
Extending the Lazarus IDE:

Custom forms and units

Michaël Van Canneyt

July 29, 2005

Abstract

This article explores new ways to extend the 'New' dialog in the Lazarus
IDE. It shows how to add custom form classes to the IDE, and how the 'New'
dialog can be divided in categories. But it starts by o�ering a new (and
simpler) way to create a project from a template, which was discussed in a
previous article.

1 Introduction

In a previous article, it was shown how to use the various interfaces in the Lazarus
IDE to implement project templates. The code was written so it would show as
much of the IDE interfaces as possible. In this article, it will be shown how the
same functionality can be achieved with less code by using a simple call in the IDE.
Indeed, the call was actually trivially extended by the Lazarus maintainers based
on a suggestion by the author while writing the previous article, thus showing once
more one of the major advantages of Open Source projects: instant reaction on
suggestions and bug reports.

As a second item, an alternate way to present the templates will be discussed: The
New dialog can be divided in categories. A new category 'Template Projects' will be
created, and the various templates will be presented as 'New' items in that category.

Last but not least, it will be shown how it is possible to add custom properties
to a TForm descendant, which can be used as a base for new forms, allowing the
developer to manipulate these new properties.

This article is a continuation of a previous article, it may be necessary to reread
the previous article to re-familiarize with the concepts introduced there. The code
of the previous article is present on the disk (and the text of the article as well, in
PDF format).
Joerg, is this possible ? if not, remove the last part of this sentence.

2 The template projects wizard revisited

In the previous article, it was shown how to implement template projects: Create
a new project, based on a copy of an existing project, with automatic variable
expansion. To do this, 2 classes were needed:

\item[TTemplateProjectDescriptor] a descendent from

\var{TProjectDescriptor}, which tells the IDE how to start a new template

1

project.

\item[TProjectFileDesc] a descendent of \var{TProjectFileDescriptor}, which

tells the IDE how to create the various files, present in the template. For

each file in the template, an instance of \var{TProjectFileDesc} was

created.

After some discussion with one of the Lazarus maintainers, it became clear that a
trivial enhancement to an existing lazarus call, made the whole TProjectFileDesc
class super�uous.

The DoOpenEditorFile call of the TLazIDEInterface can be used to open a �le
on disk, and add it to the project. This call is de�ned as follows:

function DoOpenEditorFile(AFileName:string;

PageIndex: integer;

Flags: TOpenFlags): TModalResult;

The meaning of the AFileName parameter should be obvious. The PageIndex tells
the IDE on what editor page it should open the �le, but is commonly set to -1, to
indicate that a new page must be created. The Flags is one or more of the following
�ags:

ofProjectLoading the �le is opened as part of opening a whole project.

ofOnlyIfExists Do not create an empty �le if the �le does not exist.

ofRevert Reload the �le if it is already open in the IDE.

ofQuiet Display less messages

ofAddToRecent add the �lename to recent �les

ofRegularFile open as a regular �le (a unit).

ofConvertMacros replace macros in �lename

ofUseCache do not update �le from disk if the �le is in the �le cache.

ofMultiOpen Can be set during loading of multiple �les, for speed readons.

ofDoNotLoadResource do not open an associated form �le.

ofAddToProject Add the �le to the current project (if it exists)

The last �ag is what is needed to simplify the template project descriptor.

As explained in the previous article, when a new project is started, the CreateStartFiles
function is called to create any initial �les belonging to the project. This function
was previously implented using a TProjectFileDesc class, but can now be imple-
mented much simpler using the DoOpenEditorFile call:

Function CreateStartFiles(AProject: TLazProject): TModalresult;

Var

I : Integer;

E,FN : String;

begin

if Assigned(FTemplate) then

2

begin

Result:=mrOK;

For I:=0 to FTemplate.FileCount-1 do

begin

FN:=FTemplate.FileNames[I];

E:=ExtractFileExt(FN);

If (CompareText(E,'.lpr')<>0)

and (CompareText(E,'.lfm')<>0) then

begin

FN:=FProjectDirectory+FTemplate.TargetFileName(FN,FVariables);

LazarusIDE.DoOpenEditorFile(FN,-1,[ofAddToProject]);

end;

end;

end

else

Result:=mrCancel;

end;

The FTemplate is searched for all �les it contains, and all pascal source �les are
simply added to the project using the DoOpenEditorFile call. Any associated .lrs

or .lfm �les will be detected by the IDE and loaded as well.

When using the TProjectFileDesc class, the new project �les were created in
code by reading the template �les, expanding any variables found, and passing the
resulting source text directly to the IDE.

When using the DoOpenEditorFile call, the �les must be present on disk. This
means that all the �les in the template must have been copied already before the
call to CreateStartFiles. The correct place to copy the template �les is when the
project descriptor is initialized, after the user has provided all needed information,
in the DoInitDescriptor call:

function TTemplateProjectDescriptor.DoInitDescriptor: TModalResult;

begin

InitTemplates;

Result:=ShowOptionsDialog;

If (Result=mrOK) and (FVariables.Count<>0) then

Result:=ShowVariableDialog;

If (Result=mrOK) then

begin

FVariables.Values['ProjName']:=FProjectName;

FVariables.Values['ProjDir']:=FProjectDirectory;

FTemplate.CreateProject(FProjectDirectory,FVariables);

end;

end;

As explained in the previous article, the CreateProject call from the TTemplate

class will copy all �les to the indicated directory.

After these little changes, there is no more need for the TProjectFileDesc class,
and it can be removed from the unit altogether.

3

3 Creating item categories

The lazarus 'File|New' dialog contains by default 3 categories:

File Any �le descriptor registered with the RegisterFileDescriptor will be placed
under this category.

Project Any project �le descriptor registered with the RegisterProjectDescriptor
call will be placed under this category.

Package Any package �le descriptor RegisterPackageDescriptor will be placed un-
der this category.

To understand how the IDE places a �le descriptor in the IDE menu, we can examine
the RegisterFileDescriptor call:

procedure RegisterProjectFileDescriptor

(FileDesc: TProjectFileDescriptor);

var

NewItemFile: TNewItemProjectFile;

begin

ProjectFileDescriptors.RegisterFileDescriptor(FileDesc);

if FileDesc.VisibleInNewDialog then

begin

NewItemFile:=TNewItemProjectFile.Create(FileDesc.Name,

niifCopy,

[niifCopy]);

NewItemFile.Descriptor:=FileDesc;

RegisterNewDialogItem(FileDescGroupName,NewItemFile);

end;

end;

All items in the 'New' dialog are described using a TNewIDEItemTemplate class,
described in the newitemintf unit. The TNewItemProjectFile class used above is a
descendent of this class.

So the IDE actually uses 4 kinds of classes to manage the File|New menu:

1. File description classes, which describe the contents of a �le to be generated.

2. Project descriptions classes, which describe how to generate a new project.

3. A class which creates the visual representation of the description classes in
the New dialog (TNewIDEItemTemplate).

4. A category class which helps in creating the visual representation. (TNewIDEItemCategories).

The former 2 classes are part of the projectintf unit, the latter two are part of the
newitemintf unit. The details of these classes are not really important, they serve
mainly as data storage. The classes are visualized in �gure 1 on page 5

Adding a new category is done with the RegisterNewItemCategory call:

rocedure RegisterNewItemCategory(const ACategory: String);

begin

NewIdeItems.Add(ACategory);

end;

4

Figure 1: The 4 IDE classes for adding custom �les

This will create a new TNewIDEItemCategories instance, and add it to the list of
categories.

The list of 'File|New' commands is maintained in the NewIDEItems instance in
the newitemintf unit. The RegisterNewDialogItem call adds a new item to this
list:

procedure RegisterNewDialogItem(const Paths: string;

NewItem: TNewIDEItemTemplate);

begin

NewIDEItems.RegisterItem(Paths,NewItem);

end;

The Paths string describes the category in which the new item is added. This is
simply the name of the category (later, a hierarchical notion may be introduced).
The RegisterItem simply looks for the category named Paths and attaches the
NewItem instance to it.

So, when enhancing the 'File|New' dialog, 2 things must be done:

1. Create a category with the RegisterNewItemCategory call.

2. Register project or �le descriptor items in this category with the RegisterProjectFileDescriptor
or RegisterProjectDescriptor calls.

4 Reorganizing the templates

In the �rst version of the Template projects package, there was a single item
under the 'Projects' category: 'Template projects'. After this item was chosen,
a dialog was presented in which a template could be chosen. After the template
was chosen, a dialog was presented which allowed to supply values for additional
variables.

Using categories, it is possible to reorganize this: A 'Template Projects' category
is made in the 'New' dialog, and the available templates will be presented as items
below this category. The result should look something like in �gure 2 on page 6.

To do this, the templates must be reorganized a bit. First of all, when the IDE
starts, the available templates must be scanned, so they can be registered directly
in the IDE. The best place to do this is in the Register procedure of the package:

Const

STemplateCategory = 'Template projects';

5

Figure 2: The reworked 'New' dialog

procedure Register;

Var

I : Integer;

D : String;

begin

D:=GetTemplateDir;

IDETemplates:=TProjectTemplates.Create(D);

RegisterNewItemCategory(STemplateCategory);

For I:=0 to IDETemplates.Count-1 do

RegisterTemplateProject(IDETemplates[i]);

end;

After the templates are registered, a new category is registered. Then, for each avail-
able IDE template, a project descriptor is registered using the RegisterTemplateProject
call:

procedure RegisterTemplateProject(ATemplate : TProjectTemplate);

var

ProjDesc: TTemplateProjectDescriptor;

begin

ProjDesc:=TTemplateProjectDescriptor.Create(Atemplate);

RegisterProjectDescriptor(ProjDesc,STemplateCategory);

end;

For each project template, a separate instance of the project descriptor TTemplateProjectDescriptor
is created. It is then registered with the standard RegisterProjectDescriptor call
under the correct category.

6

Figure 3: The reworked 'Template project options' dialog

The TTemplateProjectDescriptor class, introduced previously, needs some changes:
it no longer needs to o�er the user a list of templates, instead, the template is passed
to it when it is created:

onstructor TTemplateProjectDescriptor.Create(ATemplate : TProjectTemplate);

begin

inherited Create;

FTemplate:=ATemplate;

Name:=FTemplate.Name

FVariables:=TStringList.Create;

end;

An instance to the tempate is saved, and the name of the descriptor is set to the
name of the template, so it will be displayed correctly in the 'New' dialog.

When the descriptor is initialized, only one dialog needs to be shown, where the
name of the new project is chosen, the directory where to create the project, and
the variables that need to be subsituted. The dialog looks like �gure 3 on page 7.
The new DoInitDescriptor function looks like this:

function TTemplateProjectDescriptor.DoInitDescriptor: TModalResult;

begin

Result:=ShowOptionsDialog;

If (Result=mrOK) then

FTemplate.CreateProject(FProjectDirectory,FVariables);

end;

Which is much more simple than the version presented earlier in the article. The
ShowOptionsDialog function is omitted. The interested reader can consult the
source code that comes with this article.

7

5 Custom Forms

The �le descriptors can also be used to register custom classes with the IDE. In
principle, any TPersistent descendent (a class with RTTI) can be rehistered in
the 'New' dialog. Of course, the IDE only knows how to display a TDataModule

descendent or a TCustomForm descendent.

There are several reasons for wanting to create a custom form. One reason is to
add additional behaviour to the all forms that should be created in an application
, the other is to add or remove some of the published properties of TForm.

Now, to register a custom form, a TProjectFileDescriptor descendent class must
be made. Lazarus already implements 2 descendents of this class, which are almost
suitable for this purpose.

The �rst of these classes is TFileDescPascalUnit. It overrides the CreateSource
method to create an empty unit. The form of the unit is controlled by the following
cirtual methods:

function GetInterfaceUsesSection: string;

function GetInterfaceSource(const Filename, SourceName;

ResourceName: string): string;

function GetImplementationSource(const Filename, SourceName,

ResourceName: string): string;

The meaning of these functions should be clear:

InterfaceUsesSection This function should return a string with the units that
should go in the Interface Uses clause (it returns the Classes and SysUtils

units by default).

GetInterfaceSource This function should return any other code that goes in the
interface section. The parameters to this function should be obvious.

GetImplementationSource This method does the same as the previous one, but
for the implementation section of the unit.

By default, both these methods return the empty string, i.e. no actual source is
present. This class is used to create a new, empty, unit.

The second class can be used when generating units that need a form �le: TFileDescPascalUnitWithResource.
This descendent from TFileDescPascalUnit overrides some of the methods:

GetInterfaceSource This function will return an empty class declaration, using
the resourcename for the class name.

GetImplementationSource Here the include statement for the lazarus .lrs re-
source �le is generated.

It should be obvious that the last class is suitable for registration of custom forms.
To do this, one needs to implement a descendent of this �le descriptor, which returns
suitable information for the 'New' dialog:

1. Return a nice name to show in the 'New' dialog.

2. Return a nice description to show in the 'New' dialog.

3. Add the unit where the custom form is implemented to the source of the
generated unit.

8

4. Return the correct class which the Lazarus IDE must create when editing an
instance of this form class (Lazarus needs to retrieve the RTTI information
of this class).

As this is rather cumbersome, a unit is implemented which takes care of the details.
It exposes 3 calls:

Procedure RegisterCustomForm(AFormClass : TCustomFormClass;

Const AUnitName : String);

Procedure RegisterCustomForm(AFormClass : TCustomFormClass);

Procedure RegisterCustomForm(Descr : TCustomFormDescr);

The �rst of these calls needs only the form class pointer to register the form in the
IDE, plus the name of the unit in which the class is implemented. The second call
constructs the unit name by stripping the initial 'T' from the form class name.

The third call allows to specify more options. It accepts a small descriptor class as
an argument:

TCustomFormDescr=Class

public

Constructor Create(AFormClass : TCustomFormClass);

Constructor Create(AFormClass : TCustomFormClass;

ACaption,ADescription,AUnit : String);

Property FormClass : TCustomFormClass;

Property Caption : String;

Property Description : String;

Property UnitName : String;

Property Category : String;

Property Author : String;

end;

The properties of this class are used to register the custom form class in the IDE.
The caption is used in the 'New' dialog to represent the form class, the description
and author are shown when this form is selected. The category is the category under
which the item is shown in the 'New' dialog, by default this is 'Custom Forms'. The
constructor of this class will �ll in some default values for the variour properties,
based on the AFormClass class name.

To register a form using this class, one would simply code:

RegisterCustomForm(TCustomFormDescr.Create(TMyForm,

MyCaption,

MyDescription,

MyUnit));

Which is in fact what the other two overloaded versions of this call do:

Procedure RegisterCustomForm(AFormClass : TCustomFormClass);

begin

RegisterCustomForm(TCustomFormDescr.Create(AFormClass));

end;

Procedure RegisterCustomForm(AFormClass : TCustomFormClass;

9

Const AUnitName : String);

Var

D : TCustomFormDescr;

begin

D:=TCustomFormDescr.Create(AFormClass);

D.UnitName:=AUnitName;

RegisterCustomForm(D);

end;

There is no need to free the description class, the custforms implementation will do
this.

The main RegisterCustomForm call simply keeps the descriptions in a list:

Var

CustomFormList : TObjectList;

Procedure RegisterCustomForm(Descr : TCustomFormDescr);

begin

CustomFormList.Add(Descr);

end;

The list is created during the initialization of the unit, and freed when the unit is
�nalized (the description classes are freed with it).

Using the above description class, the custforms unit will register the custom forms in
the lazarus IDE. For this, it implements a descendent of TFileDescPascalUnitWithResource,
which looks as follows:

TCustomFormFileDescriptor = Class(TFileDescPascalUnitWithResource)

Public

Constructor Create(ADescr : TCustomFormDescr);

Property FormDescr : TCustomFormDescr Read FFormDescr;

Function GetLocalizedName : String; override;

Function GetLocalizedDescription : String; override;

Function GetInterfaceUsesSection : String; override;

end;

The implementation of this IDE File description class is quite straightforward:

constructor TCustomFormFileDescriptor.Create(ADescr: TCustomFormDescr);

begin

Inherited Create;

FFormDescr:=ADescr;

ResourceClass:=FFormDescr.FFormClass;

Name:=FFormDescr.Caption;

end;

The form descriptor is saved, and the ResourceClass property is set. The ResourceClass
property is the actual class that the Lazarus IDE will create when it needs to edit
an instance of this class.

The other methods simply return the appropriate values from the custom form
descriptor:

10

function TCustomFormFileDescriptor.GetLocalizedName: String;

begin

Result:=FFormDescr.Caption;

end;

function TCustomFormFileDescriptor.GetLocalizedDescription: String;

begin

Result:=FFormDescr.Description;

If (FFormDescr.Author<>'') then

Result:=Result+LineEnding+'By '+FFormDescr.Author;

end;

Last but not least, the unit in which the custom form class is implemented must be
added to the uses clause of the unit:

function TCustomFormFileDescriptor.GetInterfaceUsesSection: String;

begin

Result:=inherited GetInterfaceUsesSection;

Result:=Result+',forms,'+FFormDescr.UnitName;

end;

Note that the 'Forms' unit is also added, as it contains the TCustomForm declaration.

Now that the descriptors are implemented and custom forms can be registered in
custforms, all that needs to be done is to tell the Lazarus IDE about their existence.
This is done in the 'Register' routine of the package:

Procedure Register;

Var

L : TStringList;

I : Integer;

D : TCustomFormDescr;

FD : TCustomFormFileDescriptor;

begin

L:=TStringList.Create;

Try

L.Sorted:=True;

L.Duplicates:=dupIgnore;

For I:=0 to CustomFormList.Count-1 do

L.Add(TCustomFormDescr(CustomFormList[i]).Category);

For I:=0 to L.Count-1 do

RegisterNewItemCategory(L[i]);

Finally

L.Free;

end;

For I:=0 to CustomFormList.Count-1 do

begin

D:=TCustomFormDescr(CustomFormList[i]);

FD:=TCustomFormFileDescriptor.Create(D);

RegisterProjectFileDescriptor(FD,D.Category);

end;

end;

11

The �rst part of the routine collects all categories used by the custom form de-
scriptors, and registers them in the IDE. The second part then creates a IDE �le
descriptor class for each registered custom form, and registers it with the IDE.

The custforms unit is inserted in the lazcustforms package, which must be installed
in the IDE. By itself, this package does nothing. It must be used by another package
to register new custom forms in the IDE.

To demonstrate this, a package with 2 custom form classes will be created. These
forms will be registered using the custforms unit, and as such and added to the
'New' dialog in the lazarus IDE.

The two forms are descendent from TCustomForm, and they implement an extra
form initialization method: InitForm. This initialization can be called at various
times during the lifetime of the form. This is controlled by the InitAt property. It
can have one of the following values:

ifaShow the initialization is called before the form is shown. Note that a form can
be shown more than once.

ifaCreate the initialization is called after the form is created.

ifaActivate the initialization is called before the form is activated. Note that a
form can be activated more than once.

The form that implements this is called TAppForm. The InitForm has 2 events
associated with it: BeforeInitForm and AfterInitForm. It is implemented in the
AppForm unit.

A descendent form of TAppForm is TDBAppForm. It overrides the InitForm method
and in this methods, opens all datasets which are on the form. It introduces and ad-
ditional boolean property OpenDatasets and 2 additional events BeforeOpenDatasets
and AfterOpenDatasets. To control whether individual datasets should be opened,
a OnOpenDataset event is introduced. It will be called before opening an individ-
ual dataset, and the user can prohibit the opening of the dataset. This form is
implemented in the DBAppForm unit.

The code for these forms is actually quite simple:

procedure TAppForm.InitForm;

begin

If Assigned(BeforeInitForm) then

BeforeInitForm(Self);

DoInitForm;

If Assigned(AfterInitForm) then

AfterInitForm(Self);

end;

procedure TAppForm.DoInitForm;

begin

// Do nothing yet.

end;

The DoInitForm performs the actual work, for the demonstration it is left empty, in
a real application it would be �lled with initialization code. The InitForm method
is static, but the DoInitForm is virtual, so it can be overridden in a descendent
form, such as TDBAppForm.

Remains to call the InitForm at the currect time, based on the value of the InitAt
propert:

12

constructor TAppForm.Create(AOwner: TComponent);

begin

inherited Create(AOwner);

if (InitAt=ifaCreate) then

InitForm;

end;

procedure TAppForm.DoShow;

begin

If InitAt=ifaShow then

InitForm;

inherited DoShow;

end;

procedure TAppForm.Activate;

begin

if (InitAt=ifaShow) then

InitForm;

inherited Activate;

end;

Note that the initialization must be called after the form was created: the property's
value is read from the form �le in the TCustomForm.Create method.

The TDBAppForm overrides the DoInitForm method to open all datasets on the form.
This is implemented in a similar manner:

procedure TDBAppForm.DoInitForm;

begin

inherited DoInitForm;

If OpenDatasets then

OpenAllDatasets;

end;

procedure TDBAppForm.OpenAllDatasets;

begin

If Assigned(BeforeOpenDatasets) then

BeforeOpenDatasets(Self);

DoOpenDatasets;

If Assigned(AfterOpenDatasets) then

AfterOpenDatasets(Self);

end;

The OpenAllDatasets is a static method; the real work is again moved to a virtual
method, which is a simple loop:

Procedure TDBAppForm.DoOpenDatasets;

Var

I : Integer;

D : TDataset;

B : Boolean;

begin

For I:=0 to ComponentCount-1 do

13

begin

If Components[i] is TDataset then

begin

D:=TDataset(Components[i]);

B:=True;

If Assigned(OnOpenDataset) then

OnOpenDataset(D,B);

If B then

D.Open;

end;

end;

end;

The forms are registed in the IDE using a separate unit, regappforms:

unit regappforms;

{$mode objfpc}{$H+}

interface

uses

Classes, SysUtils, appform, dbappform;

procedure RegisterAppForms;

implementation

uses custforms;

procedure RegisterAppForms;

begin

RegisterCustomForm(TCustomFormDescr.Create(TAppForm));

RegisterCustomForm(TCustomFormDescr.Create(TDBAppForm));

end;

initialization

RegisterAppForms;

end.

There is a good reason for putting the registration code in a separate unit: if the
forms were registered in the units where they are implemented, then the application
(which uses the units) would also depend on the custforms unit, and hence on the
Lazarus IDE interface units. The registration unit is normally not included in the
end-user application, so the custforms unit is then also not included.

When the lazcustforms and appforms packages are installed in the IDE, then the new
dialog will look something like in �gure 4 on page 15.

When creating a new DBAppForm instance, it will be obvious that not all usual form
properties will be present: only the properties that were published in the TAppForm
and TDBAppform classes are shown in the object inspector, just as for the events.
This is shown in �gure 5 on page 16.

14

Figure 4: Custom forms in the 'New' dialog

6 Conclusion

Extending the Lazarus IDE is not entirely trivial, but it is not very di�cult either;
In fact, the author thinks it's easier to do in the Lazarus IDE than in Delphi. The
fact that the Lazarus IDE sources are available can only be considered a plus.

In this and the previous article, 2 packages were developed: One package to allow
easy addition of complete standard projects, based on a project template, and a
package to add custom form classes to the Lazarus IDE. These packages not only
serve to illustrate the concepts of the Lazarus IDE, they can be put to good use as
well. In fact, they are already put to use.

This is not yet the end of the Lazarus IDE interface's possibilities. The IDE can be
extended in other ways as well, for example by adding menu items to the lazarus
IDE. But this is left to a future contribution.

15

Figure 5: A TDBAppForm instance in the Object Inspector

16

	Introduction
	The template projects wizard revisited
	Creating item categories
	Reorganizing the templates
	Custom Forms
	Conclusion

