in this series of articles, some programming ideas will be discussed that can be applied
when making large database applications in Delphi, i.e. database applications that have
many screens, which operates on a database with possibly many tables. Many aspects of
such programs will be discussed; No code will be presented other than some small code
snippets to illustrate the ideas.

1 Introduction

In this article, a different way of handling forms and navigation between forms is presented.
The article will mainly be concerned with the question "How to pop up a new form with
information related to the currently visible form?’, mainly in the setting of large database
applications where lots of related information exists.

In a database application, there are lots of occasions where one must put a button on a form
which will open a screen with detailed information:

e When presenting an overview of customers (e.g. in a grid), a button may appear on
the form which opens a screen that allows to edit the addresses associated with this
client, or some screen to manage telecom information. As the user scrolls in the over-
view of clients, the detail information should be refreshed to reflect the information
of the currently selected client, as is customary in master-detail relations.

e In a school administration application, there may be an overview of the courses;
Next to the overview, there could be a button which opens a screen which gives an
overview of the pupils in the school which are currently following this course.

e A list of pupils can have many such buttons: A button to show the personal data of the
pupil (date of birth, gender, name of parents etc), another button to show addresses
of the pupil, a list of courses the pupil is currently following, a list of un-payed bills
the pupil may have, etc.

All these situations are cases where a master-detail relationship exists, at the level of data-
sets, and hence at the level of the forms as well.

What is more, often the same details can be accessed from different forms: e.g. details
about which courses a student follows can be accessed from the overview of pupils cur-
rently inscribed in the school, but also from the overview of pupils in a group. These two
overviews are implemented in different screens, but the details are the same. The *mas-
ter view’ which will provide the ID of a Pupil whose course should be shown, is simply
different.

This kind of situations is common in any database program where a lot of interrelated
tables are present. In one of our database programs, there are currently 297 forms, with
181 master-detail links defined between forms. Usually, creation of a form to show details
of data already on screen is implemented in a OnC11ick handler of some button:

TMasterForm.DetailsButtonOnClick (Sender : TObject);

Var
F : TDetailForm;
cs : TCursor;
begin

cs:=Screen.Cursor;
Screen.Cursor:=crHourGlass;

Try
// Create new instance of form.
F:=TDetailForm.Create (Self);
// Set up master—-detail relationship.
F.DetailDataset.DataSource:=Self.MasterDataSource;
// Show the form.
F.Show;

Finally
Screen.Cursor:=cs;

end;

end;

Additional actions can of course be taken, this depends on the case. The fact that this code
is more or less the same for all cases where such master-detail relations should be made, is
sufficient reason to separate out this code and put it into some central routines.

In general, it is so that the data shown on the ’detail’ form will be dynamically updated
when the user scrolls in the 'master’ form. However, this does not always have to be so,
and it can be useful sometimes not to update the details when browsing in the master data.
One can take this a step further: The user should be able to decide whether or not the
form with details should indeed keep track of changes in the position of the dataset on the
’master’ form. This may not always be desirable:

e In an overview with available courses in a school, people may want to open 2 over-
views of pupils following a course, for two different courses, to get a visual idea of
which pupils are following both courses.

e In an overview of pupils, one may wish to see the address data of a brother and sister
at the same time, in order to compare the addresses.

In the above cases, changing the current record in the the 'master’ form, should not have
any effect on the data shown in the *Detail form’, as it would never be possible to show the
information of different pupils at the same time.

Another aspect of master/detail linked data is how the detail form should be presented on
the screen: The usual approach is to show the detail form as a separate form. This form
can be shown nonmodal (useful when the details should follow the master), but can also be
shown modal, in which case the form showing the details must be closed first.

There is yet another approach possible: The details can be shown on the same form as
the master form, but on a new tabsheet of a pagecontrol. By changing the tabs in the
pagecontrol, the user can then switch from master to detail information. Here again, the
choice can be left to the user: Either he opens a new form with the requested information,
or the information is shown on a new tab on the same form.

Why would one want to do this ? In principle, the showing of details can continue ad
infinitum: In the detail screen, details of the details can be asked:

o In the list of customers, one can ask the list of addresses associated with the customer.
In the list of addresses, one can ask a list of telecom data for this address, etc.

e In a bookkeeping program, one can have an overview of journals. The first details
screen can offer an overview of the time period covered by the journal, divided in
various years. The second detail can show the months of the selected year. The
third detail shows all documents in the selected month. The fourth detail shows the
document header data, and the last detail shows the bookkeeping entries associated
with a document.

Figuur 1: Forms in the application

Farent w101 Windowr

&

W01 Child 1 W01 Child 2

T '

Form 1 Eorm 2 Eorn 3

In practice, this ’showing of more details’ stops after at most 3 or 4 levels, but in principle
it could be much more, this depends of course on the database model.

When having 3 or 4 levels of details on the screen, one can get lost between the various
windows; If all details are presented simply on different tabs on the same window, the
screen isn’t cluttered with windows, and the user can easily switch between the various
levels of details.

But how to show the same information either on a new form or on the same form without
implementing the same thing twice ? Two possible approaches jump to mind:

1. Design all screens in the application as frames, and programmatically put each frame
on a MDI Window at runtime. Either on a new MDI window, or on a new tabsheet
on an existing MDI window.

2. Design all screens in the application as forms, and dock these forms on a MDI Win-
dow or on a new tabsheet on an existing MDI window.

In the below, the second approach was taken: it has the additional advantage that each form
can be used as a stand-alone form; The former method always requires a "host form’ on
which the frame should be placed. Additionally, in Delphi 5 there are some scaling issues
with frames, using forms avoids these issues.

Schematically, this can be represented as in figuur |If op pagina |3} The main application
window is a MDI application which manages a series of MDI child windows. The forms
as developed by the programmers (Form 1, Form 2 and Form 3) are docked on these MDI
child windows. Each MDI child window can have one or more forms docked on it. The
same approach can be used in an SDI application. In the below, the term MDI Window may
be freely interchanged with the term SDI Window.

All this functionality can be implemented in 2 different objects:
A Formmanager is an object which handles the creation of a new form. It also handles

the registration of forms as discussed in the previous article, and keeps the list of
available forms, together with their menu entry points etc.

A Dockmanager is an object which takes a form and places (docks) it on a MDI Window.
It also establishes (if needed) a link between a master and a detail form.

Both of these objects will be discussed below.

2 Implementing a form manager

The form manager is essentially no more than a specialised list object. Its function is quite
simple:

1. Keep a list of available forms, and, if a menu item should exist which opens the form,

where this menu item should appear in the menu.

2. Create an instance form based on the forms class name. When using a modular
application as discussed in the previous article, the form manager should use the
module manager which loads and unloads modules as needed.

To be able to do this, at least the following information about the available forms should be
present:

Class name The (unique) class name of the form.
Class reference Essentially, the VMT (Virtual Method Table) pointer of the form.

Menu entry Where the form should appear in the menu of the application. This can be
empty, in which case no menu entry will be created.

Module name When making a modular application, in what module the form is imple-

mented.

The classname can of course be determined from the class reference, but if the module
which contains the form is not loaded, the class reference is invalid, hence the class name
must be stored as well.

The formmanager class should at least have the following methods and properties:

TAppFormClass = Class of TAppForm;

procedure RegisterForm (AFormClass : TAppFormClass; AModule,Menu : string);
function CreateForm(ID: Integer;AOwner : TComponent): TAppForm;

function FindFormByName (FormName : String) : Longint;

Function FindFormByClass (FormClass : TAppFormClass) : Longint;

Property FormCount : Longint Read GetFormCount;

Property FormNames [Index : longint] : String Read GetFormName;

Property FormModule [Index : longint] : TModule Read GetFormModule;
Property FormClass[Index : Longint] : TFormClass Read GetFormClass;

Property Menu : PAppMenurec Read GetMenu;

The FormNames, FormCount and FormClass methods simply return the stored in-
formation about the forms. The FindFormByName and FindFormByClass functions
are used to search for the index of a form in the list of forms, based on the class name or
class pointer.

The TAppForm is a descendent of TCustomForm which is used when designing a form;
All forms in the application are of this class.

The interesting calls are the RegisterForm and Createform calls, and the menu
property is also worth a closer look.

The RegisterForm call registers a new form; Typically this will be called by the initia-
lisation routines of modules as they are loaded. Its arguments are straightforward:

AFormClass The form class reference. From this, the class name can be retrieved, and
stored as well.

Module The module in which the form resides. This is needed to be able to notify the
module manager that a module should be loaded, or that the reference count of a
module should be increased.

Menu The menu entry (if any) where the form should appear. This is a string, which
contains the menu entry in encoded form:

CustomersMenuEntry=’&Customers| &Overview’ ;

This would cause a main menu item *Customers’ to be created, and under that the
menu item ’Overview’ would be created. Clicking this menu item could create a
form which shows an overview of all known customers.

It is obvious that each form which should be created by the formmanager must be registered
first.

Note that the register call should overwrite any existing entry: When the application initi-
ally loads a module (so that all forms contained in the module are registered), it unloads
the module at once (there should be no unregistering of the forms).

When the form manager then loads a module again because a form must be created, then all
forms are registered again (because the initialisation code of the module is executed again).
Since the module may be loaded in a different location in memory, the VMT pointers for
the various forms may be different, so the values stored by the form manager must be
updated.

This is of course not necessary if the modules are not unloaded, or if no modules are used.

The RegisterForm call also builds a menu as it goes. The Menu property at all times
reflects the menu structure as seen by the formmanager. It consists of a linked chain of
TMenuRec records:

PAppMenuRec ~TAppMenuRec;
TAppMenuRec = Record
Caption : String;
FormID : Longint;
Next,
Sub : PMenuRec;
end;

The FormID is the index (in the formmanager’s list of known forms) of the form that
should be created when the menu item is clicked on. The ID rather than the class name
is used, for performance reasons. The RegisterForm call should analyse its Menu
parameter in order to determine where in the menu tree the form should be inserted.

From this linked list, the real menu structure can then be created at runtime with a simple
recursive loop. The reason that this happens separately is because then the menu can be
created after the user has logged in to the application, while the registration of the forms
happens before the user is logged in, at program startup. Separating these two moments al-
lows some customisation of the menu (e.g. enable/disable items) based on security profiles
and possible preferences of the user.

To be able to determine the form which must be created when a particular menu item is
clicked, the index of the form is stored in the Tag property of the menu item when it is
created. In the OnC11ick handler, the Tag property can then be used to determine which
form must be created.

The formmanager can now be used to create a new form when the user clicks some menu,
or when details of some data are requested. In general, it can be used whenever some form
must be created. It can also be used to centralise user messages: While creating a new
form, some kind of status bar message can be displayed, or a progressbar can be displayed.
By centralising the creation of forms, the adding of such effects can be implemented in a
general way, without having to rewrite the same code over and over again.

3 The DockManager

The dockmanager object is responsible for 3 things:

1. Creating a form using the form manager. Forms are never created by directly acces-
sing the form manager, but always by using the dockmanager.

2. Docking a newly created form on an MDI window. This can either be an existing or
a new MDI Window, depending on what the user wanted.

3. Establishing a master-detail relationship between the data on an existing form and
the data on the newly created form.

The Dockmanager has the following overloaded methods:

Function NewAppForm (AppParent TCustomForm;

ID Longint;

MasterDS TDataSource) TAppForm;
Function NewAppForm (AppParent TCustomForm;

FormClass TAppFormClass;

MasterDS TDataSource) TAppForm;
Function NewAppForm (AppParent TCustomForm;

FormName String;

MasterDS ThataSource) TAppForm;
Function AddAppForm(DockForm TAppDockForm;

ID longint;

MasterDS TDatasource) TAppForm;
Function AddAppForm (DockForm TAppDockForm;

FormClass TAppFormClass;

MasterDS TDatasource) TAppForm;
Function AddAppForm(DockForm TAppDockForm;

FormName String;

MasterDS TDatasource) TAppForm;

The various NewAppF orm calls do nothing but create an MDI window (of class TAppDockForm)
and then call the corresponding AddAppForm with as DockForm argument the newly
created dockform. The various overloaded forms of the call are mainly for convenience
reasons, a new form can be created and docked based on the class, the classname, or the ID

of the form.

Docking the form on a MDI window is quite easy; the TAppDockForm is a descen-
dent of TForm which has its FormSty1le property set to £sMDIChild. On this form, a
TPageControl islocated. When docking a new TAppForm instance on the TappDockForm,
essentially the following code is executed:

Form: TWisaForm)

function TAppDockForm.DockAppForm (AMaster, TControl;

begin

result := TAppTabsheet.Create (Self);
with TAppTabSheet (result) do

begin

Pagecontrol := WindowPager;

TabForm := Form

end;

Form.ManualDock (TAppTabSheet (result),Nil, alnone);

The TAppTabSheet descendent of TTabSheet is created specially to be able to in-
troduce the TabForm property, which contains a link to the form that is docked on the
tabsheet. The WindowPager is the TPageControl on which all forms are docked.

If the TAppTabSheet was not used, then the following code could be used:
WindowPager.DockControl (Form) ;

A TPageControl automatically creates a new tab if a control is docked onto it.

After a control is docked, some resizing is done (all forms are designed to be resizable) and
the tabsheet where the new form is located is made the active tabsheet, so the new form
becomes visible.

Establishing a master-detail relationship is done using the MasterDS argument. If it is
not Nil, then the new TAppForm is examined; A property MainDataSource (of type
TDataSource)is used, and this one is used to establish a master-detail relation with code
similar to the following:

If (MasterDS<>Nil) and
(NewForm.MainDataSource<>Nil) then
NewForm.MainDataSource.DataSet .DataSource:=MasterDS;

The programmer sets the MainDataSource property at design time to one of the data-
sources in the form. If the associated dataset needs any parameters, it will obtain them
from MasterDS, as it happens with e.g. the TQuery object or the TIBQuery ob-
jects in Delphi. Only one type of dataset is used in the application, one which has the
DataSource property, so it is guaranteed that the above assignment is valid.

If the user now scrolls in the MasterDS’s dataset, the parameters in the dataset on the
detail form will be updated.

In the case the user does not want the detail form to be synchronised with the master form,
then any eventual parameters in its MainDataSource are simply filled up with any field
values found in the MasterDS

Var
I : Integer;
N : String;
F : TField;

begin
If (MasterDS<>Nil) and
(NewForm.MainDataSource<>Nil) then
With NewForm.MainDataSource.DataSet do
For I:=0 to Params.Count-1 do
If Not Params[i].Bound Then
begin

N:=Params[i] .Name;
F:=FindField (N) ;
If F<>Nil then

Params[i] .AssignField(f);
end;

If the user now scrolls in the MasterDS’s dataset, the detail form will not change, as the
parameter values are filled in once, and not dynamically updated from the master data-
source.

When designing queries and forms, one must take this into consideration: When designing
a detail form, the query must have a parameter with a name of a field which can be found
in the master datasource for this query. Sometimes, it may be necessary to add this field to
the master dataset, just for the benefit of showing details.

In the design of some forms, it should be anticipated that the form may be created to show
details of some other form, but that the form also appears as en entry in the menu: The list
of addresses of a customer is a form which was designed like this: It can be called when
the overview of the customers is on screen, but the ’list of addresses’ may be chosen from
a menu entry to provide faster access.

Since the form is designed to function as a detail screen, the query on this form expects a
parameter which holds the customers ID.

However, if the list of addresses is chosen from a menu entry, then there is no dataset
available to provide this ID. So, an overview of customers must be created and placed
’before’ the form with addresses. The 'main’ dataset on this overview will then be used to
provide the parameters.

To be able to know which overview should be created when a form is opened, aDefaultBrowserForm
property is introduced in TAppForm. This string property contains the class name of a

form which must be created when the (detail) form needs a (master) form with a dataset

which can function as a master datasource for the main datasource. We call this form the

’master browser form’.

It is the dockmanager which checks whether a *master browser form’ should be created:

With NewForm do
If (DefaultBrowserForm <> ’'’) and
(Not Assigned(MasterDS)) then
begin
// recursively add form.
AppBrowser :=AddAppForm (DockForm,DefaultBrowserForm,Nil,nil);

MasterDS:= AppBrowser.MainDataSource;
AppBrowser.Show;
end

From this code it is obvious that this process can be repeated recursively; This is not so un-
common as one may think. For instance: A form to edit a student’s personal data (call
it TStudentForm) requires a list of students (to obtain the ID of the student whose
data needs to be edited). The list of students is the list of students in a certain group
(call it TGroupMembersForm). So an overview of available groups (classes) is needed
(TGroupOverView). But the overview of available groups needs a school ID (multiple
schools can be managed in the application), so an overview of schools is needed (TSchool-
OverviewForm).

So when the user clicks on the menu entry ’Student personal data’, the following chain of
events occurs:

Figuur 2: Example of an MDI window showing some docked forms

A Wisa Administratie (WISADMIN in design2)

I Instellingen - Overzicht - Vakkengroepen

1. The TStudent iscreated. Its DefaultBrowserForm property equals TcGroupMembers.

2. A TGroupMembers form is created, and a link is established with the TStudent
form. Its DefaultBrowserFormis TGroupOverView

3. The TGroupOverView form is created, and a link is established with the TGroupMembers.
The DefaultBrowserForm property of the TGroupOverViewequals TSchoolOverview

The TSchoolOverview formis created and a link is established with the TGroupOverView.
The TSchoolOverview form is docked and shown.
The TGroupOverView form is docked and shown.

The TGroupMembers form is docked and shown.

® N 0 &

Finally, the TStudent form is docked and shown.

An example of an application with some MDI forms that have such a series of forms docked
on them is shown in figuur 2Jop pagina[9]

The MDI window on which all these forms are docked contains some extra functionality.
This is treated in the next section.

4 The DockForm

The MDI form on which all other forms are docked have some extra functionality to ma-
nage the forms docked on it:

Figuur 3: A detail view of a dockform.
" Instellingen - Overzicht - Vakkengroepen =10] %]

] e T e N S

[Bloderen [WSADMN [0212001 [ADOT1SBSSO TongerenChmaioriy

i
1|

N
0
0
0
i
i
i
i
i
0

1. A pagecontrol, which allows to select one of the currently docked forms.

2. A Treeview, which shows the currently docked forms in a hierarchical manner; it
also shows for each form which related forms can be opened.

3. Further there is functionality to close any docked form by means of a pop-up menu.
Forms that depend on the chosen form by means of a master/detail relationship, are
closed first.

If data-aware forms are docked on the dockform, the following additional functionality is
present:

1. A navigator which can be used to browse through the dataset on the currently visible
form.

2. A navigator which can be used to browse through the master dataset of the currently
visible form. For example, if the currently visible form contains the list of addresses
of a client, and the master datasource is showing the list of clients, then this navigator
will browse through the list of clients.

3. A statusbar which shows some useful information: The state of the currently active
dataset: Browse, Edit, Insert etc. A short description of the current record in the
master browser dataset, and some “audit’ information: Who changed the record last,
and when. The display of this information is controlled by some new properties of
the datasets used in the application.

4. A lookup-edit control: When something is typed in this control, it is used as an
argument to a Locate on the currently active dataset. This can be used to perform
an incremental search. The field on which the lookup is performed is selectable with
a combobox which shows the available fields.

By implementing all this functionality in the dockform, the functionality is present in all
forms that are docked on this form, and does not need to be implemented in each form
separately. A detail of a dockform with three forms docked on it in a master-detail relati-
onship, is shown in figuur 3 op pagina Note that the statusbar is placed at the top of
the window. This is done for clarity: All status information and navigation controls are
concentrated at the top of the window.

Besides the above information, there is also a TreeView which shows a graphical repre-
sentation of the forms docked on the MDI form: Each node in the TreeView represents
a docked form. The hierarchy is determined by the master-detail relations of the docked

10

forms: a form with details of a master forms appears as a child node of the node that repre-
sents the master form. Clicking on a node will raise the form, as if the user had clicked on
the tab of the pagecontrol on which the form is docked. The currently active form is shown
with an alternate colour. This TreeView has been called the ’navigation TreeView’.

What is more, the TreeView also contains nodes that represent possible detail forms: under
each node the possible detail forms are shown as child nodes. When such a child node is
clicked, the corresponding detail form is opened and hooked up to the form.

The nodes that represent possible detail forms differ from the nodes that represent already
opened forms by their image colour. Nodes that the user cannot open can appear grayed:
e.g. When there are no clients in the overview of clients, the detail form with the addresses
of clients is not accessible. In the case the user has not sufficient rights to open the form,
the node could be removed altogether from the TreeView.

The MDI docking window contains the logic to keep all these controls synchronised; Whe-
never the user changes the currently visible form, the following actions are performed:

1. The DataSource property of both navigators is re-determined from the newly ac-
tive form.

2. The DataSource used to display information in the statusbar is determined.
3. The DataSource used to do a lookup is set.

4. The active control on the currently visible form is restored. Docking a form on
another form has as a consequence that the * ActiveControl’ property is lost. Only the
MDI Window’s ActiveControl is meaningful. So some logic is needed to preserve
and restore the Active control of the currently active form.

5. In the TreeView, the Node for the active form gets highlighted.

Special events are introduced in the forms to prevent the user from switching to another
form. These events are then fired when the user attempts to switch the current form: In the
’OnChanging’ event of the Pagecontrol on which all forms are docked, one can check the
result of these events to decide whether the user is allowed to switched to another form.

In our programs we have opted no to allow the user to switch from one form to another if
the active form contains unsaved data; This avoids possible problems in the Master-Detail
relations, e.g. A user entering Detail data when the Master data have not yet been posted.
One of the reasons for this is that, by means of the navigation treeview, the user can open
not only detail forms of the current form, but of all forms that have been docked on the
MDI window, and sometimes this can cause strange effects if the data in the current form
is not saved.

When closing the MDI form, all docked forms are closed in an orderly manner; The list of
docked forms is closed starting with the last opened form, working back to the fist opened
form. Any form first closes any detail forms that may be attached to it, and only when all
child windows are closed, then it closes itself. This algorithm ensures that all data is saved
correctly and no conflicts arise.

There is a tricky point that should be taken in consideration when implementing such a
loop. When closing a form using the close method as follows:

DetailForm.Close;

What happens behind the scenes is that a WM_CLOSE message is sent to the form. In order
to be sure that the form is closed and destroyed, the application must allow Windows to
send the message, and the application should have processed the message before the next
detail form is destroyed or before the master form is destroyed.

11

So the loop to close the detail forms looks something like this:

For I:=0 to FormLinks.Count-1 do
Begin
FormLinks[I] .FormInstance.Close;
ProcessMessages;
If Not (FormLinks[I].FormInstance=Nil) then
Break;
end;

The FormLinks property is a collection which represent the possible detail forms of a
form (it will be discussed later). The FormInstance property of each of the items in the
collection contains a pointer to the instance of the detail form that was created.

The ProcessMessages call allows Windows to send the WM_CLOSE message (sent by
the Close method), and lets the application process it. The detail form will close (if it is
allowed to close) and free itself. The destructor of the form will notify the master form that
the detail form is gone; It does this by emptying the FormLinks [I] .FormInstance
pointer. This allows the master form to check whether the detail form was actually closed.

There are cases when a detail form cannot be closed (The OnCloseQuery handler re-
turned CanClose:=False) in that case the parent form also cannot be closed, and the
process of closing forms is aborted.

In what follows, 2 ways of opening a new screen are discussed.

5 A FormLinks property

In the previous section, it was shown that the MDI dock window has a TreeView which
displays a hierarchical view of all opened forms, but that it also shows for each form the
possible detail forms for that form.

This information is obtained from a new property of the form: FormLinks. Instead
of dropping a number of buttons on the form (one for each type of detail which can be
opened), the programmer edits the FormLinks property. The FormLinks property is
a descendent of TCollection called TFormLinks, and the items in the collection are
of type TFormLink. Using a TCollection has the benefit that the standard Delphi
collection editor can be used to edit this new property.

Each TFormLink item in the collection has the following published properties:
DisplayName The name of the detail form as shown in the Navigation TreeView.

DetailForm The class name of the form to be created when the user clicks on the node for
this form. This name will be given to the dock manager and form manager to create
the detail form.

MasterDS Is the Datasource on this form which will be used to establish the master-
detail relationship.

FollowMode This is an enumerated type:
TFollowMode = (fmSynchronized, fmSnapshot)
The fmSynchronized means that a real master-detail relationship will be esta-

blished between MasterDS and the main datasource of the detail form (This is the
default). fmSnapShot means that parameters which appear in the detail form’s

12

main datasource and for which a corresponding field exists in the MasterDS data-
source, will be copied just once.

OpenMode This is an enumerated type which determines how the detail form will be
opened:

TOpenMode = (omModal, omTabbed, omNonModal) ;

The omTabbed value means that the detail form will be opened on a new tab of
the MDI Window on which the current form is docked (this is the default). The
omNonModal value means that the detail form will be opened in a new MDI win-
dow. The omModal value is used to show the detail form on a modal window.

OverrideFollowMode A boolean property that specifies whether the user can change the
FollowMode property in a pop-up menu, at run-time.

OverrideOpenMode A boolean property that specifies whether the user can change the
OpenMode property in a pop-up menu, at run-time.

ReadOnly A boolean property which indicates whether the detail form should be opened
read-only: In that case the user is not allowed to edit data in the detail form.

NeedRecords A boolean which indicates whether the MasterDS dataset should contain
records; If it does not, the node for this detail form will be disabled.

Visible Indicates whether the node (in the navigation TreeView) for this detail form should
be visible or not.

Some combinations of the OpenMode or FollowMode are of course not useful; it makes
little sense to open a detail form synchronized and modal - if it is modal, the user has no
opportunity to scroll in the master dataset.

The following events are also defined:

BeforeCreateForm an event of type TBeforeCreateFormEvent:

TBeforeCreateFormEvent = Procedure (Var FormName : String) Of Object;

It gets passed the classname of the detail form that will be created; This name can
be changed to something else or made empty. The latter can be used to signal that a
form should not be created at this time. The former can be used to show a different
detail form based on e.g. what record is currently selected in the form. For example,
in a list of journals, the form showing the details of a journal depends on the type of
the journal. when the details form is opened, the type of the journal is first checked
to see which form should be opened.

AfterCreateForm This event of type TAfterCreateFormEvent occurs after the form
was created:

TAfterCreateFormEvent

Procedure (TheForm : TWisaForm)

This event can be used to set some additional properties on the newly created form
(A pointer to the newly created instance is passed in TheForm).

Besides all these published properties which can be set by the programmer at design time,

there is also a run-time only property FormInstance. If the user opened the detail form
in fmSynchronize mode then this will contain a pointer to the detail form.

13

Of Obiject;

The TFormLink class also has an Execute method, which creates the detail form ac-
cording to the properties set for this detail form. After creating the form it will establish
the master-detail link. This is the method that is called when the user clicks a node in the
Navigation TreeView.

To be able to fill in the DetailForm, a special property editor was implemented which
presents a list of available forms. Not all forms are presented, only the forms in the current
project; Delphi currently provides no means to retrieve a list of all forms of all projects in
the project group. This could be remedied by keeping a list of forms somewhere in a file,
and reading from that list. The main reason for wanting to present a list is to avoid typing
mistakes; it is still possible to type a class name of a form that does not (yet) exist.

6 Developing a ScreenButton

Besides the FormLinks, a TDetailButton can also be implemented; it has the same
properties and events as the TFormLink; When it is clicked, it executes the same code
as the TFormLink’s Execute method. It keeps - just as the formlink - a pointer to the
opened form if the used decides to open a form.

A form must be made aware of the TScreenButton: When the form is closed (or Clo-
seQuery is called), the form should check all screenbuttons on it, and check whether these
buttons have a form opened. If so, this form should be closed first. Failing to do so, will
result in master-detail links being broken.

7 Conslusion

In this article, some ideas on managing forms and navigating between forms in a uniform
way were presented. In doing so, some extra properties of a specialised TForm descendent
have been encountered. In a next article, more ways to extend Delphi’s TF orm component
will be presented, and several ways to integrate this in Delphi’s IDE will be discussed.

14

	Introduction
	Implementing a form manager
	The DockManager
	The DockForm
	A FormLinks property
	Developing a ScreenButton
	Conslusion

