
Large Database applications in Delphi - Part 3:
Extending TForm

March 16, 2014

Abstract

In this series of articles, some programming ideas will be discussed that can be
applied when making large database applications in Delphi, i.e. database applications
that have many screens, which operates on a database with possibly many tables. Many
aspects of such programs will be discussed; No code will be presented other than some
small code snippets to illustrate the ideas.

1 Introduction

In this article several ways of extending TForm will be presented: In large projects with
many screens, there is a lot of common functionality in the screens, especially if the ap-
plication is a MDI application or a Database applicion. Some of these functionality may
be specific to a project, e.g. some logging of user actions. Other functionality is common
to most applications: e.g. when data was modified in the form and the form is closed, the
application should ask wether this data should be saved. Since TForm is a class as any
other, OOP techniques can be used to implement functionality common to all forms in an
ancestor form. This is the idea of form inheritance. In this article this concept will be taken
a bit further.

Basically, TForm, or better, TCustomForm is a small wrapper around a Windows ’win-
dow’ object. It introduces some properties, some of which are wrappers around the win-
dow object (Top, Left, Width Height), others (Action, Scaled) are introduced by Borland
to make programming easier.

This means that much functionality which is found in common programs is simply not
present in TForm. One thing is for instance the automatic saving and restoring of the
position and size of a form. For database programs it seems logical to assume a kind of
DB-aware form, but neither of these have been implemented by Borland.

There are now 3 ways of continuing:

1. Implement all needed functionality each time in each form. When programming
many similar screens, it is obvious that this is an error-prone method, which con-
sumes a lot of time.

2. Use form inheritance as it is standard available in Delphi. This is probably the most
practiced way. There are 3 problems with this:

• When developing in team, this means there is the need for a central repository
(called the ’shared repository’ in Delphi). This also means that all paths and
driveletters must be synchronized on the developer’s computers, or the compiler
will complain about not found paths.

1

• When creating a descendent form, the ’parent’ form is included in your project
by the Delphi IDE. In a modular application as discussed in the first article of
this series, this leads to problems; the same unit will be included in all modules,
and so only one module can be loaded at a time. (The Delphi IDE suffers from
this problem itself; 2 design-time packages that contain a unit with the same
name cannot be loaded at the same time)

• TForm contains too much properties: If all screens in an application must look
the same, then some properties should not be touched by the programmer. It
would be better if the property is not there at all, so it cannot be accidentally
changed.

3. Implement a new TFormwhich has all needed functionality. This is possible because
TForm is just a descendent of TCustomFormwhich publishes all of TCustomForm’s
properties.

The last approach will be discussed in this article. However, it should be stressed that all
things which are discussed here can be done just as well by making an ordinary descendent
of TForm using standard form inheritance.

2 Starting at TCustomForm

When pressing the ’New Form’ button in the Delphi IDE, it creates a new TForm de-
scendent. What should one do if not a TForm is needed, but a self-made descendent of
TCustomForm ? And can Delphi handle forms that do not descend from TForm, but
from TCustomform ?

The answer to the latter question is yes, the Delphi IDE can handle TCustomForms.
The answer to the former question is also simple: Use a wizard which creates the desired
descendent of TCustomForm. This wizard can be written using the Open Tools API of
Delphi.

Luckily, there is no need to write such a wizard from scratch. It has already been written
- a long time ago - by Franck Musson (franck.musson@wanadoo.fr in a package
called rxform50 for Delphi 5 (Entry 14416 in Borland’s Code Central). The package can
be easily adapted so it compiles with Delphi 6. (The source code on the CD contains a
version which compiles under both versions of Delphi).

The author of this article has also extended the package so it can be used to register wizards
that create TDatamodule descendents.

All that is left to do is to create a TCustomForm or TForm descendent, and to create a
design-time package which registers a wizard to create a custom form.

How can this be done ? In the Delphi IDE, create a new run-time package (it could be
named e.g. AppForms). Then, in this package, create a new TForm (let it be called
TAppForm), and set all properties as desired. The package should compile.

In Delphi 6, there is a strict separation between run-time packages and design-time pack-
ages. Therefore, a second (design-time) package must be made. (e.g. dAppForms). In
this second package, which will be included in the Delphi IDE, the TAppForm must now
be registered in the rxform wizard system.

Therefore, a unit is created in the second package (e.g. regAppForm). In this unit,
a procedure called Register should be made. This procedure will be executed when
Delphi loads the package (only procedures called Register are executed), and as a result, a
new wizard will be installed in Delphi.

The Register procedure should look as follows:

2

Procedure Register;

Const
AppPage = ’Application Framework’;

Var
AppFormRec : TExpertRecord;

begin
FillChar(AppFormRec,SizeOf(AppFormRec),0);
With AppFormRec do

begin
Name := ’App Form’;
Author := ’Michael Van Canneyt’;
Comment := ’App Framework form’;
Page := AppPage;
Glyph := 0;
IDString := ’App.AppForm.Form’;
end;

RegisterCustomFormEx(TAppForm,’frmAppForm’, @AppFormRec);

For this code to compile, the unit that contains the form (e.g. frmAppForm) should be
added to the uses clause of the regAppForm unit, and of course the xptForms50 unit
from the rxforms50 package must be added as well.

The TExpertRecord is defined in the xptForms50 unit and is used to provide some
information about the form which is being registered. The IDString field should be
unique, it identifies the wizard which will be created in the Delphi IDE.

The RegisterCustomFormEx call is also defined in the xptForms50 unit, and does the
actual work. The first parameter is the class of the form which should be created; the second
parameter is the name of the unit in which the class resides. This name will be added to
the uses clause of the unit which is created when the wizard is activated. If this name is
wrong, the form will not compile. The last parameter is a pointer to a TExpertRecord
instance.

In the demo provided, 4 forms are registered in this way: TAppForm and a further descen-
dent TDBAppForm. TAppForm descends from TForm, and TDBAppForm descends
from TAppForm.

The forms could just as well have descended from TCustomForm; To illustrate this, two
classes TAppCustomForm and TDBAppCustomForm are registered as well using a
similar approach as illustrated above. Note that these classes have no form file (with exten-
sion .dfm) associated with them, as they are ’non-visual’ forms.

Compiling the design-time package and installing it in the Delphi IDE adds a new page to
the tabs in the ’New’ dialog, called ’Application Framework’. When it is selected, a picture
as in figure 1 on page 4 should appear.

Clicking on the desired form will create a new instance of the form, which can be used and
designed as any other form. If a TCustomForm descendent was made, not all properties
may be available. Only the explicitly published properties will be accessible in the IDE
object inspector.

3

Figure 1: The forms registered in the IDE ’New’ dialog.

3 Extending TCustomForm

When starting from TCustomForm such as in TAppCustomForm, there are 2 properties
which must be published before the created form can be handled in the IDE. The IDE
expects to be able to set a ’Caption’ and ’PixelsPerInch’ property. Both these properties
exist in TCustomForm, but must be explicitly made published - Failing to do so will result
in Delphi giving an ’unknown property error’ each time the TCustomForm descendent is
created.

Besides these 2 basic properties, it is now possible to add any possible new (publishable)
property and any needed method to the TAppCustomForm class. In this article, basically
two series of properties will be handled:

1. One series is present in all forms, and concerns printing and saving of form prop-
erties, plus navigation to other forms (as introduced in the previous article in this
series). This functionality will be implemented in TAppCustomForm.

2. The other series of properties and methods is only needed for forms that will get
datasets dropped on them. These properties and methods are mainly concerned with
the handling of datasets and fields, and will be implemented in a TAppCustomForm
descendent called TDBAppCustomForm. Some of these methods will override the
functionality introduced in TAppCustomForm.

4 Implementing support for printing

The implementation of support for printing is based on the assumption that information is
printed from the place where it is edited/maintained or viewed or in closely related forms,
e.g., a list of addresses from a company is printed from the form where these addresses are

4

entered or from the form with the general data of the company, or from the overview of
companies. From this assumption, two things follow:

1. One print-out (report) can be asked in multiple forms.

2. The reverse is also true: A form can have multiple print-outs associated with it.

For this reason, with each form, a list of reports is associated. They can, for instance, be
stored in a stringlist. (A collection could be used as well). The property which represents
this list of reports (introduced in TAppCustomForm) will be called Reports.

A second property is introduced which is called DefaultReport. It contains the name
of the report which is printed by default. In a screen with an overview of customers, two
reports could be defined: A address list of the customers, or all the available data for the
currently selected customer. The DefaultReport property determines which of the two
reports is printed by default.

To make this work at runtime, the main application form (The MDI form) contains a print
menu and associated toolbutton. When this button is pressed (or the menu is activated) the
list of associated reports is scanned, and the user is asked which report actually should be
printed. Or, the toolbutton could have a style ’tbsDropDown’, in which case a popup menu
can be associated to it, which contains the names of the reports which are associated to the
currently active form. The user can then select at once which print-out he or she wants.
Or, if the button is pressed without choosing an item, the default report (obtained from the
DefaultReport property) is printed.

In this article, the implementation using stringlists is presented: Each string in the stringlist
contains a Name=Value pair, where the Name part is what is shown to the user, the
Value part contains the actual filename of the report that is to be printed.

The relevant code in the declaration of TAppCustomForm can look as follows:

TAppCustomForm = Class (TCustomForm)
private

FReports : TStrings;
FDefaultReport : String;

Published
property Reports : TStrings Read FReports Write SetReports;
property DefaultReport : String Read FDefaultReport

Write FDefaultReport;

In the Create constructor of TAppCustomForm, the stringlist is created, and it is freed
again in the destructor Destroy.

The strings property can be edited with the standard strings property editor of Delphi, but
a customized property editor can also be made. For The DefaultReport property, a
second customized property editor can be made as well. How to do this will be shown in a
later article.

Now that the design time properties are ready, we must implement the actual printing. Until
now, nothing has been said about the format of the reports or print-outs. For our discussion,
this is not really relevant, as the printing system should determine this.

However, we will assume that the print-out or report is customizable by means of a series
of parameters. These parameters can be anything.

• They could describe the type of document: A Quickreport report, a FastReport report,
a Word document, an excel sheet, a text file - anything printable.

5

• They could describe the contents to be printed. In the case of a quitably parametrized
quickreport, this could be a parameter that should be inserted in a query; e.g. to print
an invoice, the quickreport’s underlying dataset could be parametrized so it accepts
an invoice number as a parameter. The form should then pass the invoice number
of the currently displayed invoice to the printing engine, which can feed it to the
quickreport’s dataset. For a list of pupils in a school class, the name of the class
should be passed on.

For what the parameter is used and how it is implemented in the printing system, will not be
treated here, the important idea is that the print-out or report can be parametrized - and most
often it will be parametrized. Generally speaking, in a database application, the parameter
will be the value(s) of the unique key field(s) of the record to be printed.

In the application framework developed by the author, printing is implemented using Quick-
report reports. The designs of the reports are stored in files on disk, and the printing engine
reads the report from disk, looks at a query it should execute, fills in any needed parameters,
opens the query and then prints the report. The user has an end-user report designer which
allows him or her to design her own reports and store them on disk. Of course, the program
is delivered with a series of standard reports - namely the reports of which the names are
stored in the form.

This means that when the user asks for a printout the following sequence of actions should
be carried out:

1. Find out whether the application is ready to print (e.g. save data, prepare some
temporary data)

2. Find out whether maybe another report should be printed - depending on the state of
the form or the record which is currently active.

3. Collect any parameters for the print. It will be assumed that these parameters can be
stored in a stringlist, as a set of Name=Value pairs. Here again, another mechanism
could be used, e.g., using a collection.

4. Feed the report filename and any parameters to the printing routine.

5. Possibly clean up (delete temporary data etc.) after printing.

The collecting of parameters for a print essentially exists of two parts:

1. A set of standard parameters for this form. These can be stored in a design-time
property of type TStrings, they will be called ’ReportParams’.

2. A event handler which is called before the printing starts. This handler gets passed
the list of parameters, and can modifiy this list by adding or modifying values in the
list.

This scheme can be implemented using a number of procedures and events.

The main entry point is the Print function, which is called from the OnClick handler
from the print toolbutton or menu entry.

procedure TAppCustomForm.Print(ReportName: String);

Var
Params : TStrings;
FileName : String;

6

begin
If (Not DoBeforePrint(ReportName)) or (ReportName=’’) then

exit;
If FReports.IndexOfName(ReportName)=-1 then

Raise Exception.CreateFmt(SErrNoSuchReport,[ReportName]);
Params:=TStringList.Create;
Try

Params.Assign(ReportParams);
DoGetPrintParams(ReportName,Params);
FileName:=DoGetPrintFileName(ReportName);
DoPrint(FileName,Params);
DoafterPrint(ReportName,Params);

finally
Params.Free;

end;
end;

The first thing that is done is the calling of DoBeforePrint; This function will set up
anything needed before printing can start - it can also possibly change the name of the
report that will be printed. Then a stringlist is created which will contain the parameters for
the print. After the list is created, the form’s default parameters (reportParams) are copied
into it. After that is done, DoGetPrintParams is called. This virtual method calls an
event handler which allows the programmer to add or modify the list of parameters. (e.g.
by asking the user a question, and, based on the answer, insert some extra parameters.)

After the parameters are fetched, an extra handler is called which allows the programmer to
change the name of the file that will be used. This is done in the DoGetPrintFileName
method which will be discussed below. However, By default, this method will return the
filename stored in the Reports property of the form.

After this the file is actually printed. This is implemented in the DoPrint method.

When the DoPrint method returns, the DoAfterPrint method is called to do any
cleaning up, if necessary.

The DoBeforePrint function which is used to decide whether a print is possible. By
default it calls a BeforePrint event handler. It looks as follows:

type
TBeforePrintEvent = Procedure (Sender : TObject;

Var ReportName : String;
Var AllowPrint : Boolean) Of Object;

function TAppCustomForm.DoBeforePrint(var ReportName: String): Boolean;
begin

result:=True;
If Assigned(FBeforePrint) then

FBeforePrint(Self,ReportName,Result);
If (ReportName=’’) then

Result:=False;
end;

This function simply calls the BeforePrint handler (of type TBeforePrintEvent)
and checks the result.

The DoGetPrintParams procedure can be used to add values to the parameters for the
report. By default, it calls an OnGetPrintParams event handler of type TGetPrintParamsEvent:

7

Type
TGetPrintParamsEvent = Procedure (Sender : TObject;

ReportName : String;
Params : TStrings) of Object;

procedure TAppCustomForm.DoGetPrintParams(ReportName: String;
Params: TStrings);

begin
If Assigned(FOnGetPrintParams) then

FOngetPrintParams(Self,ReportName,Params);
end;

The DoGetPrintFileName method is used to determine the filename of the report. By
default it returns the filename stored in the Reports property, but an OnGetPrintFileName
event handler can be installed to change this filename.

Type
TGetReportFileNameEvent =

Procedure (ReportName : String;
Var ReportFileName : String) Of Object;

function TAppCustomForm.DoGetPrintFileName(ReportName: String): String;
begin

Result:=Reports.Values[ReportName];
If Assigned(FOnGetPrinFileName) then

FOnGetPrintFileName(Self,Result);
end;

This can be used to have a single entry in the list of reports, but one which is associated
with a series of reports - which report will be printed can depend on the form state or some
values of fields in the current record.

• One way in which this is used is when the name of the file to be printed resides in
a field of the current record. A single ’Print’ entry in the Reports property of the
form. When this is printed, the name of the form to be printed is retrieved from the
current record in the GetPrintFileName event handler.

• Another possibility is when the report to be printed is created on-the-fly in some tem-
porary file, and the name of the femporary file is passed on in the GetPrintFileName
event handler.

After the report has been printed, any clean-up can be done in the AfterPrint event
handler (of type TAfterPrintEvent), which is called in the DoAfterPrintmethod:

Type
TAfterPrintEvent = Procedure (Sender : TObject;

ReportName : String;
Params : TStrings) Of Object;

function TAppCustomForm.DoAfterPrint(ReportName: String;
Params : TStrings): Boolean;

begin
If Assigned(FAfterPrint) then

8

FAfterPrint(Self,ReportName,Params);
end;

This can be used to remove some temporary data from the database, or delete a temporary
file which was created.

The DoPrint method does the actual print. Its implementation depends on the actual
printing method which is used.

procedure TAppCustomForm.DoPrint(ReportName: String; Params: TStrings);
begin

// Actually print
end;

It is not hard to make a small screen which allows the user to add his own report or print-out
definitions to the list of reports, or to change the value of the DefaultReport property.
This screen must simply present the Reports property of the form to the user and allow
him or her to add definitions to the list. The same form which is used in the design-time
property editor for the Reports property could be used for this. Also the ’DefaultReport’
property should be changeable by the user.

5 Saving the form state

When users close a screen, and open it again later on, they expect some of the screen
settings to be saved on exit and restored again when the form is re-opened:

1. The size and position of the form.

2. If there is a database grid: The size and position of the various columns in the grid.

3. If the user can determine the sort order in a grid: What the last used sort order was.

4. If the user changed the ’DefaultReport’ property of the form: The new value.

5. If the user added some own report definitions to the list of known reports, these
should be saved as well.

6. For a form where data is edited: Default values for the various fields.

7. The user can be allowed to determine which control should get focus when a new
record is entered in a dataset. This setting can be saved as well.

8. For faster navigation, the users are allowed to set which data controls have their
tab-stop property set to ’True’. This information also is saved.

9. In most forms where an overview of data is presented in a dataset-aware grid, the
user is allowed to add any related information to the grid: Any field from a related
table can be added to the dataset and is shown in the grid. The list of fields that are
added this way is stored as well.

10. If the user can define some filters on data shown in a grid: the definition of the filters
should be saved, and the last active filter as well.

This information can be stored for any form in the application by some global routines in
the parent form. Sometimes a form needs to save form-specific settings (the ’Checked’
property of some checkbox or so); For this, 2 event handlers can be implemented: One

9

to save the settings (when the form is closed), one to restore them (when the form is re-
opened).

In addition to that, some application-wide data are also saved on exit and restored when the
application is restarted. This information is stored along with the main (MDI) form of the
application.

To have this functionality present in all forms of the application, it is obvious that it should
be implemented in TAppCustomForm. There exist some components, e.g. TFormStorage
in RXLib or TOvcFormState in TurboPower’s Orpheus component set, and probably
others as well. A solution would be to drop such a component on TAppForm and to add
all properties that should be saved. However, it can be done differently.

For allow the programmer to customize the saving of settings, a pair of OnSaveSettings
and OnRestoreSettings event handlers are added to the TAppCustomForm imple-
mentation. This will allow the programmer to save form-specific data as well.

Restoring the form state and saving it should be done when the form is shown and when it
is closed, respectively. To do this, the DoClose and DoShow methods of TCustomForm
can be overridden:

Saving the settings is done in the DoClose method:

procedure TAppCustomForm.DoClose(var Action: TCloseAction);
begin

inherited;
If (TAction=caFree) and not (csDesigning in ComponentState) then

SaveFormSettings;
end;

The Inherited call will execute the OnClose handler of the form. Only when this call
returns caFree in the Action parameter, i.e. when the form will actually be closed and
destroyed, should the settings be saved.

The restoring of the form settings happens in the DoShow method of TAppCustomForm:

procedure TAppCustomForm.DoShow;
begin

if not (csDesigning in ComponentState) then
RestoreFormSettings;

Inherited;
end;

The actuall saving and restoring of the settings can happen in many ways. In the appli-
cation framework developed by the author, a TFormStorage component from RXLib
is used; The main reason for this is that the application uses the RXLib components, and
specifically the TRXDBgrid component, which has built-in support for saving the grid
state through a TFormStorage component. However, the same can be accomplished by
using a simple TIniFile or TRegistry component. In this article an implementation
using TCustomIniFile is presented, but the same can be done using TRegistry.

When saving form settings, two things must be done:

1. Decide whether the form settings must be saved at all. This is mainly for optimization
issues: The settings could be stored in a database. In that case, the saving of the
settings will take time, and should be avoided when possible. Another reason for this
step is that there may be some user preferences that control the saving of settings:
Don’t save settings at all, save some settings, or save all settings.

10

2. if step 1 determined that the settings must be saved: Actually save the settings.

The whole should be in a Try..Except block - if the saving of settings fails and raises
an exception, the form will not close, and it will not be possible to close the form at all
since any attempt to close the form again will fail.

This can be implemented as follows:

procedure TAppCustomForm.SaveFormSettings;

Var
F : TCustomInifile;

begin
Try

If NeedSaveSettings then
begin
F:=TIniFile.Create(Format(’%s\%s.ini’,[SettingsPath,ClassName]);
try

DoSaveSettings(F);
finally

F.Free;
end

except
On E : Exception do

MessageDlg(Format(SErrSavingSettings,[E.Message]),mtWarning,mkOK,0);
end;

end;

After determining whether the settings must be saved, a TiniFile object is created. In
the above approach, a .ini file per form will be created in the directory determined by the
SettingsPath variable. The name of the file is taken to be the classname of the form
- if multiple instances of the same form are created and shown at the same time, they will
write to the same file, which would not be the case if for instance the Name property of the
form were chosen. Note that another approach using a single .ini file could be used, or the
registry could be used.

The NeedSaveSettings function determines whether any settings need saving. This
is definitely the case if the programmer has attached a OnSaveSettings handler, and
could be further controlled by a global boolean variable SaveSettingsOnExit:

function TAppCustomForm.NeedSaveSettings : Boolean;

begin
Result:=SaveSettingsOnExit or Assigned(FOnSaveSettings);

end;

This function is virtual so it can be overridden in descendent form classes.

If the NeedSaveSettings function returns true, then the DoSaveSettings proce-
dure is executed:

Const
Section = ’PositionSize’;

procedure TAppCustomForm.DoSaveSettings(Ini : TCustomIniFile);

11

begin
With Ini do

begin
WriteInteger(Section,’WindowState’,ord(WindowState));
If (WindowState=wsNormal) then

begin
WriteInteger(Section,’Top’,Top);
WriteInteger(Section,’Left’,Left);
WriteInteger(Section,’Width’,Width);
WriteInteger(Section,’Height’,Height);
end;

If ActiveControl<>Nil then
WriteString(Section,’ActiveControl’,ActiveControl.Name)

else
WriteString(Section,’ActiveControl’,’’);

end;
If Assigned(FOnSaveSettings) then

FOnSaveSettings(Self,Ini);
end;

As the last step, the OnSaveSettings handler, if one is assigned, is executed. It is of
type TSettingsEvent:

Type
TSettingsEvent = Procedure (Sender : TObject;

Ini : TCustomIniFile) of Object;

The Ini parameter can be used by the programmer to save any settings he sees fit. Ob-
viously, the section with the position and size of the form should not be touched by the
OnSaveSettings handler.

Restoring the form’s state is simply the reverse action of saving the settings:

procedure TAppCustomForm.RestoreFormSettings;

var
F : TCustomIniFile;

begin
try

If NeedRestoreSettings then
begin
F:=TIniFile.Create(Format(’%s%s%s.ini’,[SettingsPath,

PathDelimiter,
ClassName]);

try
DoRestoreSettings(F);

finally
F.Free;

end
except

On E : Exception do
MessageDlg(Format(SErrRestoringSettings,[E.Message]),

mtWarning,mkOK,0);

12

end;
end;

Needless to say that the state-restoring process should open the same .ini file as the state-
saving process.

The NeedRestoreSettings is similar to the NeedSaveSettings function:

function TAppCustomForm.NeedRestoreSettings : Boolean;

begin
Result:=SaveSettingsOnExit or Assigned(FOnRestoreSettings);

end;

The reason for implementing this check in 2 separate functions is that the NeedSaveSettings
function could be optimized to return False when no form settings have changed after
they were restored. In case the settings are stored in a database, this will save valuable
time.

The actual restoring of the settings is straightforward:

procedure TAppCustomForm.DoRestoreSettings(Ini : TCustomIniFile);

Const
Section = ’PositionSize’;
I : Integer;
S : String;
C : TWinControl;

begin
With Ini do

begin
I:=ReadInteger(Section,’WindowState’,Ord(WindowState));
WindowState:=TWindowState(I);
If (WindowState=wsNormal) then

begin
Top:=ReadInteger(Section,’Top’,Top);
Left:=ReadInteger(Section,’Left’,Left);
Width:=ReadInteger(Section,’Width’,Width);
Height:=ReadInteger(Section,’Height’,Height);
end;

S:=ReadString(Section,’ActiveControl’,’’);
If (S<>’’) then

begin
C:=TWinControl(FindComponent(S));
If (C<>Nil) then

ActiveControl:=C;
end;

end;
If Assigned(FOnRestoreSettings) then

FOnRestoreSettings(Self,Ini);
end;

Note that the restoring process does not destroy any design-time settings in case the .ini file
happens to be empty.

13

Descendent screens can now override the NeedRestoreSettings and the NeedSaveSettings
functions as well as the DoRestoreSettings and DoSaveSettings to save and re-
store additional settings. For instance for a DB-aware descendent of TAppCustomForm
this will be used to store several settings.

Note that more settings can be saved and restored than have been shown here; Which
properties are saved depends entirely on the implementation of TAppCustomForm. For
instance the value of the DefaultReport property introduced earlier could be saved. If
the user is allowed to add report definitions to the reports property, then these could be
saved as well.

6 Implementing a DB-Aware form.

The functionality introduced so far is not concerned with datasets; Not all forms in an appli-
cation are concerned with datasets; Those that do, however, also can have some functional-
ity in common, and this functionality can be implemented in a separate TAppCustomForm
descendent.

What functionality can be introduced in a DB-aware form ? There are basically 2 kinds of
functionality which can be introduced:

1. Visual functionality: DB-Aware screens can introduce a uniform look: A navigator
bar at a fixed location, a status bar showing the current state of the dataset, an edit
control which can be used for looking up records.

2. Non-visual functionality: When closing the form, the form should check whether
there is any unsaved data (i.e. a dataset which is still in edit or insert mode) and
take appropriate action if there is such data. It could save and restore additional
information about the datasets. For forms that link to other forms, functionality can
be introduced that establishes master-detail links between forms.

This article will be concerned mostly with the latter kind, as the TAppCustomForm de-
scendent is not visual, it will introduce only non-visual functionality. The following func-
tionality will be introduced:

• Opening of datasets that are present on the form when the form is opened. This is
especially important in applications where multiple screens work on a single database
connection.

• When the form is closed, the form will look for unsaved data and will deal with it in
the appropriate way.

• The printing process will be enhanced: Field values can be passed as parameters to
the printing system.

• The form saving/restoring process will be enhanced: Some additional properties will
be saved.

To illustrate the ideas, a TAppDataset descendent of TClientDataset, TQuery or
TADOQuery is implemented which has some additional properties:

AutoOpen This is a boolean property which determines whether the dataset will be opened
automatically at runtime or not.

DataSource This (dummy) property is introduced only in a TClientDataset descen-
dent, as it is standard implemented in TQuery or TDAOQuery.

14

DefaultValues This is a series of default values that are stored in the fields when the dataset
goes to insert mode. This overlaps a bit with the DefaultExpression prop-
erty of TField, but the disadvantage of that property is that it is not observed in all
TDataset descendents. The implementation here works always, and happens at
the time of insert, i.e. the user is aware of them as soon as the insert happens. This
is in contrast with the Default values introduced in a database SQL server, which are
only applied after the record is posted in the database.

FocusControl This is a property of type TWinControl. If it is set, the control indicated
will get focus when the dataset goes to insert mode. This way the user starts the input
of a new record always with the same field. The user is permitted to change the value
of this property at runtime.

Furthermore, TAppDataset introduces 2 methods SaveSettings and RestoreSettings,
which save the DefaultValues and FocusControl setting.

More functionality can of course be introduced, but to illustrate the ideas, the above will be
sufficient. The TDBAppCustomForm knows about the TAppDataset properties and is
able to handle them. For instance, it could be made to respond to a keystroke combination
which would save all current field values as default values, or another combination which
would only do this for the field whose value is edited in the control which currently has
focus.

7 Passing field values to the printing system

The DB aware form introduces functionality which interacts with the printing system. More
specifically, it gives design-time functionality to pass field values to the printing system as
report parameters. To be able to do this, a way is needed to enumerate report parame-
ters and the fields from which they should be filled. This will be done in a collection,
TFieldToReportParams, which has items of class TFieldToReportParamsItem.
This class is defined as follows:

TFieldToReportParamsItem = Class(TCollectionItem)
private

FDataField: String;
FReportParam: String;
FDataSource: TDataSource;

Published
Property DataSource : TDataSource Read FDataSource Write FDataSource;
Property DataField : String Read FDataField Write FDataField;
Property ReportParam : String Read FReportParam Write FReportParam;

end;

The meaning of these properties should be clear: When the parameters for the print-out
are collected, each of the items in the collection will be examined, and the value of the
DataField field in the dataset of Datasource will be added to the report parameters
with name ReportParam. By adding items to the collection and setting the appropri-
ate properties, the programmer can decide what field values get passed on to the printing
system as parameters.

The collection is a simple TCollection descendent which contains a reference to the
form that maintains it.

TFieldToReportParams = Class(TCollection)

15

Private
FForm : TDBAppCustomForm;

end;

The printing system collects parameters through the DoGetPrintParams method. This
method is overridden in TDBAppCustomForm and is a simple loop:

procedure TDBAppCustomForm.DoGetPrintParams(ReportName: String;
Params: TStrings);

Var
I : Integer;
S : String;

begin
Inherited;
For I:=1 to FFieldToReportParams.Count-1 do

With FFieldToReportParams.Items[i] as TFieldToReportParamsItem do
begin
S:=DataSource.Dataset.FieldByName(DataField).asString;
Params.Values[ReportParam]:=S;
end;

end;

To make sure that the data is present in the database when printing, a boolean PostOnPrint
property is introduced in TDBAppCustomForm. If this property is set to True, then the
form will save all datasets before printing.

This is done by overriding the DoBeforePrint method:

function TDBAppCustomForm.DoBeforePrint(var ReportName: String): Boolean;
begin

Result:= Inherited DoBeforePrint(reportName);
If (Result and PostOnPrint) then

PostDatasets(False);
end;

The PostDatasets method will be discussed later. If an error occurs during the posting
of the datasets an exception will be raised and no printing will occur.

8 Opening and closing all datasets

The opening and correct closing of datasets is also something that is taken care of by the
form. In a database application, the location of the database or the remote server (for
MIDAS Client datasets) is often variable, and should be set before the datasets are opened.
This means that the Datasets on the form should be closed when the form is designed. If
they were active when the form was last saved in the IDE, the form loading mechanism
will attempt to open them again. If the database object is not yet properly set up, this will
lead to problems.

Therefore, the form should do whatever is necessary to initialize the database connection,
and only when this is done, all datasets should be opened. To minimize loading time,
datasets that are in a master-detail relationship should be opened in the correct order; If
not, there will be unnecessary reloading of data: If dataset A is opened first, and it needs

16

parameters from Dataset B (for instance a parameter with name CustID) it attempts to
retrieve these. If Dataset B is still closed, then the value of the parameter will be Null.
When Dataset B is opened afterwards, it will notify Dataset A of this fact, causing dataset
A to reload itself, this time with an existing value for the parameter CustID. If Dataset
B is opened first, then Dataset A will be loaded only once, since the correct value for the
CustID parameter will be retrieved when dataset A is opened.

A second aspect to consider is that maybe not all datasets should be opened when the
form is opened, e.g. a query used to look up special values. To be able to customize
this, a boolean property AutoOpen is introduced in TAppDataset which controls the
automatic opening of the dataset.

To enable the programmer to take specific actions before and after all datasets have been
opened, two event handlers are defined: BeforeOpenDatasets and AfterOpenDatasets.
The former could be used to set up extra parameters in the datasets, the other can be used
to set up various display properties in the form such as displaying record counts etc.

With all needed properties in place, the DoShowmethod can be overridden in TDBAppCustomForm:

procedure TDBAppCustomForm.DoShow;
begin

inherited;
OpenDatasets;

end;

The OpenDatasets method is a simple loop and looks as follows:

procedure TDBAppCustomForm.OpenDatasets;

Var
I : Integer;

begin
DoBeforeOpenDatasets;
For I:=0 to ComponentCount-1 do
If Components[i] is TAppDataset then

OpenDataset(Components[i] as TAppDataset);
DoAfterOpenDatasets;

end;

The DoBeforeOpenDatasets and DoAfterOpenDatasets simply call the corre-
sponding event handlers if they are installed:

procedure TDBAppCustomForm.DoBeforeOpenDatasets;

begin
If Assigned(FBeforeOpenDataSets) then

FBeforeOpenDataSets(Self);
end;

procedure TDBAppCustomForm.DoAfterOpenDatasets;
begin

If Assigned(FAfterOpenDataSets) then
FAfterOpenDataSets(Self);

end;

17

The OpenDataset method contains the needed logic to open a dataset, respecting any
master-detail relations that might be present:

procedure TDBAppCustomForm.OpenDataset(DataSet : TAppDataSet);

begin
With Dataset do

If Not Active and AutoOpen then
begin
If Assigned(DataSource) and

Assigned(Datasource.Dataset) and
(Datasource.Dataset is TAppDataset) then
OpenDataset(Datasource.Dataset as TAppDataset);

Open;
end;

end;

As can be seen, it recursively calls itself if it needs to open a master dataset in a master-
detail relationship.

When closing a form with datasets where the user can edit data, a check should be done to
see whether all data is saved, and if so, close all datasets. If not, appropriate action should
be taken:

1. Cancel all edits automatically.

2. Post all edits automatically.

3. Ask the user what should be done.

The choice between these three options can be left to the user by introducing a global
variable ModifiedAndCloseAction:

type
TModifiedAndCloseAction = (macPost,macCancel,macConfirm);

Var
ModifiedAndCloseAction : TModifiedAndCloseAction = macConfirm;

It is not hard to allow the user to set the value of this variable in a globale preferences dia-
log. The programmer can override this value through a boolean property PostOnClose
which, if set to True, will force all datasets to be posted if the form is closed. This may
sometimes be necessary to force integrity of the database.

The check for unsaved data can be implemented in the CloseQuery function. This func-
tion is implemented in TCustomForm and can be overridden. It should return True if
the form can be closed, and False if not;

function TDBAppCustomForm.CloseQuery: Boolean;
begin

Result:=Inherited CloseQuery;
If Result then

CloseQuery:=CloseAllDatasets;
end;

The call to inherited will make sure the OnCloseQuery handler installed by the program-
mer is called. If this returns True, then the saved-data check is done. If the programmers
handler returns False, the check is omitted.

18

The CloseAllDatasets returns true if all datasets were already posted or have been
posted succesfully, and returns False if the posting of one of the datasets failed. It works
as follows:

function TDBAppCustomForm.CloseAllDatasets: Boolean;

Var
I : integer;

begin
Result:=Not DatasetsInEdit;
If (Not Result) then

if PostOnClose then
result := PostDatasets(False)

else
Case ModifiedAndCloseAction of

macCancel : Result:=Canceldatasets;
MacPost : Result:=PostDatasets(False);
MacConfirm : case MessageDLG(SSaveData,mtInformation,mbYesNoCancel,0) of

mrNo : Result := CancelDatasets;
mryes : result := PostDatasets(True);

else
result := false;

end;
end;

If Result then
For I:=0 to ComponentCount do

If Components[i] is TDataset then
(Components[i] as TDataset).Close;

end;

The first thing that the CloseAllDatasets method does, is check whether there are
still datasets in edit mode; If so, then all datasets on the form are posted or canceled, or the
user is queried for the needed action.

The DatasetsInEdit function is a simple loop which checks whether a dataset is in
edit mode (i.e. its state is dsEdit or dsInsert):

function TDBAppCustomForm.DatasetsInedit: Boolean;

var
I : Integer;

begin
I:=0;
Result:=False;
While (I>=0) and Not Result do

begin
If Components[i] is TDataset then

Result:=TDataset(Components[i]).State in dsEditModes;
Dec(i);
end;

end;

Canceling of edits is also implemented in a simple loop:

19

function TDBAppCustomForm.CancelDatasets: Boolean;

var
I : Integer;

begin
For I:=0 to ComponentCount-1 do

If Components[i] is TDataset then
With TDataset(Components[i]) do

If State in dsEditModes then
Cancel;

Result:=True;
end;

The actual posting of the datasets is also a loop. As a parameter it accepts a boolean
which queries the user whether the modified data should be saved. This parameter will be
set to False if the user already was queried, and will be set to True if the posting is
automatically executed:

function TDBAppCustomForm.PostDatasets(NoConfirmation : Boolean): Boolean;

Var
I : Integer;

begin
Result:=True;
I:=ComponentCount-1;
While Result and (I>=0) do

begin
If Components[i] is TDataset then

Result:=DoPost(TDataset(Components[i]) ,NoConfirmation);
Dec(I);
end;

end;

The DoPost does the actual posting of the data. It returns True if the dataset was posted,
false if not.

function TDBAppCustomForm.DoPost(DS : TDataset; NoConfirmation : Boolean) : Boolean;

begin
Result:=Not (DS.State in [dsEdit,dsInsert]);
If Not Result then

If NoConfirmation or ConfirmPost Then
begin
DS.Post;
Result:=True;
end;

end;

The ConfirmPost function simply asks the user whether the data should be posted and
returns True if the dataset should be posted:

function TDBAppCustomForm.ConfirmPost : Boolean;

20

begin
Result:=MessageDLG(SSaveData,mtInformation,mbYesNoCancel,0)=mrYes;

end;

9 Saving additional form state data

Another functionality of the DB-aware form is that some properties of TAppDataset are
also saved and restored when the form is closed and opened, respectively.

To do this, the DB-Aware form overrides the DoRestoreSettings and DoSaveSettings
methods:

procedure TDBAppCustomForm.DoRestoreSettings(Ini: TCustomInifile);

Var
I : Integer;

begin
inherited;
For I:=0 to ComponentCount-1 do

If Components[i] is TAppDataset then
TAppdataset(Components[i]).RestoreSettings(Ini);

end;

procedure TDBAppCustomForm.DoSaveSettings(Ini: TCustomIniFile);

Var
I : Integer;

begin
inherited;
For I:=0 to ComponentCount-1 do

If Components[i] is TAppDataset then
TAppdataset(Components[i]).SaveSettings(Ini);

end;

As can be seen, the actual saving of the dataset properties is delegated to the TAppDataset
class.

To make sure that these methods are called, the form should override the NeedSaveSettings
and NeedRestoreSettings:

function TDBAppCustomForm.NeedRestoreSettings: Boolean;
begin

Result:=(Inherited NeedRestoreSettings) or HasAppDatasets;
end;

function TDBAppCustomForm.NeedSaveSettings: Boolean;
begin

Result:=(Inherited NeedSaveSettings) or HasAppDatasets;
end;

The HasAppDatasets simply checks whether any TAppDataset component was

21

dropped on the form. This check could be refined by checking whether the TAppDataset
component actually needs to save or restore a setting.

function TDBAppCustomForm.HasAppDatasets: Boolean;

Var
I : Integer;

begin
I:=ComponentCount-1;
Result:=False;
While not result and (I>=1) do

begin
Result:=Components[i] is TAppDataset;
Dec(i);
end;

end;

The SaveSettings and RestoreSettings methods of the TAppDataset compo-
nent do the actual work of saving and restoring settings. They try to do this as optimal as
possible:

procedure TAppDataset.RestoreSettings(Ini: TCustomInifile);

Var
I : Integer;
S, Section : String;

begin
With Ini do

begin
If Not ReadOnly then

begin
Section:=Name+SDefaults;
FDefaultValues.Clear;
I:=ReadInteger(Section,’Count’,-1);
While (I>=0) do

begin
S:=ReadString(Section,Format(’Field%d’,[i]),’’);
If S<>’’ then

FDefaultValues.add(StringReplace(S,’,’,’=’,[]));
Dec(i);
end;

end;
Section:=Name+SPreferences;
S:=ReadString(Section,’FocusControl’,’’);
If (S<>’’) then

FocusControl:=Owner.FindComponent(S) as TWinControl;
end;

end;

Note that each TAppDataset component retrieves and stores its settings in two private
sections of the .ini file which are composed of the name of the component. This ensures
that the settings of 2 datasets will not overwrite each other.

22

The saving of the settings is the opposite process:

procedure TAppDataset.SaveSettings(Ini: TCustomInifile);

Var
I : Integer;
S,Section : String;

begin
With Ini do

begin
If Not ReadOnly then

begin
Section:=Name+SDefaults;
EraseSection(Section);
WriteInteger(Section,’Count’,FDefaultValues.Count);
for I:=0 to FDefaultValues.Count-1 do

begin
S:=StringReplace(FDefaultValues[i],’=’,’,’,[]);
WriteString(Section,Format(’Field%d’,[i]),S);
end;

end;
Section:=Name+SPreferences;
If Assigned(FocusControl) then

WriteString(Section,’FocusControl’,FocusControl.Name)
else

DeleteKey(Section,’FocusControl’);
end;

end;

The actual use of these TAppDataset properties will be discussed in a later article.

Note that, as argued earlier, more properties could be saved, for example, the sizes and
positions of columns in a TDBGrid, or the key of the current record, so the dataset can be
repositioned to this record when it is opened again. The implementation of such things is
quite straightforward and will not be presented here.

10 Conclusion

In this article an attempt was made to show how to add some common functionality to forms
that are part of a large (database) application. The introduction of this functionality in a
parent form ensures that the functionality is present in all forms, without any extra work on
behalf of the programmer. Implementing this functionality not in a TForm descendent but
in a custom form makes sure that the functionality will never be inadvertently overridden
by a missing call to Inherited in a descendent TForm instance.

This, combined with some wizards, makes the life of the programmer easier: e.g. the check
for unsaved data is handled by the form and need not be implemented over and over again.
Similarly, saving of settings is reduced to a double click on the form’s OnSaveSettings
and OnRestoreSettings event handlers in the Delphi IDE. This approach also puts
more power in hands of the user, which can customize the (uniform) look and feel of his
application: The saving and restoring of form properties make the user experience more
smooth, if enough form properties are saved.

23

In the next article more ways of letting the user control the application will be presented by
making full use of the possibilities of TClientDataset.

24

	Introduction
	Starting at TCustomForm
	Extending TCustomForm
	Implementing support for printing
	Saving the form state
	Implementing a DB-Aware form.
	Passing field values to the printing system
	Opening and closing all datasets
	Saving additional form state data
	Conclusion

