Porting to Lazarus 2: Applications

Michaél Van Canneyt

June 24, 2007

Abstract

Since the last article, Lazarus has made big leaps of progress. On linux or BSD,
it has become a stable development environment. On Windows, the IDE has become
fully usable, and the most recent victory is the appearance of Lazarus on Mac OS X. In
this second article on porting to Lazarus, 2 small Delphi applications will be ported to
Lazarus: one that deals with graphics, the other one deals with Database access.

1 Introduction

In the previous article, porting of components written for Delphi to lazarus was discussed.
In this article, the porting of programs will be discussed. Applications come in many
flavours: from networking applications over graphics to Database applications. Or all com-
bined. It require more pages than available in an issue of Toolbox to cover all ranges, so 2
small sample applications will be converted. Since not all application areas are supported
equally well in Lazarus, some applications will port easier than others.

The first application is a small picture viewing application, designed to browse quickly
through large collections of pictures: imagine a school, looking for a picture of one of its
students on the CD-Rom, delivered by the photographer.

The second application is a small address databook. It saves all addresses in a single DBase
file. The strength of this application lies not in it’s usefullness, but in the fact that it shows
that database applications can be ported (or built) and that components, written for Delphi,
can be ported to Lazarus quite easily: the TDBF component is used.

2 Lazarus IDE tools

The lazarus IDE features 2 menu items, designed specially for the porting of Delphi pro-
grams or units to Lazarus. Both are located under the "Tools” menu:

Convert DFM file to LFM This will take a Delphi .dfm form file and convert it to a
lazarus (.Ifm) file and the corresponding .Irs resource file. The unit file is not touched.

Convert Delphi unit to Lazarus unit This does the same as the previous point, but addi-
tionally changes the unit file: it includes the resource file in the initialization section
of the unit file, and removes some units in the unit clause, while adding some others
(Iresources, among others).

The form must be in text format, not in binary format. To save the file in text format (in
Delphi 5 and higher), it is sufficient to use the popup menu in the Delphi form designer,
and check the *Text dfm’ menu item, and then saving the file.

Figure 1: The lazarus project inspector

e i

. Project Inspector - imgview = F|F|

B Files
@ frmmain.pas
L Ejimguiew.lpr
& Required Packages
L LCL =10
-0 JPEGFarLazarus
-, AddToProjectDialog =

Lazarus will remove unknown properties from the form file when loading it. It will dis-
play an error message, saying that unknown properties are encountered, but these can be
dismissed with the "Ignore’ button.

3 Starting a port

To start a port, the best thing is to start a new project, and ‘import’ each unit in the new
project. Lazarus does not use the Delphi project file as Delphi does: All project settings
are not stored in the .lpr file (as delphi does in the .dpr file), but are stored in the project
information (.Ipi) file. Starting a new project makes sure that a .Ipi file is created.

Any common units can be added in the ’Project inspector’. This dialog can be opened
with the menuProject/Project Inspector menu: In it, project files and dependencies can be
viewed and changed. To add a unit to the project, it must be opened in the source editor,
and can then be added to the project using the *Add’ button in the project inspector, as
shown in figure[T|on page[2] The dialog will show a list of editor files, one of which can be
added to the project.

To add a Delphi form file to the new project, the following steps can be taken:
1. The file should be copied to the project directory.
2. The *Convert Delphi unit to Lazarus unit’ menu can be used to convert the unit.

3. Lazarus will open the unit in the source editor.

4. The ’Add’ button in the project inspector can be used to add the unit to the project.

After this, any compilation issues must of course still be dealt with.

4 A small graphical application

To demonstrate the above, a small graphical application will be ported from Delphi. It
is a simple application, which allows to browse large collections of pictures in various
directories: It maintains a list of pictures in a listbox at the left of the window, and the
remainder of the window is used to show the currently selected picture.

There are some menu items to add files to the list: Single files can be selected, the contents
of whole directories can be added, with the possibility to add the contents of subdirectories
recursively. These options are available from the command-line as well.

Navigation can be done by selecting images from the filelist, but there are shortcuts to jump
to the next or previous image, and to the next or previous directory in the list. Finally, the
image size can be doubled or halved.

The sources are quite simple: A single form, containing a listbox for the filelist, a splitter
to resize the filelist and an image component. A toolbar and menu complete the form.
All toolbar buttons and menu items are connected to an Action: Most event handlers are
connected to the actions.

The steps as outlined above were executed:

1. A new project was started: imgview and saved in a new directory. Lazarus added a
new form file, it was saved too, and kept.

2. The main form file from the Delphi project was copied to the new project directory.

3. The ’Convert Delphi unit to Lazarus unit’ was used on the copied file. Lazarus
opened the file in the editor. It was promptly saved.

4. The project inspector was used to add the new form to the project and to remove the
form, created by lazarus, from the project.

5. Finally, in the project options, the newly added form was added to the list of forms
which should be ’ Auto-created’.

After this, compilation of the project was attempted. The first error came from the Uses
clause in the implementation section:

uses filectrl, jpeg;

The jpeg unit is needed for JPEG support in Delphi. In Lazarus, this unit is called ’lazjpeg’
and resides in the standard delivered (but not installed) ’jpegforlazarus’ package. So the
unit was added to the uses clause, and the ’jpegforlazarus’ package was added to the
project dependencies in the project inspector: Doing this ensures that the lazjpeg unit can
be found by the compiler: The lazarus IDE will automatically add the necessary directories
to the compiler’s unit search path.

After this, a second compilation was attempted: This time, the compiler complained about
the following form key handling method:

procedure TMainForm.FormKeyDown (Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
if (shift=[ssShift]) or (shift=[ssAlt]) then
begin
if (key=VK_Prior) then
begin
RescaleImage (2.0);
Key:=0;
end
else if (key=VK_Next) then
begin
RescaleImage (0.5);
Key:=0;
end
end;

The VK_PRIOR constant was unknown. The virtual key constants are in the LCLTypes
unit, so this unit was added to the Uses clause. No dependency must be added, since
this unit is part of the LCL (Lazarus Class Library) and all Lazarus projects automatically
depend on it.

After this minor change, all compiled without a glitch. The application could be started
and used - partially.

To get complete succes, there were only 2 quircks in this process which had to be fixed:

1. The images in the imagelist were correctly converted, but after the project was saved
and re-opened in Lazarus, they were corrupted somehow. Reloading the images from
their original bitmaps solved this problem.

2. The Listbox in Lazarus does not respond to the up and down arrow keys as in Delphi:
the OnClick event handler is not triggered. The solution to this was to add the
following code in to the FormKeyDown method:

else if (shift=[]) then
begin
if Key=VK_UP then
Previousimage
else if Key=VK_DOWN then
NextImage;
end;

As can be seen, this simply handles the up and down keys and calls the existing
PreviousImage and Next Image methods.

After this change, the application worked 100process took less than 20 minutes. The result
can be seen in figure ?? on page ??.

S A small Database application: Addressbook

The graphical application was deceptively simple to convert. Sometimes a bit more work is
needed. To demonstrate this, a small address book application was converted from Delphi
to Lazarus. The application was developed specially for this purpose: it is not particularly
useful in itself, it was made to make a point. The application allows to manage some DBase
files which contain a list of addresses. It was kept quite simple, adding just some standard

Figure 2: The imgview program running on Linux

Figure 3: imgview

File Image

FEIEEEEIEEES

™ T =TI
her/paintings/paintings_002.jpy
her/paintings/paintings_003.jpg
her/paintings/paintings_004.jpy
her/paintings/paintings_005.jpg
her/paintings/paintings_006.jpg
her/paintings/paintings_007 jpy
her/paintings/paintings_006.jpg
hetipaintings/paintings_003,

her/paintings/paintings_011.jpg
her/paintings/paintings_01 2.jpy
her/paintings/paintings_013 jpg
het/paintings/paintings_014.jpy
floppy her/paintings/paintings_015.jpy
her/paintings/paintings_016.jpg
her/paintings/paintings_01 7 jpy
her/paintings/paintings_016 jpg
her/paintings/paintings_019.jpg
her/paintings/paintings_020.jpy
herpaintings/paintings_021 jpg
her/paintings/paintings_022.jpy
her/paintings/paintings_023.jpy
y[FEERliher/paintings/paintings_024.jpg
Sl et painting s/paintings_025.jpg
her/paintings/paintings_026 jpg
het/paintings/paintings_027 jpy
her/paintings/paintings_028.jpy

[MET

[TDesigner .Notification]l opRemoue ScrollBoxl:TScrollBox
TCustomFormEditor.DeleteControl TPanel FALSE

[TDesigner .Notification] opRemove FImage:TPanel
TCustomFornEditor .DeleteControl TListBox FALSE

[TDesigner .Notification]l opRemoue LBFiles:TListBox

Russian x-term TCustonFornEditor .DeleteControl TToolButton FALSE
[TDesigner .Notification] opRemove ToolButton3:TToolButton
TCustomFornEditor .DeleteControl TToolButton FALSE

o ML 2RI 4l 1 T RTMI_IACI__.mm__ITL.dd_ .

TDataset actions, which provide an easy way to add shortcuts to the program. The use
of persistent fields was avoided, as the TDat aset implementation of Free Pascal does not
yet support them.

The addressbook application uses the Delphi TDBF component to create and manage the
DBase files. This component is written 100does not need any external libraries such as the
BDE, and is freely available from SourceForge:

http://tdbf.sourceforge.net/

The component also works with Free Pascal, and is distributed in the FCL (Free Component
Library) that ships with Free Pascal. In fact, the man who is currently maintaining TDBF
(Micha Nelissen) is also active in the Lazarus team.

The TDBF component is not available by default in Lazarus. The filetdbf folder in the
components folder of Lazarus contains the "'DBFLaz’ package. This package must be
installed in order to get the TDBF component on the component palette, under the *Data
Access’ tab. To install it, the dbflaz.lpk’ file must be opened in the Lazarus IDE. When the
’Install’ button in the package editor is pressed, the IDE will propose to recompile itself.
After a succesful compile, the IDE can be restarted, and the TDBF component will be on
the component palette.

Converting the application proved to be not so easy as the graphical application. Lazarus
does not know the standard TDataset actions (in unit DBActns) and this, together with
some of the unknown properties crashed the Lazarus IDE when attempting to convert the
Delphi unit to a Lazarus unit.

Therefore the Delphi form file was first edited by hand, and the following *unknown’ prop-
erties were removed:

TDBGrid.TitleFont
TColumn.Expanded
TForm.OldCreateOrder

TPanel.DesignSize

As each property is on a line by itself in the Delpi form file, this was an easy task: All lines
with an unknown property were simply removed using a simple text editor.

After this, the class references to the following standard dataset actions were changed to a
simple "TAction’:

TDataSetFirst
TDataSetPrior
TDataSetNext
TDataSetLast
TDataSetInsert
TDataSetDelete
TDataSetEdit
TDataSetPost
TDataSetCancel

TDataSetRefresh

After removing the unknown properties and renaming the classes, the form loads properly
in the Lazarus IDE.

To be able to compile the program, some editing of the unit was necessary: The form
declaration contained published fields of the form:

AFirst: TDataSetFirst;
APrior: TDataSetPrior;
ANext: TDataSetNext;
ALast: TDataSetLast;

These are the declarations of the various dataset actions. Since the actions are unknown in
the LCL they must be replaced with standard actions. To do this, a small trick was used.
The following code was inserted just before the declaration of the main form:

type
TDataSetFirst = TAction;
TDataSetPrior = TAction;

TDataSetNext = TAction;
TDataSetLast = TAction;
TDataSetInsert = TAction;
TDataSetDelete = TAction;
TDataSetEdit = TAction;
TDataSetPost = TAction;
TDataSetCancel = TAction;
TDataSetRefresh = TAction;

This satisfied the compiler, and made the form compile, and the program could be started.
Unfortunately, the Actions don’t work properly. This is logical, since the standard dataset
actions do all the work themselves. So the ’OnUpdate’ and OnExecute’ actions must be
implemented specifically.

There are 2 kinds of actions: actions for navigation, actions for editing. The actions which
perform navigational tasks should be enabled when the Dataset to which they are con-
nected, is active. To do this, the ’OnUpdate’ event of these actions is connected to the
following DataOpen’ event:

procedure TMainForm.DataOpen (Sender: TObject);
begin
With DBA do
(Sender as Taction) .Enabled:=Active;
end;

In this method, DBA is the TDBF component. The varOnUpdate handler of the TDataSetFirst,
TDataSetPrior, TDataSetNext, TDataSetLast and TDataSetRefresh actions
should be connected to this method. The TDataSet Insert action was also connected

to this method: Inserting is possible as soon as the dataset is open.

The TDatasetEdit action should be enabled when the dataset is open, and there is data
present. Therefore, itss OnUpdate handler is connected to the following method:

procedure TMainForm.HaveDataNotEmpty (Sender: TObject);
begin
With DBA do

(Sender as Taction) .Enabled:=Active and Not (EOF and BOF) ;
end;

Finally, the TDatasetPost and TDatasetCancel methods should only be active
when the dataset is active and in edit mode. This is checked in the InEditMode pro-
cedure:

procedure TMainForm.InEditMode (Sender: TObject);
begin
With DBA do
(Sender As Taction) .EnAbled:=State in dsEditModes;
end;

Now that the actions have an OnUpdate handler, they still need an OnExecute handler.
Here, a different approach is taken: Each of the actions gets a unique value for their Tag
property, and they are all connected to the DoDataAction:

procedure TMainForm.DoDataAction (Sender: TObject);
begin
Case (Sender as TAction).Tag of

0 : DBA.First;

DBA.Prior;

DBA.Next;

DBA.Last;

DBA.Insert;

DBA.Delete;

DBA.Edit;

DBA.Post;

DBA.Cancel;

DBA.Refresh;

W 0 J o U b Wb

end;
end;

The value of the Tag property is used to decide what action to take.

After this change, the application compiles and runs as it was when compiled in Delphi.
The result can be seen in figure @ on page 9]

6 Conclusion

Porting Delphi applications to Lazarus has definitely become an option for simple desktop
applications. If the requirements are not too high or specialized, then chances are that
porting to Lazarus is not too difficult. Of course, not all areas of application development
have been covered in this article: network programming has not been treated yet, although
there is a version of the Indy components which works with Free Pascal, and the Synapse
component set works under FPC as well. Also more evolved database programming (like
dbExpress or DataSnap) is not yet available. Web programming in Lazarus is possible, but
not nearly at the level of Delphi. These issues will be solved in time: In a forthcoming
contribution, Web programming will be discussed. Other areas where Lazarus has made
some innovations will prove intesting subjects for contributions to Toolbox as well.

Figure 4: The addressbook program in action

[=] a o (= E]] 2y

*"A‘ddressboo‘k <2>85 ﬂﬁ

\/an Canneyt Iichael

Vega

Gemeentestraat 163 |B-3010 Kessel-Lo Belgium

Mulholland drive

Los Angeles |USA

7 Main road

Los Angeles

[->', FcanBrowse) ;

yc_cxpunged fron folder "INBOX"]
ged fro d of

s > 1

	Introduction
	Lazarus IDE tools
	Starting a port
	A small graphical application
	A small Database application: Addressbook
	Conclusion

