
Extending the Lazarus IDE:
Custom forms and units

Michaël Van Canneyt

1st June 2005

Abstract

To extend the Lazarus IDE, it is not necessary to edit the Lazarus sources. The
Lazarus IDE is extensible with custom packages, and offers an API to integrate a pack-
age in the IDE. In this article, we’ll examine one of the ways in which the Lazarus IDE
can be extended, namely by adding items to the "New" dialog.

1 Introduction

The Lazarus IDE is open source, so in principle, anyone can take the IDE sources, and add
custom extensions to the IDE. This is cumbersome, and is hard to maintain. Fortunately,
the Lazarus IDE interface offers a way to extend the functionality of the IDE. All that needs
to be done is to create a package which is compiled and installed in the IDE, after which
the functionality offered by the package will be available. This is no different from the way
Delphi does it.

To demonstrate this, a package will be made which hooks into the File-New dialog in the
IDE. It allows to create new projects, based on project templates, located in some directory.
On the basis of the files in the template directory, a new project is created, and filled with
files. The templates can contain variables, which will be substituted with values that the
user can supply, such as the project name, a name for the main form etc..

2 Template organisation

The template repository is a simple directory, with a subdirectory for each template. The
subdirectory may contain other directories, which will be copied as part of the project
creation process. In the directory for each template, 2 files should exist:

project.ini contains the name of the project, plus definitions of the variables used in the
template.

description.txt a file containing a more verbose description of the project. This descrip-
tion (a simple text) will be shown in the IDE when the project is selected.

Theproject.ini file is in windows .INI format. It contains 2 sections. The first section is
calledGlobal and can contain the following key=value pairs:

Name The name of the project.

Author The author of the project.

1



Description a one-line description of the project.

Recurse a boolean (0 or 1) which indicates whether subdirectories are part of the templare
or not.

Exclude a comma separated list of extensions to be excluded from variable substitution
(for instance binary files). These files will simply be copied.

The second section is calledVariables and should contain akey=Value pair for each
variable that should be substituted when creating the project files. The value should be a
one-line description, which will be shown in the IDE.

The following is a sampleproject.ini file:

[project]
Name=Console Application
Author=Michael Van Canneyt

[variables]
ProjName=Name of the project file.
MyMainFormName=Name for the main form of the application.
AppName=Name of the application class.

The ProjName variable does not need to be defined here. If it is encountered, it will
automatically be substituted with the project name.

Variables should be specified in a format similar to the GNU Makefile variables:

T$(MyMainFormName) = Class(TForm)
...
end;

HereMyMainFormName is the name of the variable.

Note that not only the sources may contain variables. The filenames themselves can also
contain variables, they will be substituted as well.

The IDE package will be split in 2 main parts:

1. A class to manage templates, and to create projects or files from templates. It takes
care of copying files, and performs the necessary variable name substitution.

2. A class which registers the templates in the IDE.

The first class is implemented as a descendent ofTCollection , the second class is a
TProjectDescriptor decsendent. TheTProjectDescriptor is a class, defined
by the IDE interface.

3 Managing the project templates

To manage the templates, theTProjectTemplates class is defined. It is a descendent
of TCollection with a quite simple interface:

Constructor Create(Const ATemplateDir : String);
Procedure Initialize(Const ATemplateDir : String);
Procedure CreateProject(Const ProjectName, ProjectDir: String;

2



Variables : TStrings);
Function IndexOfProject(Const ProjectName : String) : Integer;
Function ProjectTemplateByName(

Const ProjectName : String) : TProjectTemplate;
Property TemplateDir : String;
Property Names [Index : Integer] : String;
Property Templates[Index : Integer] : TProjectTemplate;default;

The meaning of these methods should be obvious from their names:

Create creates a new template collection, and initializes it fromTemplateDir .

Initialize Initializes the templates from directoryATemplateDir . This can be used to
change the template directory.

IndexOfProject returns the index of a template, based on it’s name. returns -1 if the
project was not found.

ProjectTemplateByName returns theTProjectTemplate instance based on the name.

CreateProject will create a project, based on the template with nameTemplateName .
The project will be created in directoryProjectDir , and any variables will be
substituted from theName=Value pairs in theVariables stringlist.

Names is an indexed property containing the names of the found templates.

Templates is the default property of theTProjectTemplates class, providing indexed
access to the individualTProjectTemplate instances.

The interesting methods in this class areInitialize andCreateProject . The ini-
tialize method initializes the template definitions. It simply looks for the subdirectories
in the given template directory, and initializes aTProjectTemplate instance from the
found subdirectories:

procedure Initialize(const ATemplateDir: String);

Var
Info : TSearchRec;
D : String;

begin
Clear;
FTemplateDir:=IncludeTrailingPathDelimiter(ATemplateDir);
D:=FTemplateDir;
If FindFirst(D+’*’,faDirectory,Info)=0 then

try
Repeat

If ((Info.Attr and faDirectory)<>0)
and not ((Info.Name=’.’) or (Info.Name=’..’)) then

With Add as TProjectTemplate do
InitFromDir(D+Info.Name);

Until FindNext(Info)<>0;
finally

FindClose(Info);
end;

end;

3



This method could be expanded with code to ignore certain directories, for instanceCVS
or .svn directories.

TheCreateProject method passes the actual work to the neededTProjectTemplate
instance:

procedure CreateProject(const ProjectName, ProjectDir: String;
Variables : Tstrings);

Var
T : TProjectTemplate;

begin
T:=ProjectTemplateByName(ProjectName);
T.CreateProject(ProjectDir,Variables);

end;

TheCreateProject method ofTProjectTemplate is presented below.

The TProjectTemplate class is a descendent ofTCollectionItem , and has the
following properties:

Property Name : String;
Property Directory : String;
Property Description : String;
Property Variables : TStrings;
Property Author : String;
Property Recurse : Boolean;
Property Exclude : String;
Property FileCount : Integer;
Property Files[Index : Integer] : String;

The properties correspond to the values found in theproject.ini file, except forFileCount ,
which is the number of files found in the template, and theFiles property, which gives the
names of all files found in the template. TheVariables contain the variables as defined
in the project file, together with their descriptions, not the values that will be substituted.

The following public methods exist:

Procedure CreateProject(Const ProjectDir : String; Values : TStrings);
Procedure CreateFile(FileIndex : Integer; Source,Values : TStrings);
Procedure CreateFile(Const FileName: String; Source,Values : TStrings);
Procedure CreateProjectDirs(Const BaseDir : String; Values : TStrings);
Function TargetFileName(FN : String; Values : TStrings) : String;
Function TargetFileName(I : Integer; Values : TStrings) : String;

The meaning of these methods should be obvious:

CreateProject creates a project based on the template files, in directoryProjectDir .
TheValues stringlist contains the values to be used when substituting variable.

CreateFile Creates a file from source file specified by index or filename. The contents of
the file, with variables expanded, is returned inSource . The values for substitution
are taken fromValues .

CreateProjectDirs recreates, underBaseDir , the directory tree found in the project tem-
plate directory, expanding variable names with the values found inValues .

4



TargetFileName returs a filename, relative to the project directory, for a source filename
specified by index or name. It replaces any variables found in the filename with
values found in theValues stringlist.

TheInitFromDir method a private method is used to initialize the template. It reads the
template settings from theproject.ini file, and retrieves the list of files in the project:

procedure TProjectTemplate.InitFromDir(const DirName: String);

Var
L : TStringList;
FN : String;

begin
FDirectory:=IncludeTrailingPathDelimiter(DirName);
L:=TStringList.Create;
Try

FN:=FDirectory+’project.ini’;
If FileExists(FN) then

begin
With TMemInifile.Create(FN) do

try
FName:=ReadString(SProject,KeyName,DirName);
FAuthor:=ReadString(SProject,KeyAuthor,’’);
FDescription:=ReadString(SProject,KeyDescription,’’);
FRecurse:=ReadBool(SProject,KeyRecurse,False);
FExclude:=ReadString(SProject,KeyExclude,’’);
If (FExclude<>’’) then

FExclude:=FExclude+’,’;
ReadSectionValues(SVariables,FVariables);

Finally
Free;

end;
end;

FN:=Directory+’description.txt’;
If FileExists(FN) then

begin
L.LoadFromFile(FN);
FDescription:=L.Text;
end;

GetFileList(FDirectory);
Finally

L.Free;
end;

end;

The main method isCreateProject :

procedure CreateProject(const ProjectDir: String;
Values: TStrings);

begin
CopyAndSubstituteDir(Directory,ProjectDir,Values);

end;

5



It leaves the real work toCopyAndSubstitureDir , which is a recursive method. It first
copies all files in the the source directory to the target directory, expanding variables as it
goes. Then it calls itself for each subdirectory found in the source directory (if recursion
was not disabled):

procedure CopyAndSubstituteDir(Const SrcDir,DestDir :String;
Values: Tstrings);

Var
D1,D2 : String;
Info : TSearchRec;

begin
D1:=IncludeTrailingPathDelimiter(SrcDir);
D2:=IncludeTrailingPathDelimiter(DestDir);
If not ForceDirectories(D2) then

Raise ETemplateError.CreateFmt(SErrCouldNotCreateDir,[D2]);
If FindFirst(D1+’*’,0,Info)=0 then

try
repeat

if (info.name<>’description.txt’)
and (info.name<>’project.ini’) then

CopyAndSubstituteFile(D1+Info.Name,
D2+SubstituteString(Info.Name,

Values),
Values);

Until (FindNext(Info)<>0);
finally

FindClose(Info);
end;

if Recurse then
If (FindFirst(D1+’*’,0,Info)<>0) then

try
repeat

if ((Info.attr and faDirectory)<>0) and
(Info.Name<>’.’) and (info.Name<>’..’) then
CopyAndSubstituteDir(D1+Info.Name,

D2+SubstituteString(Info.Name,
Values),

Values);
until FindNext(Info)<>0;

finally
FindClose(Info);

end;
end;

Note that variables in the names of the target files or directories are substituted with the
value of the variables using theSubstituteString function.

Copying a file is done in theCopyAndSubstituteFile method:

procedure TProjectTemplate.CopyAndSubstituteFile(Const SrcFN,DestFN :
String; Values : Tstrings);

Var

6



L : TStrings;

begin
If pos(ExtractFileExt(SrcFN)+’,’,Exclude)<>0 then

begin
If not SimpleFileCopy(SrcFN,DestFN) then

Raise ETemplateError.CreateFmt(SErrFailedToCopyFile,[SrcFN,DestFN]);
end

else
begin
L:=TstringList.Create;
try

CreateFile(SrcFN,L,Values);
L.SaveToFile(DestFN);

Finally
L.Free;

end;
end;

end;

This method checks whether the file must be copied as-is (which is done in SimpleFile-
Copy), or whether the contents of the file must be checked for variables, in which case the
publicCreateFile method is used. This method is quite easy:

procedure TProjectTemplate.CreateFile(const FileName: String; Source,
Values: TStrings);

Var
F : Text;
Line : String;

begin
AssignFile(F,FileName);
Reset(F);
Try

While not EOF(F) do
begin
ReadLn(F,Line);
Source.Add(SubstituteString(Line,Values));
end;

Finally
CloseFile(F);

end;
end;

This covers the most important methods in theTProjectTemplate class. The two
classes described here are implemented in theprojecttemplates unit. This unit is indepen-
dent of the Lazarus IDE, and could be used in any project. In the next section, we explain
how to use this unit in the Lazarus IDE.

7



4 The various Lazarus IDE interfaces

In Lazarus, the equivalent of the Delphi ’Open Tools API’ is the ’Lazarus IDE interface’.
This is a collection of units which expose various elements of the Lazarus IDE so they can
be used in packages. The interface consists of a set of base classes, together with some
global variables which are set by the IDE. These units are located in theideintf directory
in the Lazarus source directory. This directory contains the following units:

LazIDEIntf Contains a general interface to the IDE, which allows to open files, and re-
trieve some configuration information.

NewItemIntf Contains an interface to the’File|New’ menu dialog. It allows to add item
categories, such as the pre-defined ’File’, ’Project’ or ’Package’.

ProjectIntf Contains an interface to create new items in the ’File’ and ’Project’ category
of the ’File|New’ dialog. This is the unit which will be used below.

HelpIntf An interface to the help system of lazarus. The help system is very extensible.

ConfigStorage An interface to the lazarus configuration system. This can be used if an
IDE package needs to save/restore settings. The settings will be stored in the Lazarus
settings directory.

FormEditingIntf Defines interfaces to form and component editors.

PackageIntf An interface to the IDE package system. It can be used to introduce new
packages (in the ’Package’ category) in the’File|New’ dialog.

MacroIntf An interface to the IDE Macros interface. The macros are used in the tools,
build commands, configuration settings. However, it does not include the possibility
to define additional macros, so it was not used to implement the project templates.

IDECommands An interface to IDE commands. This can be used to add command
keystrokes to the IDE.

ActionsEditor an interface to implement and register customTAction descendents, which
works much as in Delphi.

ComponentEditor an interface to component editors, compatible to the Delphi version.

PropEdits an interface to property editors, compatible to the Delphi version.

ObjectInspector Contains the Object Inspector class. It simply manages the various prop-
erty editors.

There are other units in this directory, with some examples of component editors.

5 The project interface

Of all the interfaces presented in the previous section, only the Lazarus IDE interface,
configuration storage, and the project interface will be used.

The project interface is defined in theProjectIntf unit. It defines a number of classes which
can be used to extend the IDE with custom projects and files. The IDE itself uses the classes
in this interface to implement the standard classes.

The two most important classes in this unit are the following

8



TProjectDescriptor A class to implement a new project in the IDE. When the IDE needs
to create a new project, it does so based on the properties and methods found in this
class.

TProjectFileDescriptor A class to implement a new file (a unit or program file) in the
IDE. When the Lazarus IDE needs to create a new source file, it uses the methods
and properties if this class to do so.

How should these classes be used ? Simple: A descendent of these classes must be made,
and it should either set some properties, or override some methods so the Lazarus IDE can
use it to create a new project or file.

An instance of this descendent class must be registered in the Lazarus IDE, so the IDE is
aware of the new project type. When the IDE needs to create a new file of the registered
type, the methods of the instance will be used, as will be demonstrated below.

The first of the two classes that is needed to implement the template projects is theTProjectDescriptor
class. It has the following (simplified) declaration:

TProjectDescriptor=class(TPersistent)
function DoInitDescriptor: TModalResult; virtual;
function GetLocalizedName: string; virtual;
function GetLocalizedDescription: string; virtual;
function InitProject(AProject: TLazProject): TModalResult;

virtual;
function CreateStartFiles(AProject: TLazProject): TModalResult;

virtual;
property Name: string;
property VisibleInNewDialog;
property Flags: TProjectFlags;
property DefaultExt;
end;

The Nameproperty identifies the kind of project in the IDE, but is otherwise not used.
TheVisibleInNewDialog property (standardTrue ) determines whether a project of
this type will be shown in the ’New’ dialog. If so, it will be shown with a caption as
returned byGetLocalizedName , and when it is selected, the description as returned by
GetLocalizedDescription will be shown.

When the user selects the kind of project as described by the descriptor, the following
happens:

1. IDE will call the DoInitDescriptor method. This method should be used to
show a dialog which can be used to ask some additional information of the user.

2. If theDoInitDescriptor method returnsmrOK(the default behaviour), then the
IDE will discard the currently active project, and starts a new project.

3. After some internal initialization,InitProject is called with a newTLazProject
instance, which represents the new project. TheTProjectDescriptor can set
some properties ofTLazProject (e.g. compiler options) or call its methods. If
this method returns a value other thanmrOK, the new project is abandoned.

4. After theInitProject has finished withmrOk, theCreateStartFiles rou-
tine is called. This method should also returnmrOK, and should be used to add files
to the project.

9



After these methods are called, the new project is ready for use in the IDE. IfCreateStartFiles
was used to create some files, then they can be opened in the IDE, or they may already be
open, depending on the options used.

TheTLazProject class that is passed to the last two methods, has the following interface
declaration:

function CreateProjectFile(
const Filename: string): TLazProjectFile;

procedure AddFile(ProjectFile: TLazProjectFile;
AddToProjectUsesClause: boolean);

procedure RemoveUnit(Index: integer);
procedure AddSrcPath(const SrcPathAddition: string);
procedure AddPackageDependency(const PackageName: string);
property MainFileID: Integer;
property Files[Index: integer]: TLazProjectFile;
property FileCount: integer read GetFileCount;
property MainFile: TLazProjectFile;
Property Title: String;
property Flags: TProjectFlags read FFlags write SetFlags;
property LazCompilerOptions: TLazCompilerOptions;
property ProjectInfoFile: string;

Of these,CreateProjectFile must be called in order to create the program.lpr file.
The Project info file (the.lpi) file name can be set using theProjectinfoFile property.
TheTitle property can be used to set the title of the application. TheFiles property
provides indexed access to all files defined within the project (as shown in the project
inspector), and in this indexed list, the file with indexMainFileID is the main project
file (the program file). TheFlags property contains a set of the following flags which
control the behaviour of the IDE, and how it treats the main source file for the project:

pfSaveClosedUnitsTells the IDE to save information about closed files (which are not
part of the project) in the project information file.

pfSaveOnlyProjectUnits Tells the IDE not to save information about foreign files

pfMainUnitIsPascalSource Tells the IDE that the main unit is a pascal source file even if
the extension is not.pas or .pp.

pfMainUnitHasUsesSectionForAllUnits Tells the IDE to add/remove all pascal units to
the main file’s uses section.

pfMainUnitHasCreateFormStatements Tells the IDE to add/removeApplication.CreateForm
statements to the main file for each form that must be auto-created.

pfMainUnitHasTitleStatement Tells the IDE to add/remove aApplication.Title:=
statement to the main source file.

pfRunnable tells the IDE that this project can be run.

LazCompilerOptions is a reference to the compiler settings used when compiling this
project. The declaration of this class is very long, the reader is referred to the source of the
projectintf unit for details.

The CreateProjectFile must be used to create the main project file, as this is a
project file, not a unit. How the project file’s source is created depends on theFlags
property. Normal files/units can be added to the project with theAddFile call. They can

10



be removed with theRemoveUnit path. The dependency of the project on other packages,
such as the LCL or FCL, can be indicated using theAddPackageDependency call.

Armed with these classes, the template project descriptor can be declared as follows:

TTemplateProjectDescriptor = class(TProjectDescriptor)
Private

FTemplates : TProjectTemplates;
FTemplate : TProjectTemplate;
FProjectDirectory : String;
FProjectName : String;
FVariables : TStrings;

protected
Procedure InitTemplates;
procedure SaveTemplateSettings;

public
constructor Create;
destructor destroy;
Function DoInitDescriptor : TModalResult;
function GetLocalizedName: string;
function GetLocalizedDescription: string;
function InitProject(AProject: TLazProject) : TModalResult;
function CreateStartFiles(AProject: TLazProject) : TModalResult;

end;

TheFTemplates field will keep a reference to theTProjectTemplates defined ear-
lier. TheFTemplate variable will be used to keep the template chosen by the user, just
as theProjectDirectory , ProjectName andFVariables fields.

A single instance of this class is instantiated in theRegister procedure of the package
in which the templates are implemented:

Var
TemplateProjectDescriptor : TTemplateProjectDescriptor;

procedure Register;
begin

TemplateProjectDescriptor:=TTemplateProjectDescriptor.Create;
RegisterProjectDescriptor(TemplateProjectDescriptor);

end;

TheRegisterProjectDescriptor call is defined in theprojectintf unit. This means
that the project descriptor ’lives’ as long as the package is loaded, i.e., currently from the
start of the IDE till it is closed.

The functionsGetLocalizedName and GetLocalizedDescription determine
what the IDE shows to the user in the ’New’ dialog:

function TTemplateProjectDescriptor.GetLocalizedName: string;
begin

Result:=’Template Project’;
end;

function TTemplateProjectDescriptor.GetLocalizedDescription: string;
begin

Result:=’Create a project, based on a series of project templates’;
end;

11



Figure 1: The entry in the ’New’ dialog

The result is shown in figure 1 on page 12.

The constructor and destructor are quite straightforward:

constructor TTemplateProjectDescriptor.Create;
begin

inherited Create;
Name:=’TemplateProject’;
FVariables:=TStringList.Create;

end;

destructor TTemplateProjectDescriptor.destroy;
begin

FTemplate:=NIl;
FreeAndNil(FTemplates);
FreeAndNil(FVariables);
Inherited;

end;

Note that theFTemplates is not initialized in the constructor. To save memory, initial-
ization is only done when the project descriptor is activated for the first time. Then, a call
to InitTemplates is made:

procedure TTemplateProjectDescriptor.InitTemplates;

Var
D,P : String;

begin
If (FTemplates=Nil) then

With GetIDEConfigStorage(’projtemplate.xml’,True) do

12



try
P:=LazarusIDE.GetPrimaryConfigPath;
P:=IncludeTrailingPathDelimiter(P)+’templates’;
D:=GetValue(’TemplateDir’,P);
FTemplates:=TProjectTemplates.Create(D);

Finally
Free;

end;
end;

TheGetIDEConfigstorage call is part of theConfigStorage interface to the IDE.
It manages all configuration files: it creates configuration files in a centralized location. The
return value of this function is an instance ofTConfigStorage , which is much like an
ini-file or registry, only that the settings file has an XML format. TheTrue parameter to
this call indicates that the stored info should be read from disk. TheGetValue call is part
of theTConfigStorage class:

function GetValue(APath, ADefault: String): String;
function GetValue(APath: String; ADefault: Integer): Integer;
function GetValue(APath: String; ADefault: Boolean): Boolean;

it reads a value (string, integer, boolean) from the XML file. The location in the XML file
is determined byAPath , which follows an XPATH-like syntax. In the code above, the
GetValue call is used to read the location of the template directory. Based on this value,
the templates are initialized.

The value ofP is used as a default value. It is used by theTConfigStorage if no
appropriate value was found in the configuration file. The value ofP is obtained from the
Lazarus IDE interface: theGetPrimaryConfigPath call returns the location of the
Lazarus configuration files (more on this follows below). The templates are assumed to be
in a subdirectory of this location.

TheInitTemplates procedure is called when the Lazarus IDE calls theInitDescriptor ,
i.e. when the user has selected the project type corresponding to the project descriptor in
the ’New’ dialog:

function TTemplateProjectDescriptor.DoInitDescriptor: TModalResult;

begin
InitTemplates;
Result:=ShowOptionsDialog;
If (Result=mrOK) and (FVariables.Count<>0) then

Result:=ShowVariableDialog;
If (Result=mrOK) then

begin
FVariables.Values[’ProjName’]:=FProjectName;
FVariables.Values[’ProjDir’]:=FProjectDirectory;
end;

After initializing the templates, the options dialog is shown: this allows the user to select
which template should be used, what the name of the project will be, and where the project
should be located, as can be seen in figure figure 2 on page 14. If the user closed the dialog
succesfully, and there are variables for which a value must be asked, the variable dialog
is shown (figure figure 3 on page 14). If the user closed this dialog with succes, then the
standardProjName andProjDir variables are defined.

TheShowOptionsDialog function is quite simple, really:

13



Figure 2: The options dialog: selecting a template

Figure 3: The variables dialog: defining additional variabls

14



function TTemplateProjectDescriptor.ShowOptionsDialog : TModalResult;

var
I: Integer;

begin
with TTemplateOptionsForm.Create(Application) do

try
Templates:=Self.FTemplates;
Result:=ShowModal;
if Result=mrOK then

begin
FProjectDirectory:=

IncludeTrailingPathDelimiter(ProjectDir);
FProjectName:=ProjectName;
FTemplate:=Template;
FVariables.Assign(FTemplate.Variables);
I:=FVariables.IndexOfName(’ProjName’);
if (I<>-1) then FVariables.Delete(I);
I:=FVariables.IndexOfName(’ProjDir’);
if (I<>-1) then FVariables.Delete(I);
end;

if SettingsChanged then
SaveTemplateSettings;

finally
Free;

end;
end;

If by any chance, theProjName andProDir are in the list of variables, they are deleted,
so they will not be shown to the user when values are asked for other variables. If the
user pressed the configure button in the dialog (indicated by theSettingsChanged
property), then the new settings are saved in theSaveTemplateSettings method:

procedure TTemplateProjectDescriptor.SaveTemplateSettings;

begin
With GetIDEConfigStorage(’projtemplate.xml’,False) do

try
SetValue(’TemplateDir’,FTemplates.TemplateDir);
WriteToDisk;

Finally
Free;

end;
end;

This method does essentially the opposite of theInitTemplates method discussed
above. Note that theGetIDEConfigStorage gets a second parameter which indicates
that it is only needed for writing all settings; any previous information in the file will be
lost.

After all this, theInitDescriptor call of the project descriptor has finished. If it
returnedmrOK, the IDE will now close any open project and start a new project. it will
then call theInitProject method:

15



function InitProject(AProject: TLazProject) : TModalResult;

Var
I : Integer;
AFile: TLazProjectFile;
FN : String;
B : Boolean;
RFN : String;
L : TStringList;

begin
AProject.AddPackageDependency(’FCL’);
AProject.AddPackageDependency(’LCL’);
AProject.Title:=FProjectName;
FTemplate.CreateProjectDirs(FProjectDirectory,FVariables);
AProject.ProjectInfoFile:=FProjectDirectory

+FProjectName+’.lpi’;
For I:=0 to FTemplate.FileCount-1 do

begin
FN:=FTemplate.FileNames[I];
B:=CompareText(ExtractFileExt(FN),’.lpr’)=0;
If B then

begin
FN:=FProjectDirectory+

FTemplate.TargetFileName(FN,FVariables);
AFile:=AProject.CreateProjectFile(FN);
AFile.IsPartOfProject:=true;
AProject.AddFile(AFile,Not B);
AProject.MainFileID:=0;
L:=TstringList.Create;
try

FTemplate.CreateFile(I,L,FVariables);
AFile.SetSourceText(L.Text);

Finally
L.Free;

end;
end;

end;
Result:=mrOK;

end;

This function starts by adding dependencies on the FCL and LCL packages to the project,
and sets the project title. Based on the settings supplied by the user, It then proceeds by
creating all directories in that exist in the template project at the new project location. It
sets the name of the project information file. It then searches for the project file in the
template, and creates a file desciptor for this via theCreateProjectFile method of
TLazProject . This returns aTLazProjectFile instance, which is added to the
project as the main project file. Last but not least, the source for the project file is loaded
from the template, and set via theSetSourceText method of theTLazProjectFile
instance.

At this point, the Lazarus IDE has started the project, and has added the project source
file to it. Now the rest of the project files must still be created. This is done in the
CreateStartFiles function, which is called next by the IDE:

16



Function CreateStartFiles(AProject: TLazProject) : TModalresult;

Const
IDeOpts=[nfIsPartOfProject,nfOpenInEditor,nfCreateDefaultSrc];

Var
Descr : TProjectFileDesc;
I : Integer;
FN,FN2 : String;
B : Boolean;

begin
Descr:=TProjectFileDesc.Create(FTemplate,FVariables);
Try

For I:=0 to FTemplate.FileCount-1 do
begin
FN:=FTemplate.FileNames[I];
B:=CompareText(ExtractFileExt(FN),’.lpr’)<>0;
If B then

begin
B:=CompareText(ExtractFileExt(FN),’.lfm’)<>0;
If B then

begin
FN2:=ChangeFileExt(FN,’.lfm’);
B:=FileExists(FN2);
FN:=FProjectDirectory+

FTemplate.TargetFileName(FN,FVariables);
If B then

Descr.ResourceClass:=TForm;
Descr.FIndex:=I;
LazarusIDE.DoNewEditorFile(Descr,FN,’’,IdeOpts)
end;

end;
end;

Finally
Descr.Free;

end;
Result:=mrOK;

end;

The method starts by creating an instance of theTProjectFileDesc class. This class
is used by Lazarus to describe a new file for a project, and will be discussed in more detail
below. Then the procedure loops over all files in the template; it skips the project file and
the form files. For each other file it saves the index in theTProjectFileDesc instance,
and sets theResourceClass field to TForm if it finds a form file next to the unit file.
This will tell lazarus what class it should create in order to display the ’form’ (a module, a
form etc.).

Then it calls the Lazarus IDE interface:

LazarusIDE.DoNewEditorFile(Descr,FN,’’,IdeOpts)

This tells the Lazarus IDE to create a new file, based on the source file descriptorDescr ,
with filenameFNand empty source. The options passed inIdeOpts tell the IDE that the
file should be part of the project, that the file should be opened in the editor, and that it

17



Figure 4: The result of the project template

should create a default source for the file.

The actual work of creating the source file is then handled by theTProjectFileDesc
class, discussed in the next section.

At this point, the Lazarus IDE has finished creating the new project. It will look as in figure
4 on page 18.

6 The file interface

In the previous section, theTProjectFileDesc class was used to create the source files
for the project. This class is a descendent ofTProjectFileDescriptor . This class
is used by the IDE when it needs to create a new file; This can be a unit, a form, any kind of
file. The IDE uses this class internally also to create the file items found in the IDE ’New’
dialog. The class has the following public interface:

function GetLocalizedName: string; virtual;
function GetLocalizedDescription: string; virtual;
function GetResourceSource: string; virtual;
function CreateSource(const Filename, SourceName,

ResourceName: string): string; virtual;
property Name: string;
property DefaultFilename: string;
property DefaultFileExt: string;
property DefaultSourceName: string;
property DefaultResFileExt: string;

18



property DefaultResourceName: string;
property RequiredPackages: string;
property ResourceClass: TPersistentClass;
property IsComponent: boolean read FIsComponent;
property UseCreateFormStatements: boolean;
property VisibleInNewDialog: boolean
property IsPascalUnit: boolean;
property AddToProject: boolean;

TheVisibleInNewDialog , GetLocalizedName andGetLocalizedDescription
property and methods serve the same purpose as their counterparts in theTProjectDescriptor
class.

The CreateSource method is called by the IDE to create the source for the file: The
result should be the contents of the (pascal unit) file. The parameters passed are the file-
name, source file name and resource name (if any) that the IDE has assigned to this file. A
descendent should override this method to return the text of the source for this file.

The GetResourceSource method should be overridden by descendents to return the
contents of the initial.lfm file (as text) that matches the source file. It will only be called
if the ResourceClass class pointer is notNil , i.e. when the IDE has decided that this
is a form or datamodule or any visual object that needs streaming.

The meaning of the various properties should be straightforward:

DefaultFilename a default filename for this kind of file (with extension).

DefaultFileExt a default extension for this kind of file.

DefaultSourceName the default unit name.

DefaultResFileExt default extension for resource file (.lrs).

DefaultResourceNamedefault name for the resource (Form).

RequiredPackagesrequired packages for this kind of unit.

ResourceClassthe class that the IDE will create when displaying the form for this file.
Only when this property is notNil will the IDE decide that a form (or datamodule)
must be displayed when loading this file.

IsComponent Should be set toTrue if ResourceClass is aTComponent Descen-
dent.

UseCreateFormStatementsshould be set toTrue if the IDE can add this resource to the
Application.CreateForm statements.

IsPascalUnit should be set toTrue if this file is a pascal unit.

AddToProject should be set to true if a file of this kind should be added to the project
when it is created.

For the project templates, the descendent is quite simple. It needs to override only the
minimum of calls:

TProjectFileDesc=class(TProjectFileDescriptor)
constructor Create(ATemplate : TProjectTemplate;

Values: TStrings);
Function GetResourceSource : String;override;

19



function CreateSource(const Filename, SourceName,
ResourceName: string): string; override;

function GetLocalizedName: string; override;
function GetLocalizedDescription: string; override;

end;

TheGetLocalizedName andGetLocalizedDescription return simply a string,
and so will not be shown here. The constructor only saves the variables which are passed
to it, and initializes the name:

constructor TProjectFileDesc.Create(ATemplate: TProjectTemplate;
Values : TStrings);

begin
Inherited Create;
FTemplate:=ATemplate;
FVariables:=Values;
Name:=’Regular File’;

end;

The routines which do the actual work are theCreateSource routine:

function TProjectFileDesc.CreateSource(const Filename, SourceName,
ResourceName: string): string;

Var
L : Tstrings;

begin
L:=TstringList.Create;
try

FTemplate.CreateFile(FIndex,L,FVariables);
Result:=L.Text;

Finally
L.Free;

end;
end;

It simply passes the work on to theTProjectTemplate class. TheGetResourceSource
does something similar:

function TProjectFileDesc.GetResourceSource: String;

Var
L : Tstrings;
FN : String;

begin
Result:=’’;
If (ResourceClass<>Nil) then

begin
L:=TstringList.Create;
try

FN:=ChangeFileExt(FTemplate.FileNames[FIndex],’.lfm’);
FTemplate.CreateFile(FN,L,FVariables);

20



Result:=L.Text;
Finally

L.Free;
end;
end;

end;

Note that it checks whetherResourceClass is set, which is only the case if a form file
exists. TheCreateStartFiles method discussed above, has taken care of that.

7 Conclusion

In the above, we have shown how to create a custom project in the Lazarus IDE. In doing
so, various interfaces of the IDE have been used: the project interface and the file interface.
However, the scope has been rather limited:

• Only a ready-made TForm descendent was created, and no other resources (e.g. a
TDatamodule) were created: the interface offers more possibilities than were used
here.

• What is more, the lazarus IDE interface offers other ways of obtaining the same
functionality for a package that implements project templates. This interface was
only touched upon, an needs to be explored more deeply.

• The possibility of creating a whole new category of new items was left untouched;
This could be used to display the various templates immediatly in the ’New’ dialog.

Exploring these other functionalities will be left to a future contribution, in which the
project template functionality will be rewritten. At the same time it will be shown that
the interface offers the possibility of creating custom resources (forms/data modules).

21


	Introduction
	Template organisation
	Managing the project templates
	The various Lazarus IDE interfaces
	The project interface
	The file interface
	Conclusion

