
The Lazarus Data Desktop

Michaël Van Canneyt

December 4, 2007

Abstract

Lazarus comes with a lot of components to connect to various databases and create
data-aware forms. It also comes with a tool which aids in developing database applica-
tions: the lazarus data desktop. In this article, the design goals and possibilities of this
Lazarus compagnon are explained.

1 Introduction

Many - if not most - applications connect somehow to a database. For this reason, Lazarus
comes with a large set of data-aware visual components, and with a set of components to
connect to many different databases. A lot of other database connectivity components ex-
ist. Additionally, object persistence frameworks such as InstantObjects and tiOPF provide
additional ways of creating database applications, using an object oriented paradigma.

Till recently, extra tools were needed to actually manage the databases or test queries on
SQL-based databases. Additionally, no data dictionary existed: when creating many forms
that often access the same data in different ways, one ends up repeating the same tasks:
setting displaynames, field sizes, hints for controls and so on: For this a structure is needed
which contains the values of these properties for all tables and fields in a database. This is
he data dictionary. The data dictionary can - if so desired - be used to re-create or remodel
the database.

The Lazarus Data Desktop is designed to fill this gap: it is a database access tool and a data
dictionary manager. Additionally, it allows to create Object Pascal code to manage and ac-
cess the databases, and is integrated with the Lazarus IDE: A data dictionary created in the
Data Desktop can be accessed from within the IDE and applied to a TDataset descendent.

Currently, it features the following possibilities:

• Access to many databases supported by FPC: DBF files, Mysql, Firebird, Oracle,
PostGreSQL, SQLite and any ODBC supported database.

• Create a data dictionary for a database, where all the TField properties can be
stored.

• The data dictionary can be stored in .ini files, or in a database.

• Create DDL and DML SQL statements from the data dictionary.

• Examine table data

• Execute any query, and examine the result.

• Export data to many formats, e.g. XML, JSON, RTF, Plain text (CSV), DBF, SQL.

1

• Create code from datasets: create an object corresponding to the data in the result
of a query, and code to load the object’s properties from the query. Creating TiOPF
code is supported as well.

All of this functionality is present in the Free Pascal code base, and most of it is available
in the Lazarus IDE itself, on the component palette. The database desktop just exposes this
functionality in a tool that is designed to handle everyday database programming tasks.

The API managing all these tasks is designed to be extensible: They can be extended to
suit the needs of the project at hand. Depending on what needs to be done, a new class
should be written and registered, or an existing class can be enhanced: Since the sources
of the database desktop are shipped with Lazarus, it can be recompiled with all the desired
functionality.

2 Getting started

The Lazarus Data Desktop is under continuous development, as are the APIs that it uses.
The best one can do is take a recent version from SVN and recompile it. It is located in the

tools/lazdatadesktop

directory. To be able to compile it, several lazarus packages are needed:

lazDBF for DBF support.

lazSQLDB for SQLDB support.

lazDataDict for the data dictionary integration in the IDE.

lazDBExport for the export components.

RuntimeTypeInfoControls for RTTI controls. The APIs and the Data Dictionary editor
make extensive use of this package.

These packages need not be installed in the IDE, but doing so makes sure that the necessary
unit paths are added to the compiler path when compiling.

Opening the lazdatadesktop project and compiling it should result in a working binary.

3 First steps

If the data desktop is started, a form as in figure 1 on page 3 should appear. On startup, a
list of recently used data dictionaries (on the first tab) or database connections (the second
tab) is shown. Double-clicking an entry will open it in a new tab.

Connections can be used to connect to databases: The structure and data of the tables in
the database can be viewed. If the database is SQL based, then query statements can be
executed on the database. The results of the queries can be viewed, and possibly exported.

Data dictionaries are repositories with meta-information about databases: a data dictionary
can be created from zero, but can also be reverse-engineered from an existing database. A
data dictionary can be accessed from within a Lazarus program to set field and form prop-
erties at run-time (for instance for ad-hoc queries), but can also be applied in the Lazarus
IDE at design time.

2

Figure 1: The Lazarus Data Desktop on startup

4 Data dictionaries

To create a new data dictionary, the ’File|New’ menu can be used. This will start a new data
dictionary. Alternatively, the ’Dictionary|Import’ menu can be used to reverse engineer a
database and create a new, or update an existing, data dictionary. For the purpose of this
article, the DBF file with the contents of all Toolbox articles will be imported, by selecting
the inhalt.dbf file. This should result in a new data dictionary, which will be saved as - of
course - toolbox. After expanding the tree with the data structures, a list of field definitions
is visible. Clicking on one of the fields will display the properties for the field in the right
half of the screen: these can be edited. The main form should look more or less as in figure
2 on page 4. Obviously, entering the information for all the fields is a lot of work. The
advantage of the data dictionary is that this works needs to be done only once.

Once the data dictionary is complete, 2 things can be done:

1. Use it in a Lazarus application (designtime or runtime)

2. Generate SQL statements.

The latter can be done with the ’Generate SQL’ button or menu item. When clicked, it will
pop up a dialog, which looks like a much-extended version of the UpdateSQL component
editor found in Borland Delphi. This dialog allows to create SQL statements for selecting,
updating, deleting, inserting data from a table in the data dictionary. It provides some
options to determine the form of the SQL statements. Additionally, it allows to create a
SQL statement which will re-create the table (or part of it) in SQL.

The dialog looks like figure figure 3 on page 4, with some fields selected. Generating the
Inhalt table from toolbox in a SQL-based database could be done with the following
SQL statement:

CREATE TABLE inhalt (
AUSGABE VARCHAR(10),

3

Figure 2: The Lazarus Data Dictionary editor

Figure 3: Generating SQL from the Data Dictionary

4

BEMERKUNG VARCHAR(74),
NAME VARCHAR(30),
RUBRIK VARCHAR(30),
SEITE VARCHAR(3),
SPRACHE VARCHAR(30),
THEMA VARCHAR(30),
TITEL VARCHAR(74),
TXINDEX VARCHAR(14),
UTITEL VARCHAR(74),
VORNAME VARCHAR(30),
CONSTRAINT inhalt_PK PRIMARY KEY (AUSGABE))

To use the data dictionary during run-time in a Lazarus application, the following code can
be used:

uses fpdatadict,dbf,db;

var
DD : TFPDataDictionary;
DBF : TDBF;

begin
DD:=TFPDataDictionary.Create;
DD.LoadFromFile(’toolbox.fpd’);
DBF:=TDBF.Create(Nil);
DBF.TableName:=’inhalt.dbf’;
DBF.Open;
DD.Tables.TableByName(’inhalt.dbf’).ApplyToDataset(DBF);
// Alternatively
// DD.ApplyToDataset(DBF);

end.

This code will create a data dictionary, and load it from file. After this, it will load the DBF
file, and apply the data dictionary to it. As a result, TField properties such as DisplayName,
DisplaySize will be filled in: if the data is displayed in a grid, the proper column sizes and
titles will be shown.

5 IDE support for data dictionaries

Instead of applying the data dictionary at run-time, the same can be done in the lazarus
IDE during design time: if the lazDataDict package is installed, then 3 things will be
inserted in the IDE:

1. A Data dictionary menu item is registered under the ’Project’ menu: it allows
to select and configure the data dictionary for a project: the name of the data dictio-
nary will be saved with the project options, and the data dictionary will be reloaded
when the project is loaded the next time.

2. A menu item ’Database Desktop’ is created under the ’Tools’ menu: it starts the
Lazarus Data desktop. When used the first time, it may ask where the lazarus
database desktop application is located.

3. In the form designer, a ’Data dictionary’ menu item is registered in the context popup
menu: this can be used to apply the data dictionary to any TDataset descendent.

5

Figure 4: The toolbox contents

Obviously, this will only work if persistent fields have been created for the dataset.
(the fields editor should be used for this). For this to work, a data dictionary must
have been selected for the current project.

To illustrate all this, the just created ’Toolbox’ data dictionary can be applied to a small pro-
gram: The program is extremely simple: a TDBF component with tablename ’inhalt.dbf’,
a TDBGrid and a TDBNavigator component. A Button with the following OnClick
method:

Procedure TToolBoxForm.BOpenClick(Sender: TObject);

Var
DD : TFPDataDictionary;

begin
DD:=TFPDataDictionary.Create;
Try

DD.LoadFromFile(’toolbox.fpd’);
DD.Tables.TableByName(’Inhalt.dbf’).ApplyToDataset(DToolbox);
DToolbox.open;

Finally
DD.Free;

end;
end;

Running the program and clicking the Open button should result in something like figure
4 on page 6 Note that the titles of the grid show not the all-capitals fieldname, but the
displayname as set in the data dictionary. Fields marked as ’Invisible’ are not shown.

The same effect can be achieved at runtime by choosing the ’toolbox’ data dictionary in the
’Project|Data Dictionary|Set...’ menu. After this, persistent fields should be created (using

6

Figure 5: Connected to the toolbox database

the standard ’Fields editor’) and the data dictionary can be applied. The IDE messages
window will show a message that the data dictionary was applied, and what fields in the
dataset didn’t have a corresponding field in the data dictionary. The effect can be seen
by selecting and inspecting a field’s properties in the object inspector. Note that the code
above in the OpenClick is no longer necessary when this is done.

6 Connecting to databases

The second functionality of the data desktop is simply connecting to existing databases
and examine the data in it’s tables or running queries on it (in the case of an SQL-enabled
database). All databases supported by FPC can be connected to: All that is needed is a
small class that registers the database support in the data dictionary engine, and the database
desktop will pick it up and offer a connection type.

Connecting to a database is done through the ’Connection|New’ menu item. Below this
item, a list of supported connection types is shown. After a type was chosen, the connection
parameters should be given, and when the connection was succesfully established, a new
tab will be shown with the contents of the database: currently, only tables will be shown.

To connect to a ’database’ with DBF files, the directory with the DBF files must be entered.
So, to connect to the toolbox database, a new ’DBF Files’ connection is started, the path to
the DBF file is chosen, and the connection is saved with the ’Toolbox’ name. When done,
the screen should look like figure 5 on page 7. At the right of the window is a work area.
It can show the definition of the object chosen at the left, or it can - in the case of a table -
show the contents of the table - a view much like the one in figure 4 on page 6. The data
of a table can be edited, if one should wish to do so: creating test data for an application is
one of the uses of the Data Desktop.

However, much more is possible. The ’Data’ view has - beside the navigation buttons - 2
extra buttons that allow to

7

1. Item export the data to a variety of formats. Currently, 8 formats are available.

2. Create various kinds of Object Pascal code based on the shown data. Currently, 4
kinds of code can be generated.

7 Exporting data

Exporting the shown data can be done to the following formats:

1. CSV (comma separated values) text file.

2. Fixed-length text file.

3. A simple XML file.

4. A simple JSON file.

5. SQL statements to fill a table with the data shown.

6. A LaTeX table.

7. A RTF table.

8. DBF files.

The above is the list of exporters currently implemented in Free Pascal (more are planned).
As can be seen, this functionality is suitable for transforming data from one data format to
another. The list of export mechanisms can be extended easily with self-written exporters:
the API for this is in the Free Pascal sources. The relevant unit is called fpdbexport, and
the many available examples can be studied to write custom export mechanisms.

The export mechanism can be applied to the Toolbox data: choosing the XML export
format will result in a export configuration dialog as in figure 6 on page 9. To the left is the
list of fields that can will be exported. Each field can be disabled, so it won’t be included in
the export. To the right, a small grid with export opions for this field is shown: in the case
of XML the exportedname is the name of the XML tag used to represent this field. The
second tab shows some general export options: mostly controlling the format of the output.
Obviously, the options are different for each of the export formats. Finally, the filename
can be filled in on the top of the dialog: the data will be exported to the filename given
there.

The export mechanism can also be used in Lazarus applications: installing the lazDBEx-
port export will put a lot of components on the component palette, under ’Data Export’: an
export component for each of the data formats, plus a component (TFPDataExporter)
which will show a selection and configuration dialog for each of the export formats com-
piled into the application.

To register the standard export formats in the application, a TStandardExportFormats
component exists: it can be dropped on a form, and the desired formats can be made avail-
able to the end-user by setting a simple property. Other custom-made formats need to be
registered in code.

The Toolbox application can be used to demonstrate this: dropping the TStandardExportFormats
component and the TFPDataExporter component (name it DEToolbox) is all that is
required: the Dataset property of the DEToolbox component should obviously be set
to the DBF file. Lastly, a button BExport is added with the following OnClick handler:

8

Figure 6: Exporting the toolbox contents

9

procedure TToolBoxForm.BExportClick(Sender: TObject);
begin

DEToolbox.Execute;
end;

That all that is needed to add export functionality to any DB-Aware application.

8 Creating code

The second functionality offered by the data desktop is to create Object Pascal code for
various purposes. This can range from very simple to complicated code. Currently, the
following code can be created:

1. Transform an SQL statement to a Object Pascal string constant.

2. Based on a dataset (a query result or table data), create code to create a DBF file that
can be used to keep the shown data.

3. Based on a dataset, create a class with properties corresponding to the fields in the
data. Additionally, code can be generated to load the properties from a dataset.

4. Similar to the previous item, based on a dataset, create a TiOPF class declaration with
properties corresponding to the fields in the data, and create the necessary visitor
classes to persist the class to a database.

These code generators are delivered standard with Free Pascal. As with the export formats,
custom code generators can be written and registered in the system. When selecting the
’Generate code’ functionality, a choice of available code generators is presented, and when
a generator is chosen, a configuration dialog similar to the export configuration dialog is
presented to the user.

As an example, the toolbox table can be represented by the following class:

TMyObject = Class(TPersistent)
Public

Procedure Assign(ASource : TPersistent); override;
Published

Property TXIndex : AnsiString Read FTXIndex Write FTXIndex;
Property Titel : AnsiString Read FTitel Write FTitel;
Property UTitel : AnsiString Read FUTitel Write FUTitel;
Property Rubrik : AnsiString Read FRubrik Write FRubrik;
Property Ausgabe : AnsiString Read FAusgabe Write FAusgabe;
Property Sprache : AnsiString Read FSprache Write FSprache;
Property Name : AnsiString Read FName Write FName;
Property Vorname : AnsiString Read FVorname Write FVorname;
Property Thema : AnsiString Read FThema Write FThema;
Property Bemerkung : AnsiString Read FBemerkung Write FBemerkung;

end;

The private part of the class was skipped. The complete generated code can be found in
the otoolbox.pp file on the CD accompagnying this issue. By default, the generated code
should be compilable without any editing. It is of course possible to specify a combination
of options that does not compile without additional editing; some basic checking for the
validity of the given options is done, but not all cases can be covered: for instance, it is
possible to specify a non-existing custom type for the type of a property.

10

Figure 7: The query editor

Like the export functionality, all code generators can be used in lazarus programs as well:
While not directly useful for end-user programs, it can ease the task of writing support
tools.

9 Executing queries

On databases that are SQL based, the connection tab displays a query editor. This editor
allows to create and execute queries. If the query is a select query, the result of the query
will be shown: the same export and code generating mechanisms are available as when
viewing table data. The query editor currently offers a history list, and saving/loading
queries from disk. It should look like figure 7 on page 11.

An extra code generator available in the query editor is the generation of a SQL statement
constant. If the following query is typed in the query editor:

SELECT
OD_DIENSTONDERBREKING_FK, OD_ID,
OD_OPDRACHT_FK, OD_UREN,
DO_BEGINDATUM, DO_EINDDATUM

FROM
OPDRACHTDIENSTONDERBREKING,
DIENSTONDERBREKING

WHERE
(OD_DIENSTONDERBREKING_FK=DO_ID)

Then the ’SQL constant’ code generator can create the following Object Pascal constant:

Const

11

SQL = ’SELECT’+sLineBreak
+’ OD_DIENSTONDERBREKING_FK, OD_ID,’+sLineBreak
+’ OD_OPDRACHT_FK, OD_UREN,’+sLineBreak
+’ DO_BEGINDATUM, DO_EINDDATUM’+sLineBreak
+’FROM’+sLineBreak
+’ OPDRACHTDIENSTONDERBREKING,’+sLineBreak
+’ DIENSTONDERBREKING’+sLineBreak
+’WHERE’+sLineBreak
+’ (OD_DIENSTONDERBREKING_FK=DO_ID)’;

Which can be directly copied and pasted in the Lazarus IDE.

10 Conclusion

The lazarus data desktop is a tool designed to facilitate the use of databases when working
in Lazarus. While not a shrink-wrapped solution, it’s extensible API allows to customize
it to suit the needs of the programmer using it: each programmer has his own coding style
and habits: one of the design goals of the database desktop is that any programmer should
be able to add to it’s functionality. At the same time, it aims to offer a default set of
functionality likely to cover most common situations. This aim has not yet been achieved,
many extensions are still planned:

• Support for various codepages: the observant user will have noted that the toolbox
data is displayed not correct: this is because the data was saved in a DOS code-
page, and is displayed on a display with UTF-8 codepage. This is currently under
development.

• More database functionality: support for stored procedures, triggers, generators and
external functions.

• More export formats: HTML, Excel, PDF etc.

• More code generators: e.g. creation of setup/teardown methods for fpcunit testcases.

• Tighter integration of the code generator in the Lazarus IDE.

Despite the fact that these aims have not yet been achieved, the database desktop already
offers enough functionality to justify it’s use when working with Databases and Lazarus.

12

	Introduction
	Getting started
	First steps
	Data dictionaries
	IDE support for data dictionaries
	Connecting to databases
	Exporting data
	Creating code
	Executing queries
	Conclusion

