
Printing in Lazarus

Michaël Van Canneyt

September 24, 2008

Abstract
Many applications need some form of printed reporting. Lazarus has support for

printing, quite similar to what Delphi offers. This article shows how to install and use
the various printing capabilities of Lazarus

1 Introduction

Printed output is part of most applications. Obviously, these days an application no longer
directly sends printer commands to the printer. Instead, each operating system has a print-
ing subsystem, which handles the low-level interface of the printer. The Lazarus LCL has
an abstraction layer for this, and this is what should be used if one wishes to print.

On top of the low-level abstraction layer, a reporting engine is built: this allows one to
visually design a printed page design, and at run-time, any parameters or data will be filled
in and the document can be printed.

Finally, printing support for the IDE must also be installed separately: If this is done, the
contents of the Lazarus source editor can also be printed.

All these techniques will be demonstrated.

2 Installation

All the printing functionality is contained in 3 packages:

Printer4lazarus The basic printer support for the LCL. It contains the system specific
parts of the printing system.

Printers4lazide This package adds a ’Print’ item to the File menu in the IDE, which can
be used to print the current file. As of version 0.9.26 of lazarus, a question will be
asked if only the selection should be printed.

lazreport This package installs the reporting engine of Lazarus: all reporting components
will be installed on the ’Lazreport’ tab in the component palette.

The two last packages obviously depend on the first one, so it will be compiled automati-
cally by the IDE.

3 Basic classes

The basic printing object is the TPrinter class in the Printers unit, which is part of the
LCL. The unit has a Printer variable which is instantiated by the the OSPrinters unit

1

(in the Printer4Lazarus package). The TPrinter class has a lot of properties and some
methods. The main property is a TCanvas instance, which represents the page to draw
on. The main methods are the following:

SetPrinter Selects a printer. The method is declared as follows:

Procedure SetPrinter(aName : String);

The sole parameter is the name of the printer that should be selected.

BeginDoc Starts a new print job on the current printer. Many properties are only available
after BeginDoc was called.

NewPage Starts a new page. This will save the current page, and clears the canvas for a
new page to be drawn. The Pagenumber property is also augmented with one.

EndDoc Ends the print job, and actually sends the job to the printer.

The last three methods do not accept parameters.

The main properties needed to print something are the following:

Canvas This canvas represents the current page.

PaperSize A class describing the current paper size. Its Papername property can be set
to one of the many common names to set the paper size, such as A4 or Letter.

Orientation This can be set to poPortrait or poLandScape to set the paper orien-
tation.

Copies Contains the number of copies that should be printed.

PageHeight The height of the page in pixels (dots), read-only.

PageWidth The width of the page in pixels (dots), read-only.

PageNumber The current page number, read-only.

Title The print job title, which will show up in the printer queue dialog.

XDPI The horizontal resolution in DPI (Dots Per Inch), read-only.

YDPI The vertical resolution in DPI, read-only.

To select a printer, the PrinterDlgs can be used to create a TPrinterDialog in-
stance. This will show a printer selection dialog, and will allow to set the number of
copies, the paper size and orientation. When the dialog quits, the properties of the standard
Printer instance will reflect what the user has selected in the dialog.

The canvas object is not different from the canvas used in GUI components to draw them-
selves on the screen and has been treated in a previous contribution in this magazine. This
makes it particularly easy to share the same drawing code between the printing and screen
drawing code.

2

4 Basic usage

To demonstrate how to use the printer in Lazarus, a small component will be developed that
can print a directory listing. To show that printing to a page is not different from printing
to a screen, the same routine that is used to print the listing will be used to draw the listing
on the screen - for a preview this is a convenient property of the printing process.

The component has the following (simplified) declaration:

TDirectoryLister = Class(TComponent)
Public

Procedure DrawPage(ACanvas : TCanvas;
APageNo,ALinesPerPage,ADPI : Integer);

Procedure ReadDirectory;
Procedure Execute;
Function GetLinesPerPage(ACanvas : TCanvas;

ACanvasHeight,
ADPI: Integer): Integer;

Function Points(AUnits: Double; ADPI: Integer): Integer;
Property Entries : TDirectoryEntries;

Published
Property Directory : String;
Property Font : TFont;
Property Title : String;
Property Options : TListOptions;
Property TopMargin : Double;
Property BottomMargin : Double;
Property LeftMargin : Double;
Property RighMargin : Double;
Property LineSpacing : Integer;
Property Columns : TDirListColumns Read FColumns Write SetColumns;

end;

The meaning of most of these methods and properties should be intuitively clear, with the
Directory property as the most important : it determines of which directory the con-
tents should be printed. The Entries property is filled by the ReadDirectory with
TDirectoryEntry collection items, one for each file in the directory. The measure-
ments for the margins are in centimeters, while the linespacing is in dots. The list options
is a set of the following values:

TListOption = (loHidden,loDirectory,loSymlinks,
loNumbered,loDrawHeader,loSorted);

The first three values determine what special files should be shown, and the last three
determine whether line numbers should be drawn, whether a header should be drawn above
the columns and lastly whether the directory contents should be printed in an alphabetically
sorted order.

Once all properties are set, the Execute method will do some of the actual work. It is
dissappointingly simple:

procedure TDirectoryLister.Execute;

var
P,PageCount,LinesPerPage : integer;

3

LineHeight : Double;

begin
If Not DoPrinterSetup then Exit;
Printer.Title := ’Directory Listing:’+Directory;
Printer.BeginDoc;
Printer.Canvas.Font := FFont;
ReadDirectory;
LinesPerPage:=GetLinesPerPage(Printer.Canvas,

Printer.PageHeight,
Printer.YDPI);

PageCount := FEntries.Count div LinesPerPage;
if FEntries.Count mod LinesPerPage <> 0 then

Inc(PageCount);
try

for P := 1 to PageCount do
begin
DrawPage(Printer.Canvas,P,LinesPerPage,Printer.YDPI);
if P<>PageCount then

Printer.NewPage;
end;

Printer.EndDoc;
except

on E:Exception do
begin
Printer.Abort;
raise;
end;

end;
end;

It starts by calling the printer setup dialog, and if it was cancelled, the routine exits at once.
After that the printjob title is set, and a new document is started. The font is set, and the
directory contents are read in the ReadDirectory method.

To know how many pages must be printed, the GetLinesPerPage method is called: it
calculates the number of lines per page, depending on the page height and resolution. Once
the number of lines per page is known, the number of needed pages is calculated, and a
loop is started which prints each page: after each page is drawn, the NewPage method is
called to start the next page. Finally, the EndDoc method is called to send the job to the
printer. If an error is detected, then the Abort method of the printer is used to cancel the
current job.

To calculate the number of lines that can be drawn, the GetLinesPerPage routine is
used:

function GetLinesPerPage(ACanvas: TCanvas;
ACanvasHeight,
ADPI : Integer): Integer;

Var
H : Integer;
DPC : Integer;

begin

4

DPC:=Round(ADPI/AnInch);
H := ACanvas.TextHeight(’X’) + LineSpacing;
Result:=Round((ACanvasHeight-DPC*(FTopMargin-FBottomMargin))/H-3);
If FDrawHeader then

Dec(Result,2);
end;

The code shows why the actual canvas is needed to determine the number of lines: the
TextHeight method of TCanvas is used to determine the height of one line. The rest
is simple mathemathics: calculating ratios. The AnInch constant (2.54) is used to convert
centimeters to inches. If a header is requested, then the number of lines is decreased with
2: one for the header text, one to draw a line under the header at half line height.

This kind of routine will be encountered often when printing, as measurements in centime-
ters or inches need to be converted to dots for exact drawing.

The DrawPage routine takes care of the actual drawing, but before this method is exam-
ined, a word should be said on the Columns property. This is a collection of TDirListColumnItem
items, defined as follows:

TDirListContent = (dcLineNumber,dcName,dcTimeStamp,
dcDate,dcTime,dcAttributes);

TDirListColumnItem = Class (TCollectionItem)
public

Function DisplayString(E : TDirectoryEntry) : String;
Published

Property Width : Double;
Property Content : TDirListContent;
Property TimeStampFormat : String;
Property Title : String;

end;

The Columns property of TDirectoryLister contains an item for each column that
should be drawn in the listing: the Content property determines what should be drawn
in the column. The title and width properties speak for themselves (width in centimeters)
and the TimeStampFormat is used to format the datetime/date/time columns.

The DisplayString function will - starting from a TDirectoryEntry instance -
create a string to be displayed. This string can be used in the drawing routine. The drawing
routine does not need to know how this functions in order to draw the listing.

Now the DrawPage method can be examined:

procedure DrawPage(ACanvas : TCanvas;
APageNo, ALinesPerPage, ADPI : Integer);

var
I,J,Min,Max,H,
FMarginX,FCurrentX,FCurrentY : integer;
W : Double;
s: string;
LineNum: integer;
E : TDirectoryEntry;
CC : Boolean;

begin

5

CC:=(FColumns.Count=0);
if cc then

CreateDefaultColumns;
Try

Min:=(Pred(APageNo)*ALinesPerPage)+1;
Max:=(APageNo*ALinesPerPage);
If (Max>=FEntries.Count) then

Max:=FEntries.Count-1;
FCurrentY:=Points(FTopMargin,ADPI);
FMarginX:=Points(FLeftMargin,ADPI);
H:=ACanvas.TextHeight(’X’)+FLineSpacing;
If FDrawHeader then

begin
FCurrentX:=FMarginX;
For J:=0 to FColumns.Count-1 do

begin
S:=FColumns[J].Title;
ACanvas.TextOut(FCurrentX,FCurrentY,S);
W:=FColumns[J].Width;
ACanvas.Line(FCurrentX,

FCurrentY+Round(H*1.5),
FCurrentX+Points(W,ADPI),
FCurrentY+Round(H*1.5));

FCurrentX:=FCurrentX+Points(W,ADPI);
end;

Inc(FCurrentY,H*2);
end;

for I:=Min to Max do
begin
FCurrentX:=FMarginX;
E:=FEntries[I-1];
For J:=0 to FColumns.Count-1 do

begin
S:=FColumns[J].DisplayString(E);
ACanvas.TextOut(FCurrentX,FCurrentY,S);
FCurrentX:=FCurrentX+Points(FColumns[J].Width,ADPI);
end;

Inc(FCurrentY,H);
end;

Finally
If CC then

FColumns.Clear;
end;

end;

If no columns are defined, the routine starts by defining a set of default columns. After that,
the range of entries is determined from the page number, and the starting point on the page
is determined from the margins. If a header was requested, a header is drawn: this simply
loops over the items in the columns property, and draws the title for each item, together
with a line: it updates the X and Y positions as it goes.

After the header is drawn, the real work starts, with a loop over the entries that should be
drawn on the current page. Each entry is again printed using a loop over the columns: the
text to be drawn for each column is fetched using the DisplayString method of the

6

column. Again the current X and Y positions are updated as the loops are executed.

The method ends by destroying the default columns if needed.

Note that the DrawPage did not use any printer-specific methods: it uses just the methods
of the canvas: all other information it needs (DPI, lines per page) it got from the caller.

This makes the method also suitable for drawing the directory listing on a screen canvas:
this can be used for a preview. To demonstrate this, a demonstration program is made that
allows to select a directory (using a standard TDirectoryEdit component), and which
has 2 buttons: BPrint and BDraw. It further has a TPanel instance (PListing),
which will be used to draw the preview in.

The BPrint button has an extremely simple OnClick handler:

procedure TMainForm.BPrintClick(Sender: TObject);
begin

FLister.Directory:=DEDir.Directory;
FLister.Execute;

end;

The FLister variable is an instance of the TDirectoryLister component.

The BDraw button’s OnClick handler is equally simple:

procedure TMainForm.BDrawClick(Sender: TObject);
begin

FLister.Directory:=DEDir.Directory;
FLister.ReadDirectory;
DrawPage(PListing.Canvas,PListing.ClientRect);

end;

It calls the ReadDirectoy method, and then calls the form’s DrawPage method, pass-
ing it the canvas of the PListing panel, with the ClientRect of the panel for the
available space. The DrawPage is also simple:

procedure TMainForm.DrawPage(ACanvas : TCanvas; ARect : TRect);

Var
LPP : Integer;

begin
ACanvas.Brush.Color:=clWindow;
ACanvas.FillRect(ARect);
LPP:=Flister.GetLinesPerPage(ACanvas,

ARect.Bottom-ARect.Top,
Screen.PixelsPerInch);

FLister.DrawPage(ACanvas,1,LPP,Screen.PixelsPerInch);
end;

This looks very much like the Execute method of the TDirectoryLister compo-
nent, with the exception that first, an empty rectangle is drawn on the panel. After that, the
number of lines per page is calculated - using the DPI of the screen - and the DrawPage
method of the TDirectoryLister is called. The result can be seen in figure 1 on
page 8 The routines for actually reading the directory listing and creating the display string
have not been shown: they are not relevant for the understanding of the printing, but the
interested reader can look up the routines in the source code accompagnying this issue.

7

Figure 1: Directory lister in action

5 Reporting

The above has shown that there is nothing difficult about printing on a page: it is no differ-
ent from drawing on a screen. It can of course get tiresome, and if a lot of different data is
to be printed, then an easier method is required: the above example was particularly easy
because it contains only columnar data: if more elaborate layouts are needed, then it soon
becomes quite cumbersome.

Fortunately, Lazarus comes with Lazreport, a reporting engine: it is a port of the FreeReport
engine (an early FastReport version) to Lazarus. This is a banded report designer, which
allows to design a report visually at design time (or at runtime, for that matter), and display
and print the finished report at runtime.

Although primarily oriented towards printing data from databases (using TDataset de-
scendents), it can also be used to print any other data one wishes to feed it. The basic
concept is the same:

• The report consists of one or more designed pages.

• Attached to the report are one or more sources of data. This can be TDataset data,
but also user-generated data.

• Each page contains one or more ’bands’: some bands (e.g. the report title) are printed
only once, others once per page (e.g. page title and footer) and other bands are
printed once for each data record that the data source provides.

• On each band in the report, one or more visual elements are laid out: they are printed
each time the band is printed, in exactly the same position relative to the band’s top-
left corner. Visual elements can be plain text (or formulae), images, lines or other
graphic objects.

8

Figure 2: The report designer

All this can be designed visually, without a single line of code.

A complete description of a reporting engine is beyond the scope of this article, but never-
theless 2 examples will be given to demonstrate how it can be used to print simple reports.

For the first example, the address book demonstration program in lazarus will be enhanced
so it can print a listing of the addresses in the book. To do this, first the Lazreport pack-
age must be installed. When this is done, the LazReport tab appears on the component
palette.

From the component palette, 2 components should be dropped on the main form of the
addrbook project: a TFRReport component, and a TFRDBDataset component. The
first will contain the report definition. The report definition can be stored in a separate file,
but it can also be stored in the lazarus form file: this is easier, since then no additional
files must be distributed with the application. For this, the StoreInDFM property must be
set to True. The TDRDBDataset component must be connected through it’s Dataset
property to the DBA dataset. The DBA dataset must be set to Active to be able to design
the report.

To design the report, the component editor must be used: click right on the report instance,
and select ’Design Report’. The report designer appears as in figure 2 on page 9. The top
area of the report designer looks quite like a word processor: it contains the usual elements
to set the color, font and frame around a text, as well as load save and preview buttons. The
right area contains 2 toolbars, familiar from any GUI designer: to align report elements
vertically and horizontally. Most of these should be quite familiar, all buttons have tooltips
to explain their function.

The left area is the equivalent of the component palette in the Lazarus IDE. Clicking one
of these buttons allows to drop a new report element. The default buttons allow to drop the
following elements in a report:

• A text element. The text can contain formulae, variables and references to database

9

fields.

• A band. Once the band has been dropped on the form, the type of the band must be
chosen.

• An image.

• A subreport: Reports can be nested. The subreport will appear on a new tab, and can
be designed separately.

• A line: various lines can be drawn.

More can be added, but these buttons are standard.

To design an address listing, 2 bands can be dropped on the report: the first is a page header.
This band will be printed on the top of each page. It contains a title, and a column header
for each column of data. To create this band, the band button must be clicked, and then a
click anywhere in the report page is sufficient to drop a new band on the form: once it was
dropped, the type of the band must be chosen.

To design the page title and column titles, the text element (the first) button must be clicked,
and then a click somewhere in the page header band will create the new element. A memo
editor appears in which the desired text can be typed. Repeating this process a couple of
times is sufficient to create all column headers.

To print the address records of the database, a ’Master Data’ band must be dropped on the
report page. Once it is dropped, the report designer will ask which dataset should be used
for this master data report, and will present a list of available datasets - obviously the ’DBA’
dataset should be chosen. On this band, a text element must be dropped for each column
that should be printed. The first column should contain e.g. the following text:

[DBA."FIRSTNAME"] [DBA."LASTNAME"]

The meaning of this text is not hard to guess: everything between square brackets [] is
interpreted as a formula, which the report engine will try to evaluate when the element must
be printed, and the result will be inserted in the text at the location of the formula.

The formula DBA.¨FIRSTNAME¨ means that the value of the field FIRSTNAME from
dataset DBA should be inserted. A second formula with a second field (the last name) is
separated from the first formula by a space: the space will be inserted verbatim in the text.
The result of all this is that the first name will be followed by the last name, separated by a
space.

Special formulas can be made, for instance

[PAGE#]

can be used to insert a page number (in fact, a page footer band is inserted in the report
with this formula on it). The result of all this should look like figure 3 on page 11. The
finished report can be printed or shown on the screen with a few lines of code. To do this,
2 menu items are added to the ’File’ menu: one to preview, one to print the report:

procedure TMainForm.MIPreviewClick(Sender: TObject);
begin

If FRReport1.PrepareReport then
FRReport1.ShowPreparedReport;

end;

procedure TMainForm.MenuItem1Click(Sender: TObject);

10

Figure 3: The finished report

begin
If FRReport1.PrepareReport then

FRReport1.PrintPreparedReport(’’,1);
end;

Both event handlers start by calling PrepareReport: this will build the report in mem-
ory, and will return True if the report was prepared succesfully. The ShowPreparedReport
will show a preview window which can be used to preview the report before printing. The
PrintPreparedReport call takes 2 arguments: a string describing the pages to be
printed, and a number of copies to be printed. An empty string means that all pages should
be printed. An example of a more complicated string is

1,2,6-10

This will print pages 1,2 and 6 till 10. Pressing the ’Preview’ menu will result in the report
shown in figure 4 on page 12. It is possible to let the user edit the report. Allowing this
has the advantage that small changes to a report (adding a logo, changing the font) can
be done by the end user, and does not need to be programmed by the programmer. To do
this, a TFrDesigner component must be dropped on the main form of the address book
example, and a ’Design’ menu item can be added to the menu. The OnClick handler of
this menu item is as simple as can be:

procedure TMainForm.MIDesignClick(Sender: TObject);
begin

FRReport1.DesignReport;
end;

The user can design and save the report to file. To print the changed report, the changed
file must be loaded from file and then printed - which is automatic if the report stored as
file and not in the .DFM file.

11

Figure 4: The report on screen

12

6 Custom reporting

Despite the fact that the reporting engine is geared towards printing data from datasets, it
is perfectly suitable for printing any data one wishes to feed to it: it can be perfectly used
to print a directory listing, as in the first example.

To show this, we’ll demonstrate how to print the contents of a listview control that shows
the contents of a directory. The example program uses the same TDirectoryEntries
collection as the directory listing: an instance of this collection is created when the main
form is created:

procedure TMainForm.FormCreate(Sender: TObject);
begin

FEntries:=TDirectoryEntries.Create(TDirectoryEntry);
DEMain.Directory:=ExtractFilePath(Paramstr(0));

end;

On the form, a TDirectoryEdit and a TButton are dropped, as well as some check-
boxes to determine whether hidden files and directories should be shown as well. In the
OnClick handler of the button, the following code is executed:

procedure TMainForm.BreadClick(Sender: TObject);
begin

FCurrentDirectory:=DEMain.Directory;
ReadDirectory;
ShowDirectory;

end;

The ReadDirectory is the same routine as used by the TDirectoryLister com-
ponent, and will not be shown here. The ShowDirectory copies the contents of the
collection to the listview:

procedure TMainForm.ShowDirectory;

Var
L : TListItem;
I : integer;
S : String;

begin
With LVDirectory do

begin
BeginUpdate;
try

Items.Clear;
For I:=0 to FEntries.Count-1 do

begin
L:=LVDirectory.Items.Add;
L.Caption:=FEntries[i].FileName;
S:=FormatDateTime(’yyyy/mm/dd’,FEntries[I].FTimeStamp);
L.SubItems.Add(S);
S:=FormatDateTime(’hh:nn:ss’,FEntries[I].FTimeStamp);
L.SubItems.Add(S);
L.SubItems.Add(FEntries[I].AttributeString);
L.Data:=FEntries[i];

13

end;
finally

EndUpdate;
end;
end;

end;

There is little mysterious about this code, it just loops over the items in the collection and
copies the data to the listview. As can be seen, the listview has 4 columns: one for the
filename, file date, file time and attributes.

To print the contents of the listview, a TFRUserDataset is used. It has 3 events, which
it uses to emulate a loop (through an imaginary dataset).

OnFirst Is called to position the loop variable on the initial value (or the dataset on the
first record).

OnNext Is called to position the loop variable on the next value (or the dataset on the next
record).

OnCheckEOF Is called to see if the end of the loop is reached. This is called quite often
- in fact, twice as much as OnNext is called.

This can be used to emulate a dataset from the listview: a loop variable is introduced, which
denotes the current item in the list. In the 3 events, the following code is executed:

procedure TMainForm.DirDataFirst(Sender: TObject);
begin

FCurrentItem:=0;
end;

procedure TMainForm.DirDataNext(Sender: TObject);
begin

Inc(FCurrentItem);
end;

procedure TMainForm.DirDataCheckEOF(Sender: TObject; var Eof: Boolean);
begin

EOF:=(FCurrentItem>=LVDirectory.Items.Count-1);
end;

It should be quite clear that this emulates a loop over all items in the listview.

To retrieve the data from the listview, the OnGetValue event handler of TFRReport
is used. This event handler is called whenever the reporting engine encounters a variable
or data field that it does not know or find in the attached datasets. In the case of the di-
rectory listing, this can be used to introduce 5 variables: DirectoryName, FileName,
FileDate, FileTime and FileAttributes. They correspond to the 4 columns of
the list view, and the name of the current directory. The OnGetValue event handler can
then be coded as follows:

procedure TMainForm.FRDirListGetValue(const ParName: String;
var ParValue: Variant);

Var
L : TListItem;

14

begin
L:=LVDirectory.Items[FCurrentItem];
If (ParName=’DirectoryName’) then

ParValue:=FCurrentDirectory
else if (ParName=’FileName’) then

Parvalue:=L.Caption
else if (ParName=’FileDate’) then

Parvalue:=L.SubItems[0]
else if (ParName=’FileTime’) then

ParValue:=L.SubItems[1]
else if (ParName=’FileAttributes’) then

ParValue:=L.SubItems[2];
end;

First, the ’Current record’ is retrieved from the ListView component, using the FCurrentItem
variable. After that, the name of the requested variable is examined, and the correct ’field
value’ is returned.

All that is left to do is to design the report. This is quite trivial. For each of the 4 columns
in the report, a formula of the form

[FileName]

is used - obviously ’Filename’ must be replaced with the correct value for each column.
The page title formula is something like

Directory listing of [DirectoryName]

Adding some column titles is trivial, and the result of all this code can be seen in fig-
ure 5 on page 16. Obviously, this report could haven been created without the use of
the TListView, directly from the TDirectoryEntries collection. This is a trivial
change, and is left as an exercise for the reader.

Note that since there is no real data available at design time, it is not possible to preview the
report in the IDE. This can be remedied by designing the report in the running application,
save it to disk and then load the saved file in the report in the IDE.

7 Conclusion

Hopefully, this article has shown that it is easy to print documents in Lazarus. For very
simple layouts that need little change, the document can be easily drawn on the printer
canvas. For more complex layouts, or prints that the user may want to change, the use
of the LazReport reporting engine is recommended, even if no datasets are used in the
application.

15

Figure 5: The directory list report in action

16

	Introduction
	Installation
	Basic classes
	Basic usage
	Reporting
	Custom reporting
	Conclusion

