses a bit of a problem: As soon as the thread instance is created, it starts executing
in a separate thread. That means that there may be no time to set the FreeOnTerminate
property: The new thread may have finished executing before the property is set, thus
creating a memory leak.

The FreeOnTerminate property is just an example, there may be other properties that
need to be set before the thread starts executing. For example OnTerminate or some
properties that are needed for the thread to perform its task correctly.

It is the operating system that determines the details of exactly when the new thread starts
executing and whether or not then caller is still allowed to execute instructions before the
new thread starts.

To remedy this, the constructor of the TThread class has a boolean parameter CreateSuspended:

constructor Create(CreateSuspended: Boolean;
const StackSize: SizeUInt = DefaultStackSize);

This can be used to create a thread in Suspended state. The thread is created, but does
not yet immediatly start executing. This gives the parent code time to set some properties.
Thread execution can then be started using the Start procedure:

Procedure DoSomethingForLongTimeInThread;
begin

With TMyThread.Create(True) do
begin
// Set some other properties...
FreeOnTerminate:=True;
Start;
end;

end;

4 A practical example

To demonstrate the use of threads, an application is created which will display a histogram
with the distribution of the various characters found in text files: The algorithm will search
a directory (and subdirectories) and create the histogram based on the contents of the files
it finds. The user may select a directory, specify a set of extensions of filenames that interest
him, and finally the user can say whether subdirectories should be searched or not. For
simplicity, the statistics are for ASCII codes only, no Unicode characters are allowed. The
statistics will be displayed in a bar chart. It is clear that this is a task which can take some
times, specially if many large files are involved.

The algorithm to examine a file is simple:

Procedure Updatestats(Var Stats : TSTats; AFileName : String);

Const
MaxSize = 1024 * 1024 * 10;

Var
S : Array of Byte;
b : Byte;
P : PByte;
I,R : Integer;

4



F : THandle;

begin
SetLength(S,MaxSize);
F:=FileOpen(AFileName,fmopenRead or fmShareDenyWrite);
if F<0 then exit;
try

Inc(Stats[256]);
Repeat

R:=FileRead(F,S[0],MaxSize);
P:=PByte(@S[0]);
For I:=1 to R do

begin
Inc(Stats[P^]);
Inc(P);
end;

Until R<MaxSize;
finally

FileClose(F);
end;

end;

TStats is a simple array type that keeps a count per ASCII code:

Type
TStats = Array[0..256] of Int64;
Pstats = ^TStats;

As ASCII codes run from 0 to 255, element 256 in the array will be used to store the number
of treated files.

The following routine will traverse a directory, performing the counts on all files it finds.

Function GetStats(Var Stats : TSTats;
ADir,AExt : String;
Recurse : Boolean) : Integer;

ADir is the name of the directory, AExt is a list of extensions, separated by dots. Stats
is the array that must be checked.

The algorithm starts by checking all files in the given directory:

Function GetStats(Var Stats : TSTats;
ADir,AExt : String;
Recurse : Boolean) : Integer;

Var
Info : TSearchRec;
E : String;

begin
Result:=0;
If FindFirst(ADir+’*.*’,0,Info)=0 then
try

repeat

5



E:=LowerCase(ExtractFileExt(Info.Name))+’.’;
If Pos(E,AExt)<>0 then

begin
inc(Result);
UpdateStats(Stats,ADir+Info.Name);
end;

Until FindNext(Info)<>0;
finally

FindClose(Info);
end;

If the Recurse parameter is true, then the subdirectories are searched as well:

if Recurse then
If FindFirst(ADir+AllFilesMask,faDirectory,Info)=0 then

try
repeat

if ((Info.Attr and faDirectory)<>0)
and (Info.Name<>’..’) and (info.name<>’.’) then

Result:=Result+GetStats(Stats,
ADir+Info.Name+PathDelim,AExt,Recurse);

Until FindNext(Info)<>0;
finally

FindClose(Info);
end;

end;

There is nothing surprising in this algorithm. The main form of the program has some edit
controls that allow the user to specify the directory, extensions, and a checkbox to indicate
that the search should be recursive. A click on the button BGO will trigger the search:

procedure TMainForm.BGoClick(Sender: TObject);

Var
E,D : String;
I : integer;

begin
D:=IncludeTrailingPathDelimiter(DEDir.Directory);
E:=EExt.Text;
For I:=1 to Length(E) do

If E[i]=’ ’ then E[I]:=’.’;
E:=’.’+E+’.’;
E:=StringReplace(E,’..’,’.’,[rfReplaceAll]);
FillWord(FStats,SizeOf(FStats) div 2,0);
i:=GetStats(FStats,D,E,CBRecurse.Checked);
ShowStats(i);

end;

The first lines are some cleanup of the directory name and the extensions. After that the
stats array is cleared, and everything is passed to the GetStats call. When that returns,
the statistics are shown:

procedure TMainForm.ShowStats(ACount : Integer);

6



Figure 1: The statistics gathering application in action

Var
B : TBarSeries;
I : Integer;
C : Int64;

begin
B:=CChars.Series[0] as TBarSeries;
C:=FStats[256];
CChars.Title.Text[1]:=Format(’%d files processed’,[C]);
C:=0;
For I:=0 to 255 do

C:=C+FStats[I];
For I:=0 to 255 do

B.SetYValue(I,FStats[i]/C*100);
end;

As can be seen, the values are displayed as a percentage of the total number of characters.
When the program executes, it looks more or less like figure ?? on page ??:

When the GO button is pressed, the program will freeze, till all files have been processed. No
interaction is possible, till the statistics have been gathered. Clearly this is not desirable.
The solution is to run the GetStats algorithm in a separate thread. This means the main
thread is free to respond to user actions, update the display and more. When the thread has
finished, the statistics are displayed.

To do this, the main program needs to be notified when the thread is finished. The OnTerminate
event of the TThread class is triggered when the Execute method has stopped. The ar-
guments needed fort the GetStats call must be passed on to the thread, and they must be
passed on before the thread starts executing.

One way of doing that is passing all needed arguments to the thread consructor:

7



TStatsThread = Class(TThread)
private

FDirectory : String;
FExtensions : String;
FRecurse : Boolean;
FStats : PStats;

Public
Constructor Create(AStats : PSTats;

ADirectory,AExtensions : String;
Recurse : Boolean;
AOnDestroy : TNotifyEvent);

Procedure Execute; override;
end;

The constructor just stored these arguments so they can be used later on by the Execute
method:

constructor TStatsThread.Create(AStats: PSTats; ADirectory,
AExtensions: String; Recurse: Boolean; AOnDestroy: TNotifyEvent);

begin
FDirectory:=ADirectory;
FExtensions:=AExtensions;
FRecurse:=Recurse;
FStats:=ASTats;
OnTerminate:=AOndestroy;
FreeOnTerminate:=True;
Inherited Create(False);

end;

The execute method uses all supplied arguments to call GetStats. Note that only the
address of the stats array is passed to the thread, not the actual array.

procedure TStatsThread.Execute;
begin

GetStats(FStats^,FDirectory,FExtensions,FRecurse);
end;

The OnClick method of the form will now have as it’s last line the following:

TStatsThread.Create(@FStats,D,E,CBRecurse.Checked,@ThreadDone);

The ThreadDone method that is passed on to the thread is called when the thread termi-
nates. It just calls the routine to show the statistics on screen:

procedure TMainForm.ThreadDone(Sender: TObject);

begin
ShowStats(0);

end;

When the ’Go’ button is pressed now, the program will start to collect statistics, and at the
same time the display remains responsive; the window can be resized, moved etc. When the
thread is finished working, the display will be updated and the statistics shown.

8



5 Synchronization

However, the program still has a flaw: while the program is working, the user has no
indication of what is happening. It would be much better if the program displayed the
statistics while they are being built, for instance, once for each processed directory.

This presents us with a difficulty: the LCL (or VCL in Delphi) is not thread safe. That
means that only the main thread can handle update of the display: the second thread is
not allowed to mainpulate the GUI elements. So some form of communication between the
main thread and the thread doing the work is required. The Synchronize method of
TThread allows to do just that. The Synchronize method allows the thread to let the
main program thread execute a task, during which the thread waits till the main program
thread has finished the task:

Procedure Synchronize(AMethod: TThreadMethod);

TThreadMethod is a simple procedure.

To use this, the directory traversing algorithm must get an additional callback:

Type
TDirectoryCallBack =

Procedure(Const ADirectory: String) of object;

Function GetStats(Var Stats : TSTats;
ADirectory,AExtensions : String;
Recurse : Boolean;
OnDirectoryDone : TDirectoryCallBack) : Integer;

At the end of a directory, the callback is called, and it gets passed the currently finished
directory:

// scan of files in directory
If Assigned(OnDirectoryDone) then

OnDirectoryDone(ADirectory);
if Recurse then

// Rest of code

The thread passes a method to the GetStats call:

procedure TStatsThread.Execute;
begin

FTotal:=GetStats(FStats^,FDirectory,FExtensions,FRecurse,@DirDone);
end;

In this method, 2 things happen: First, the current directory is stored, and secondly, the
Synchronize method is called: Synchronize can only handle a procedure without pa-
rameters, which is DoOnDir:

procedure TStatsThread.DirDone(Const ADir : String);

begin
FCurrentDir:=ADir;
If Assigned(FOnDir) then
Synchronize(@DoOnDir);

end;

9



Figure 2: The statistics gathering application in action

The FOnDir variable is an event handler that is set by the main form; Since it cannot be
passed to Synchronize, it must be called from a procedure with the correct signature for
Synchronize: DoOnDir. The DoOnDir method will be called from within the main
thread and simply calls the callback:

procedure TStatsThread.DoOnDir;

begin
FOnDir(FCurrentDir);

end;

The event handler in the form looks as follows:

procedure TMainForm.DirDone(const ADir: String);
begin

FCurrentDir:=ExtractRelativePath(DEDir.Directory,ADir);
ShowStats(-1);

end;

To make the display of the current directory somewhat nicer, it extracts the relative path of
the current directory. Showstats will use this to set the caption of the bar chart.

The result of all these changes look like figure figure 2 on page 10.

6 Thread methods

The resulting program is now both responsive, and updates the statistics almost live. What
is missing, is the option to stop the search process.

The TThread class offers the Terminate call to tell it to stop searching. However, the
GetStats method does not know about the Terminate property. It would be possible

10



to add another event handler to GetStats, which would enable it to check at regular
intervals whether it should stop or not.

The resulting code would not look very nice: callbacks everywhere. Even without this, the
thread constructor becomes a bit impressive, it gets passed 6 arguments:

Constructor Create(AStats : PSTats;
ADirectory,AExtensions : String;
Recurse : Boolean;
AOnDestroy : TNotifyEvent;
AOnDir : TDirectoryCallBack);

Time to refactor the code somewhat.

All this can be remedied by creating an object that has all the arguments to the thread
constructor as properties and passing that object to the constructor.

The same is true for the GetStats call: it too can be passed an object.

At the same time, the fact that the main form “knows” that threads are used, is bad design.

It would be better if the main form could simply create an object, tell it to calculate the
statistics, and report back at regular intervals, and let the object worry about whether or
not threads should be used.

This leads - almost naturally - to the following object:

TStatsJob = Class(TObject)
Protected

Procedure GetStats(Const ADirectory : String);
public

Procedure Execute;
Procedure Terminate;
Property Stats : PStats Read FStats Write FStats;
Property Dirs : Integer Read FDirs;
Property CurrentDir : String Read FCurrentDir;
Property OnDir : TNotifyEvent Read FOnDir Write FOndir;
Property Extensions : String Read FExtensions Write FExtensions;
Property StartDir : String Read FStartDir Write FStartDir;
Property Recurse : Boolean Read FRecurse Write FRecurse;
Property OnDone : TNotifyEvent Read FOnDone Write FOnDone;

end;

The object has a lot of properties: most of them are simply the arguments that were passed
on to the thread. The GetStats procedure that traverses the directories has also been
made a method of the object: this means that all arguments which were passed on to the
method, can be removed: they are accessible as properties.

The Terminate method will allow the main form to terminate the search routine.

The Execute method of this object is very simple:

procedure TStatsJob.Execute;

begin
FThread:=TStatsThread.Create(Self);

end;

FThread is a private field of the TStatsJob object. The thread code now looks as
follows:

11



constructor TStatsThread.Create(AJob : TStatsJob);

begin
FJob:=AJob;
OnTerminate:=@FJob.ThreadDone;
Inherited Create(False);

end;

procedure TStatsThread.Execute;
begin

FJob.DoExecute
end;

Which is very simple. The DoExecute is also simplicity itself:

procedure TStatsJob.DoExecute;
begin

FCurrentDir:=’’;
GetStats(StartDir);

end;

The GetStats method is a copy of the old procedure, but the code is adapted so that
it uses the properties Extensions and Recurse and the callback OnDir from the
TStatsJob instance instead of getting them passed as parameters.

This structure allows a small change in the Execute method of TStatsJob:

procedure TStatsJob.Execute(UseThreads : Boolean = true);

begin
if UseThreads then

FThread:=TStatsThread.Create(Self)
else

begin
FThread:=Nil;
DoExecute;
ThreadDone(Self);
end;

end;

Giving the caller the option of using threads or not.

The code in the main form can now be refactored to the following:

procedure TMainForm.BGoClick(Sender: TObject);

Var
E,D : String;
I : integer;
J : TStatsJob;

begin
if FJob<>Nil then

exit;
E:=EExt.Text;

12



For I:=1 to Length(E) do
If E[i]=’ ’ then E[I]:=’.’;

E:=’.’+E+’.’;
E:=StringReplace(E,’..’,’.’,[rfReplaceAll]);
J:=TStatsJob.Create;
J.StartDir:=IncludeTrailingPathDelimiter(DEDir.Directory);
J.Stats:=@FStats;
J.Extensions:=E;
J.Recurse:=CBrecurse.Checked;
J.OnDone:=@JobDone;
J.OnDir:=@DirDone;
FillWord(FStats,SizeOf(FStats) div 2,0);
J.Execute;
Fjob:=J;

end;

Note that the procedure exits at once if a job is already running. The form is completely
unaware of the fact that TStatsJob is using threads to do the actual work.

The Synchronize method is a protected method of TThread. That means it cannot be
called from within the TStatsJob class. Luckily, there is also a version of this call which
is public:

class procedure Synchronize(AThread: TThread; AMethod: TThreadMethod);

As can be seen, it is a class method, meaning it must be called as follows:

procedure TStatsJob.DoneDir(ADir: String);
begin

FCurrentDir:=ADir;
TThread.Synchronize(FThread,@ShowDir);

end;

If FThread is nil, the method will still work. This means that any object can do update
of a GUI without bothering to check if it is running in a thread or not: all it needs to do is
call the TThread class method Synchronize.

The TStatsJob class has a Terminate method, which, when executed, will cause the
class to interrupt the process. Since the TStatsJob instance is saved in a FJob field
means that a button ’Cancel’ can be put on the form, which, when clicked, will call the
Terminate method of the TStatsJob class:

procedure TMainForm.BCancelClick(Sender: TObject);
begin

If Assigned(FJob) then
FJob.Terminate;

end;

All the Terminate method does, is set a flag: Terminated. The GetStats method
is changed, so it checks this flags at regular intervals, after each file:

repeat
E:=LowerCase(ExtractFileExt(Info.Name))+’.’;
If Pos(E,FExtensions)<>0 then

UpdateStats(FStats^,ADirectory+Info.Name);
Until (FindNext(Info)<>0) or Terminated;

13



7 Queuing methods

The Synchronize method used to update the display has a disadvantage: it waits for
the main thread to have updated the display before continuing to gather statistics. It would
be more efficient to continue gathering statistics while the main form is displaying the last
known statistics. This can be done with the aid of the Queue method. The Queue method
will do the same thing as the Synchronize method: it schedules a task to be executed in
the main thread. In difference with Synchronize, the Queue method will not wait for
the main thread to have completed the task. Like Synchronize, it comes in 2 forms:

procedure Queue(aMethod: TThreadMethod);
class procedure Queue(aThread: TThread; aMethod: TThreadMethod);

Care must be taken when using Queue. There is no guarantee that the scheduled method
will execute before the thread finishes executing. if FreeOnTerminate is True, the
thread instance may no longer be in memory.

So, before the thread is done, it should remove any jobs that it had scheduled. This can
be done with the RemoveQueuedEvents class method of TThread, which exists in 3
forms:

class procedure RemoveQueuedEvents(aThread: TThread;
aMethod: TThreadMethod);

class procedure RemoveQueuedEvents(aMethod: TThreadMethod);
class procedure RemoveQueuedEvents(aThread: TThread);

The last form removes all methods queued by the thread.

So, using Queue instead of Synchronize will allow the TStatsJob class to continue
gathering statistics, and when done, it should call RemoveQueuedEvents.

In the example of updating the statistics shown in the main form, it makes no sense to sched-
ule an update of the display if the previous update was not yet handled. The main thread
will simply execute the same method twice, one after the next, with the same statistics.

To prevent this from happening, we introduce a flag in TStatsJob called ShowScheduled:

procedure TStatsJob.DoneDir(ADir: String);
begin

FCurrentDir:=ADir;
If Not ShowScheduled then

begin
ShowScheduled:=True;
TThread.Queue(FThread,@ShowDir);
end;

end;

The flag is cleared as soon as the statistics have been shown:

procedure TStatsJob.ShowDir;
begin

If Assigned(FOnDir) then
FOnDir(Self);

ShowScheduled:=False;
end;

The ThreadDone method, called when the thread finishes, is adapted so it removes any
queued events:

14



Figure 3: The statistics gathering application with cancel button

procedure TStatsJob.ThreadDone(Sender : TObject);
begin

FCurrentDir:=’’;
if ShowScheduled then

TThread.RemoveQueuedEvents(FThread,@ShowDir);
FThread:=Nil;
If Assigned(OnDone) then

OnDone(Self);
end;

With these changes, the process of gathering statistics can be cancelled, and will work
faster, since it no longer needs to wait for the update of the display.

The result of all these changes - with the additional cancel button, look like figure figure 3
on page 15.

8 Protecting data

The program presented till now allows only 1 thread to gather statistics. As soon as it
starts, the Go button will no longer start a new thread. What if we wanted to allow the user
to start as many jobs as he wants ?

This would mean keeping a list of TStatJob instances. Each time the user starts a new
job, a new TStatJob instance is added to the list. When a job stops, the correct instance
is removed from the list and freed.

However, there is a small caveat. The various jobs (threads) will all work on the same
TStats array. Till now, the job thread was the only one updating the stats array, while
the main form only showed the result.

If multiple jobs run at the same time, they will be updating the TStats array at the same

15



time. That also means that errors can happen. To understand this, consider what happens
in UpdateStats

Inc(Stats[P^]);

What happens behind the scenes is that the current value of Stats[P]̂ is fetched from
memory, and stored in a register of the CPU. Then it is increased, and the result is again
stored in memory. This opens the possibility of the following scenario in case of 2 threads.
The following steps are executed in order:

1. Suppose the initial value of Stats[32] is 10.

2. Thread 1 fetches the value 10 into the CPU.

3. Thread 1 increases the value to 11

4. Thread 2 fetches the value 10 into the CPU.

5. Thread 2 increases the value to 11

6. Thread 1 stores the new value (11) to Stats[32]

7. Thread 2 stores the new value (11) to Stats[32]

8. The final value of Stats[32] is 11.

The result is wrong, the final value should be 12.

In the case of statistics, this results simply in wrong statistics. In other situations, this may
lead to a crash of the program.

The updating of the data must be protected. One way of doing this is coordinating all
write access so only one thread can change it at the same time. This can be done with
a TCriticalSection object. A TCriticalSection can be used to put a barrier
around a piece of code using it’s Enter and Leave methods. All code executed between
these 2 calls can only be executed by 1 thread:

CS.Enter;
try

// Do things
finally

CS.Leave
end

As soon as the first thread reaches the CS.Enter, it will continue to execute. If a second
thread comes to CS.Enter while the first thread has not reached the CS.Leave com-
mand, the second thread will be blocked. As soon as the first thread executes CS.Leave,
the second thread will be unblocked and will continue executing.

All threads must use the same TCriticalSection instance to guard access to a shared
resource like this. That means that the critical section must be created in the main program,
and passed to all jobs. For this, the TStatsJob gets a new property:

Property Sync : TCriticalSection Read FSync Write FSync;

Which is set when the job is created in the main form:

J.Sync:=FSync;

16



The TCriticalSection instance is created in the OnCreate event handler of the
form.

Statistics are updated in the UpdateStats routine:

UpdateStats(ADirectory+Info.Name);

So the naive method would be to do

CS.Enter;
try

UpdateStats(ADirectory+Info.Name);
finally

CS.Leave
end

However, the UpdateStats method may take quite some time to complete. During all
this time, no other thread can gather statistics, because of the critical section. This, in
effect, recreates the situation where there is only 1 thread gathering statistics.

The solution is to let each thread gather statistics from a file in a local TStats array, and
when it is done, add the result to the global TStats array. Only the second part - which
executes very fast - needs to be protected by a critical section:

procedure TStatsJob.UpdateStats(const AFileName: String);

Var
S : TStats;
I : integer;

begin
FillWord(S,SizeOf(S) div SizeOf(Word),0);
ReadStats.UpdateStats(S,AFileName);
FSync.Enter;
try

For I:=0 to 256 do
FStats^[i]:=FStats^[i]+S[I];

finally
FSync.Leave;

end;
end;

With all these changes in place, the ShowStats method can be changed so it also shows
the number of currently running jobs:

procedure TMainForm.ShowStats(AJob : TStatsJob);

Const
SJobFiles = ’%d jobs, %d files processed’;
SJobFilesDir = ’%d jobs, %d files processed (%s)’;

Var
B : TBarSeries;
I,C : Integer;
S : String;

17



Figure 4: The statistics gathering application with multiple jobs

begin
B:=CChars.Series[0] as TBarSeries;
C:=FStats[256];
If Assigned(AJob) and (AJob.CurrentDir<>’’) then

S:=Format(SJobsFilesDir,[FJobs.Count,C,AJob.CurrentDir])
else

S:=Format(SJobsFiles,[FJobs.Count,C]);
CChars.Title.Text[1]:=S
C:=0;
For I:=0 to 255 do

C:=C+FStats[I];
For I:=0 to 255 do

B.SetYValue(I,FStats[i]/C*100);
Application.ProcessMessages;

end;

Note that the main form does not use the critical section when reading the data. The result
can be seen in figure 4 on page 18. It is left as an exercise to the reader to find out why it
would be more correct to update the display in a critical section as well.

9 Conclusion

Threads can be very useful when performing lengthy tasks in the background. The thread
support in Free Pascal makes it very easy to do. Having multiple threads perform tasks in
the background while accessing and modyfing the same shared data is a bit more tricky, but
can be done as well with standard classes provided by Free Pascal.

18


	Introduction
	Thread support classes in Free Pascal
	The TThread class
	A practical example
	Synchronization
	Thread methods
	Queuing methods
	Protecting data
	Conclusion

