
Programming GTK in Free Pascal: Using GDK

Florian Klämpfl
and

Michaël Van Canneyt

July 2001

1 Introduction

In this article, some of the graphics primitives from the gdk toolkit will be demon-
strated in a small game - breakout.

The GTK toolkit widgets are built upon the GDK: Graphics Drawing Kit. The
GDK does not know anything about buttons, menus checkboxes and so on. Instead,
it knows how to create windows, draw on them, handle mouse clicks and keypresses.
This functionality is used by the GTK widget set to create usable widgets.

Sometimes, the widgets offered by GTK are not enough, and one has to fall
back on the graphics functionality of the GDK to be able to do what is needed for
a program.

Fortunately, it is not necessary to create a GTK window and handle all GDK
events to be able to use the GDK functions. The GTK widget set has a special
widget, which can be used to draw upon. This widget is the TGtkDrawingArea

widget. The use of the TGtkDrawingArea is what will be explained below.
The GDK graphics functions will be explained using a simple arcade game,

to demonstrate that the speed of the GDK is sufficient for the creation of simple
games. The breakout game is chosen because it is conceptually simple, requires
moving graphics and can be extended in many ways.

2 The drawing area widget

The drawing area widget (TGTKDrawingArea) is a simple widget which just provides
a drawing window. It responds to all widget events, and adds additionally the
’configure event’, which is called when the widget is realized (i.e. when the window
handle is created.)

The widget has only 1 method: gtk drawing area size, which sets the size of
the drawing area. It is defined as follows:

procedure g t k d r aw i n g a r e a s i z e (Area : PGtkDrawingArea ;
width , h e i g h t : g i n t)

The arguments to this function are self-explaining.
To use the drawing area widget, one should respond to the ’expose event’. This

event is triggered whenever a part of the window that was invisible, becomes visible.
The event handler gets an PGDKEventExpose parameter, which describes which area
was exposed. This can be used for optimization purposes.

To draw in the drawing area widget, the Window field of the TGTKWidget parent
can be used. This is of type TGDKWindow. All drawing functions require a parameter
of type TGdkDrawable which can be one of the TGdkWindow or TGdkPixMap types.

1

3 Graphics contexts

Most drawing functions do not only require a drawable to draw on, they also require
a Graphics Context. A graphics context is a series of parameters that determine
how lines are drawn, what colors and font are used etc.

The Graphics Context is an opaque record, and its members cannot be accessed.
The relevant parameters are set in a TGdkGCValues record, which is defined as
follows:

f o r e g r ound : TGdkColor ;
background : TGdkColor ;
f o n t : PGdkFont ;
t h e f u n c t i o n : TGdkfunct ion ;
f i l l : TGdkF i l l ;
t i l e : PGdkPixmap ;
s t i p p l e : PGdkPixmap ;
c l i p ma s k : PGdkPixmap ;
subwindow mode : TGdkSubwindowMode ;
t s x o r i g i n : g i n t ;
t s y o r i g i n : g i n t ;
c l i p x o r i g i n : g i n t ;
c l i p y o r i g i n : g i n t ;
g r a p h i c s e x p o s u r e s : g i n t ;
l i n e w i d t h : g i n t ;
l i n e s t y l e : TGdkL ineSty le ;
c a p s t y l e : TGdkCapStyle ;
j o i n s t y l e : TGdkJo inSty le ;

The ForeGround and Background parameters determine the foreground and back-
ground colors. Font is the default font. The Fill field describes how areas are
filled. It can be one of the following:

GDK SOLID fill with the foreground color.

GDK TILED Use the pixmap specified in Tile to fill the area.

GDK STIPPLED Use the pixmap specified in Stipple to draw pixels that are
in the bitmap in the foreground color. Other bits are not drawn.

GDK OPAQUE STIPPLED Same as GDK STIPPLED except that bits not in the
pixmap will be drawn in the background color.

The clip bitmap is used to define a clip area. The ts x origin and ts y origin

define the stipple or tile origin. The clip x origin and clip y origin fields define
the origin of the clipping region. LineWidth is the linewidth used when drawing
lines. Line Style determines how dashed lines are drawn. It can have one of the
following values:

GDK LINE SOLID Lines are drawn solid.

GDK LINE ON OFF DASH Even segments are drawn, odd segments are not.

GDK LINE DOUBLE DASH Even segments are drawn, Odd segments are
drawn in the background color if the fill style is GDK SOLID.

cap style determines how line ends are drawn. The following values are defined:

GDK CAP BUTT The lines are drawn with square ends.

GDK CAP NOT LAST Idem as GDK CAP BUTT, only for zero-width lines, the
last dot is not drawn.

2

GDK CAP ROUND The end of the line is a semicircle. The circle has diameter
equal to the linewidth, and the center is the endpoint of the line.

GDK CAP PROJECTING Idem as [GDK CAP BUTT], only the line extends
half the linewidth outside the endpoint.

The effect of these elements will be shown in the next section.
To set a color, a TGDkColor record must be allocated. Colors are specified using

a RGB value. Unfortunately, not all graphics cards can show all colors. In order to
find out which screen color corresponds to the RGB-specified color, the GDK uses
a colormap, and allocates a color that matches the closest to the specified color
values. When allocating a new color, the colormap should be specified.

A colormap can be obtained from a TGTKWidget descdendant using the GTK
function gtk widget get colormap; A color can then be allocated using the follow-
ing gdk colormap alloc color function:

f unct ion g d k c o l o rm a p a l l o c c o l o r (co lormap : PGdkColormap ;
c o l o r : PGdkColor ;
w r i t e a b l e : gboo l ean ;
bes t match : gboo l ean) : gboo l ean ;

The writeable parameter specifies whether changes to color using gdk color change

are allowed. best match specifies whether a best match should be attempted on
existing colors or an exact value is required. The function returns True if the
allocation succeeded, False otherwise.

4 Drawing primitives

Using the properties introduced in the previous section, drawing can be attempted
using the drawing primitives offered by GDK. GDK offers drawing functions for
points, lines, segments, rectangles, polygons, circles, text and bitmaps.

All functions accept as the first two parameters a PGDKdrawable, which can be
a pointer to a TGDKWindow or a TGDkPixmap, and a PGdkGC, a pointer to a graphics
context.

These parameters are omitted from the following declarations:

procedure gdk d raw po in t (x , y : g i n t) ;
procedure gd k d r aw l i n e (x1 , y1 , x2 , y2 : g i n t) ;
procedure gdk d r aw r e c t a n g l e (f i l l e d , x , y , width , h e i g h t : g i n t) ;

The above functions draw respectively a dot, a line and a rectangle. The meaning
of the parameters for these functions is obvious. For the rectangle, care must be
taken. If the parameter Filled is False (-1) then the drawn rectangle has actually
a width and height of Width+1, Height+1. If it is filled, then the width and height
are as specified in the call to gdk draw rectangle.

The following procedures can be used to draw a series of lines:

procedure gdk draw po lygon (f i l l e d : g i n t ; p o i n t s : PGdkPoint ; n po i n t s : g i n t) ;
procedure g d k d r aw l i n e s (p o i n t s : PGdkPoint ; n po i n t s : g i n t) ;
procedure gdk draw segments (s e g s : PGdkSegment ; n s eg s : g i n t) ;

The gdk draw polygon polygon takes a series of dots and connects them using
lines, optionally filling them. The points are specified by a pointer to an array of
TGDKPoint records (there should be npoint such records in the array). A TGDKPoint

record contains 2 fields: X,Y which specify the location of a point. If needed, the
first and last points are also connected using a line.

The gdk draw lines does the same, only it cannot be filled, and it will not
connect the first and last points. The gdk draw segments requires a series of

3

TGDKSegment records. These consist of 4 fields: x1,y1,x2,y2, each describing the
start and end point of a line segment. The segments will not be connected.

The gdk draw arc can be used to draw a circle or a segment of the circle, or an
ellipse.

procedure gdk d raw arc (f i l l e d , x , y , width , he i gh t ,
ang le1 , ang l e2 : g i n t) ;

The x,y, width and height parameters describe a bounding rectangle for the
circle. The angles describe the start and extending angle of the segment to be
drawn: The circle segment starts at angle angle1 and ends at angle1+angle2.
These angles are specified in 1/64ths of a degree and are measured counterclockwise,
starting at the 3 o’clock direction. A circle segment drawn from 90 to 270 degrees
should therefore have as angles 90*64=5760 and 270*64=17280.

If filled is True (-1), then the segment will be connected to the circle centre, and
filled, in effect drawing a pie-slice.

Finally, for the gdk draw string function, the graphics context comes before
the graphics context:

procedure gd k d r aw s t r i n g (drawab le : PGdkDrawable ; f o n t : PGdkFont ;
gc : PGdkGC ; x , y : g i n t ; t h e s t r i n g : Pgchar) ;

The meaning of the parameters for this functions should be obvious.
The font for the gdk draw string can be obtained using the gdk font load

function:

f unct ion g d k f o n t l o a d (font name : Pgchar) : PGdkFont ;

The font name should be specified as an X font path.
All this is demonstrated in the following program:

program g r a p h i c s ;

{$mode ob j f p c }
{$h+}

uses g l i b , gdk , gtk , s y s u t i l s ;

var
window ,
a r ea : PGtkWidget ;

Function CloseApp (w idget : PGtkWidget ;
even t : PGdkEvent ;
data : g p o i n t e r) : boo l ean ; cdec l ;

Begin
g t k ma i n qu i t () ;
c l o s e a p p l i c a t i o n := f a l s e ;

End ;

Function A l l o c a t eC o l o r (R ,G,B : I n t e g e r ;
Widget : PGtkWidget) : PGdkColor ;

begin
Re su l t :=New(PgdkColor) ;
With Re su l t ˆ do

begin
P i x e l :=0;
Red:=R ;
Blue :=B;

4

Green :=G;
end ;

g d k c o l o rm a p a l l o c c o l o r (g t k w i d g e t g e t c o l o rmap (Widget) ,
Resu l t , t rue , F a l s e) ;

end ;

f unct ion Exposed (Widget : PGtkWidget ;
even t : PGdkEventExpose ;
Data : g p o i n t e r) : I n t e g e r ; cdec l ;

Const
Tr i a n g l e : Array [1 . . 4] of TgdkPoint =

((X : 1 0 ;Y: 1 95) ,
(X : 1 1 0 ;Y: 1 95) ,
(X : 5 5 ;Y: 1 45) ,
(X : 1 0 ;Y : 1 9 5)) ;

L i n e S t y l e s : Array [1 . . 5] of TgdkL ineSty l e =
(GDK LINE SOLID , GDK LINE ON OFF DASH ,
GDK LINE DOUBLE DASH , GDK LINE ON OFF DASH ,
GDK LINE SOLID) ;

c a p s t y l e s : Array [1 . . 5] of TgdkCapStyle =
(GDK CAP ROUND,GDK CAP NOT LAST , GDK CAP BUTT,
GDK CAP PROJECTING , GDK CAP NOT LAST) ;

FontName : Pchar =
’−∗−h e l v e t i c a−bold−r−normal−−∗−120−∗−∗−∗−∗− i so8859−1 ’ ;

Var
SegTr i ang l e : Array [1 . . 3] of TgdkSegment ;
Win : pgdkWindow ;
gc : PgdkGC ;
i , seg : I n t e g e r ;
f o n t : PgdkFont ;
Angle1 , Angle2 : Long in t ;

begin
gc :=gdk gc new (widget ˆ .Window) ;
Win:=widget ˆ . window ;
With Event ˆ . a r ea do

gdk w i ndow c l e a r a r e a (win , x , y , width , h e i g h t) ;
g d k g c s e t f o r e g r o u n d (gc , a l l o c a t e c o l o r (0 , 0 , 0 , Widget)) ;
g d k d r aw r e c t a n g l e (win , gc , 0 , 5 , 5 , 5 9 0 , 3 90) ;
g d k g c s e t f o r e g r o u n d (gc , a l l o c a t e c o l o r (0 , 0 , $ f f f f , Widget)) ;
f o r I :=10 to 50 do

gdk d raw po in t (win , gc , I ∗10 ,100) ;
g d k g c s e t f o r e g r o u n d (gc , a l l o c a t e c o l o r ($ f f f f , 0 , 0 , Widget)) ;
f o r I :=10 to 50 do

begin
g d k g c s e t l i n e a t t r i b u t e s (gc , 6 , L i n e S t y l e s [i d iv 10] ,

CapSty l e s [i d iv 10] , GDK JOIN MITER) ;
g d k d r aw l i n e (win , gc , I ∗10 ,20 , I ∗10 ,90)
end ;

g d k g c s e t l i n e a t t r i b u t e s (gc , 1 , GDK LINE SOLID ,
GDK CAP BUTT, GDK JOIN MITER) ;

g d k g c s e t f o r e g r o u n d (gc , a l l o c a t e c o l o r ($ f f f f , 0 , $ f f f f , Widget)) ;
seg :=(360 d iv 20) ∗ 64 ;
For I :=1 to 20 do

gdk d raw arc (win , gc ,0 ,220− I ∗4 ,200− i ∗4 ,8∗ i , 8∗ i , i ∗seg , seg ∗19) ;

5

For I :=1 to 20 do
gdk d raw arc (win , gc ,−1,380− I ∗4 ,200− i ∗4 ,8∗ i , 8∗ i , (i −1)∗seg , seg) ;

g d k g c s e t f o r e g r o u n d (gc , a l l o c a t e c o l o r (0 , $ f f f f , $ f f f f , Widget)) ;
gdk draw po lygon (win , gc , 0 , @ t r i a n g l e [1] , 4) ;
For I :=1 to 4 do

Tr i a n g l e [i] . Y:=400−Tr i a n g l e [i] . y ;
gdk draw po lygon (win , gc ,−1 , @ t r i a n g l e [1] , 4) ;
g d k g c s e t f o r e g r o u n d (gc , a l l o c a t e c o l o r (0 , $ f f f f , 0 , Widget)) ;
For I :=1 to 4 do

Tr i a n g l e [i] . X:=600−Tr i a n g l e [i] . x ;
g d k d r aw l i n e s (win , gc , @ t r i a n g l e [1] , 4) ;
For I :=1 to 3 do

begin
SegTr i ang l e [i] . X1:= T r i a n g l e [i] . X ;
S egTr i ang l e [i] . Y1:=400−Tr i a n g l e [i] . Y ;
S egTr i ang l e [i] . X2:= T r i a n g l e [i +1] .X ;
S egTr i ang l e [i] . Y2:=400−Tr i a n g l e [i +1] .Y ;
end ;

gdk draw segments (win , gc , @ s e g t r i a n g l e [1] , 3) ;
f o n t := gd k f o n t l o a d (FontName) ;
g d k g c s e t f o r e g r o u n d (gc , a l l o c a t e c o l o r ($ f f f f , $ f f f f , 0 , Widget)) ;
For I :=1 to 4 do

gd k d r aw s t r i n g (win , font , gc , I ∗100 ,300 ,
Pchar (format (’ S t r i n g %d ’ , [i]))) ;

r e s u l t :=0;
end ;

Begin
// I n i t i a l i z e GTK and c r e a t e the main window
g t k i n i t (@argc , @argv) ;
window := gtk window new (GTK WINDOW TOPLEVEL) ;
g t k w i n d ow s e t p o l i c y (PgtkWindow (Window) , 0 , 0 , 1) ;
g t k s i g n a l c o n n e c t (GTK OBJECT (window) , ’ d e l e t e e v e n t ’ ,

GTK SIGNAL FUNC(@CloseApp) , NIL) ;
g t k c o n t a i n e r s e t b o r d e r w i d t h (GTK CONTAINER (window) , 1 0) ;
a r ea := g tk d r aw i ng a r e a new () ;
g t k c o n t a i n e r a d d (GTK CONTAINER(window) , Area) ;
g t k s i g n a l c o n n e c t (GTK OBJECT (a r ea) , ’ e x po s e e v en t ’ ,

GTK SIGNAL FUNC(@Exposed) , Ni l) ;
g t k d r aw i n g a r e a s i z e (PGTKDRAWINGAREA(a r ea) , 6 00 , 4 00) ;
g t k w i d g e t s h ow a l l (window) ;
gtk main () ;

end .

The main program starts by creating a main window, and adding a TGTKDrawingArea
to it. It then connects 2 event handlers, one to stop the application if the window
is closed (CloseApp), the other to draw the TGTKDrawingArea when it is exposed
(Exposed). This latter contains the actual drawing routines, and is pretty self-
explaining. It simply demonstrates the use of the drawing primitives explained
above.

Note that the allocated colors are not freed again, so this program does contain
a memory leak.

The result of the program is shown in figure ??.

6

Figure 1: The graphics program in action.

5 Animation

The GDK drawing functions can be used to draw directly on a window visible on
the screen. This is OK for normal applications, but applications that have a lot of
(changing) graphics will soon see a flickering screen.

Luckily, GDK provides a means to cope with this: Instead of drawing directly
on the screen, one can draw on a bitmap which exists in memory, and copy parts
of the bitmap to the screen on an as-need basis.

This is the reason why the GDK drawing functions generally accept a PGDKdrawable
parameter: This can be of the type PgdkWindow or PGDKPixmap: The TGDKPixmap

can be used to do the drawing in the background, and then copy the pixmap to the
actual window.

This technique, known as double buffering, will be demonstrated in a small
arcade game: BreakOut. The game is quite simple: at the top of the screen, there
are a series of bricks. At the bottom of the screen is a small pad, which can be move
left or right using the cursor keys. A ball bounces on the screen. When the ball
hits a brick, the brick dissappears. When the ball hits the bottom of the window,
the ball is lost. The pad can be used to prevent the ball from hitting the bottom
window.

When the pad hits the ball, the ball is accellerated in the direction the pad was
moving at the moment of impact. Also, an idea of ’slope’ is introduced: If the ball
hits the pad at some distance from the pad’s center, the ball’s trajectory is slightly
disturbed, as if the pad has a slope.

After 5 balls were lost, the game is over. If all bricks have been destroyed, a
next level is started.

As stated above, the game will be implemented using double buffering. The ball
and pad themselves will be implemented as pixmaps; the bricks will be drawn as
simple rectangles.

These three objects will be implemented using a series of classes: TGraphicalObject,

7

which introduces a position and size. This class will have 2 descendents: TBlock,
which will draw a block on the screen and TSprite, which contains all functionality
to draw a moving pixmap on the screen. From TSprite, TBall and TPad will be
derived. These two objects introduce the behaviour specific to the ball and pad in
the game.

The blocks will be managed by a TBlockList class, which is a descendent of the
standard TList class.

All these objects are managed by a TBreakOut class, which contains the game
logic. The class structure could be improved a bit, but the idea is more to separate
the logic of the different objects.

The TGraphicalObject class is a simple object which introduces some easy
access properties to get the position and size of the object:

TGraph i ca lOb j e c t = Class (TObject)
FRect : TGdkRectangle ;

Publ i c
Function Conta in s (X,Y : I n t e g e r) : Boolean ;
Property L e f t : Sma l l I n t Read FRect . x Write F r e c t . x ;
Property Top : Sma l l I n t Read FRect . y Write F r e c t . y ;
Property Width : Word Read F r e c t . Width Write F r e c t . Width ;
Property Height : Word Read F r e c t . He ight Write F r e c t . He ight ;

end ;

The TBlock object is a simple descendent of the varTGraphicalObject class:

TBlock = Class (TGraph i ca lOb j e c t)
Pr ivate

FMaxHits : I n t e g e r ;
FB l o c kL i s t : TB lockL i s t ;
FGC : PGDKGC;
FColor : PGDKColor ;
FNeedRedraw : Boolean ;
Procedure CreateGC ;
Function DrawingArea : PGtkWidget ;
Function PixMap : PgdkPixMap ;

Publ i c
Procedure Draw ;
Function Hit : Boolean ;
Constructor Crea te (AB lockL i s t : TB lockL i s t) ;
Property Co lo r : PGDKColor Read FColor Write FColor ;

end ;

The FMaxHits field determines how many times the ball must hit the brick before
it dissappears. With each hit, the field is decremented by 1.

The FBlockList refers to the blocklist object that will manage the block. The
needed drawing widget and the pixmap on which the block must be drawn are
obtained from the blockmanager using the DrawingArea and Pixmap functions.
The Draw procedure will draw the block at it’s position on the pixmap. The Color

property determines the color in which the block will be drawn.
The implementation of the TBlock methods are quite simple. The first methods

don’t need any explanation.

Constructor TBlock . C rea te (AB lockL i s t : TB lockL i s t) ;

begin
I nhe r i t ed Crea te ;
FB l o c kL i s t :=AB lockL i s t ;
FMaxHits :=1;

end ;

8

Function TBlock . DrawingArea : PGtkWidget ;

begin
Re su l t := FB l o c kL i s t . FBreakout . FDrawingArea ;

end ;

Function TBlock . PixMap : PgdkPixMap ;

begin
Re su l t := FB l o c kL i s t . PixMap ;

end ;

The first interesting method is the CreateGC method:

Procedure TBlock . CreateGC ;

begin
FGC:=gdk gc new (DrawingArea ˆ .Window) ;
g d k g c s e t f o r e g r o u n d (FGC, FColor) ;
g d k g c s e t f i l l (FGC, GDK SOLID) ;
FNeedRedraw:=True ;

end ;

The method is called the first time the block must be drawn. It allocates a new
graphics context using the gdk gc new function. This function accepts a pointer to a
TGTKWidget as a parameter and returns a new graphics context. After the graphics
context is created, the foreground color and fill style are set. (it is assumed that
FColor points to a valid color)

The Draw procedure actually draws the block on the pixmap, using the graphics
context created in the previous method:

Procedure TBlock . Draw ;

begin
i f FGC=Ni l then

CreateGC ;
i f FNeedRedraw Then

begin
gdk d r aw r e c t a n g l e (PGDKDrawable (Pixmap) ,FGC,−1 , Le f t , Top , Width , He ight) ;
FNeedRedraw:= Fa l s e ;

end ;
end ;

The FNeedRedraw procedure is used for optimization.
Finally, the Hit method is called when the block is hit by the ball. It will

decrease the FMaxHits field, and if it reaches zero, the place occupied by the block
is redrawn in the background color. After that, it removes itself from the blocklist
and frees itself.

Function TBlock . H i t : Boolean ;

begin
Dec (FMaxHits) ;
R e s u l t :=FMaxHits=0;
I f Re su l t then

begin
FB l o c kL i s t . FBreakOut . DrawBackground (FRect) ;
FB l o c kL i s t . Remove (S e l f) ;
Free ;

9

end ;
end ;

The TSprite object is a little more involved. The declaration is as follows:

TSpr i t e = Class (TGraph i ca lOb j e c t)
FPreviousTop ,
FP r e v i o u s L e f t : I n t e g e r ;
FDrawingArea : PGtkWidget ;
FDrawPixMap : PgdkPixmap ;
FPixMap : PgdkPixMap ;
FBitMap : PGdkBitMap ;

Protected
Procedure CreateSpr i t eFromData (Sp r i t eDa ta : PPGchar) ;
Procedure CreatePixMap ; V i r t ua l ; Abstract ;
Procedure Sav ePo s i t i o n ;

Publ i c
Constructor Crea te (DrawingArea : PGtkWidget) ;
Procedure Draw ;
Function GetChangeRect (Var Rect : TGDkRectAngle) : Boolean ;
Property PixMap : PgdkPixMap Read FPixMap ;
Property BitMap : PGdkBitMap Read FBitMap ;

end ;

The important property is the PixMap property; this contains the pixmap with
the sprite’s image. The BitMap property contains the bitmap associated with the
pixmap. The second important method is the GetChangeRect method; it returns
the rectangle occupied by the sprite at its previous position. This will be used to
’move’ the sprite: When moving the sprite, the current position is saved (using
SavePosition), and the new position is set. After that, the old position is cleared,
and the sprite is drawn at the new position.

All this drawing is done on the background pixmap, to avoid flickering when
drawing: The result of the two drawing steps is shown at once.

The implementation of the Draw method is quite straightforward:

Procedure TSpr i t e . Draw ;

Var
gc : PGDKGc ;

begin
i f FPixMap=Ni l then

CreatePixMap ;
gc := g t k w i d g e t g e t s t y l e (FDrawingArea) ˆ . f g g c [GTK STATE NORMAL] ;
g d k g c s e t c l i p o r i g i n (gc , Le f t , Top) ;
g d k g c s e t c l i p ma s k (gc , FBitmap) ;
gdk draw pixmap (FDrawPixMap , gc , FPixMap , 0 , 0 , Le f t , Top , Width , He ight)
g d k g c s e t c l i p ma s k (gc , Ni l) ;

end ;

After the pixmap has been created (a method which must be implemented by de-
scendent objects), the graphics context of the drawing area is retrieved to do the
drawing.

The bitmap is drawn using the clipping functionality of the GDK toolkit: To
this end, the clip origin is set to the position of the sprite, and the clip bitmask is
set from the FBitmap, which is created when the sprite’s pixmap is created. When
drawing the pixmap, only the bits in the bitmap will be drawn, other bits are left
untouched.

The pixmap is drawn using the gdk draw pixmap function. This function copies
a region from one TGDKDrawable to another. It is defined as follows:

10

procedure gdk draw pixmap (drawab le : PGdkDrawable ; gc : PGdkGC ;
s r c : PGdkDrawable ;
x s r c , y s r c , xdes t , ydes t , width , h e i g h t : g i n t) ;

The function, as all GDK drawing functions, takes a PGDKDrawable pointer and a
graphics contexts as its first two arguments. The third argument is the TGDKDrawable
which should be copied. The xsrc,ysrc parameters indicate the position of the re-
gion that should be copied in the source TGDKDrawable; the xdest,ydest indicate
the position in the target TGDKDrawable where the bitmap should be drawn.

In the case of TSprite, the function is used to copy the sprite’s bitmap onto the
memory pixmap with the game image. After the bitmap was copied, the clip mask
is removed again.

The creation of the pixmap happens when the sprite is drawn for the first time;
The CreateSpriteFromData method accepts a pointer to an XPM pixmap, and uses
the gdk pixmap create from xpm d function (explained in the previous article) to
create the actual pixmap and the corresponding bitmap.

Procedure TSpr i t e . Crea teSpr i t eFromData (Sp r i t eDa ta : PPGChar) ;

begin
FPixMap:= gdk p i xmap c rea t e f r om xpm d (FDrawingArea ˆ .Window ,

@FBitmap ,
Nil ,
Sp r i t eDa ta) ;

end ;

This method can be used by the descendent object’s CreatePixmap procedure.
The SavePosition and GetChangeRect methods are very straightforward:

Function TSpr i t e . GetChangeRect (Var Rect : TGDkRectAngle) : Boolean ;

begin
Re su l t :=(FPr ev i ou sLe f t<>L e f t) or (FPreviousTop<>Top) ;
I f Re su l t then

With Rect do
begin
x := FP r e v i o u s L e f t ;
y :=FPrev iousTop ;
Width :=Abs (Le f t−FP r e v i o u s L e f t)+ s e l f . Width ;
h e i g h t :=Abs (Top−FPrev iousTop)+ s e l f . He ight ;
end ;

end ;

Procedure TSpr i t e . S a v ePo s i t i o n ;

begin
FP r e v i o u s L e f t := Le f t ;
FPrev iousTop :=Top ;

end ;

Note that the GetChangeRect procedure returns false if the position of the sprite
didn’t change. This is used for optimization purposes.

The pad is the simplest of the two TSprite descendents. It only adds a horizontal
movement to the sprite:

TPad = Class (TSp r i t e)
Pr ivate

FSlope ,
FSpeed , FCurrentSpeed : I n t e g e r ;

Protected

11

Procedure CreatePixMap ; ove r r i d e ;
Procedure I n i t i a l P o s i t i o n ;

Publ i c
Constructor Crea te (DrawingArea : PGtkWidget) ;
Procedure Step ;
Procedure GoLeft ;
Procedure GoRight ;
Procedure Stop ;
Property CurrentSpeed : I n t e g e r Read FCurrentSpeed ;
Property Speed : I n t e g e r Read FSpeed Write FSpeed ;
Property S lope : I n t e g e r Read FSlope Write FSlope ;

end ;

The procedures GoLeft, GoRight and Stop can be used to control the movement
of the pad. The method Step will be called at regular intervals to actually move
the pad. The InitialPosition sets the pad at its initial position on the screen.
The Speed and Slope properties can be used to set the speed and slope of the pad.
The Speed is a number of pixels the pad will move per time unit. The ’Slope’ is a
positive number.

The implementation is quite straightforward:

Constructor TPad . Crea te (DrawingArea : PGtkWidget) ;

begin
I nhe r i t ed Crea te (DrawingArea) ;
FSpeed :=6;
FSlope :=50;

end ;

Procedure TPad . I n i t i a l P o s i t i o n ;

begin
L e f t :=(FDrawingArea ˆ . A l l o c a t i o n . Width−Width) d iv 2 ;
Top:=FDrawingArea ˆ . A l l o c a t i o n . Height −(2∗Height) ;
FCurrentSpeed :=0;

end ;

The InitialPosition is used to reset the pad to its initial position when the game
starts, after a ball is lost or when a new level starts.

The various moving procedures do nothing except manipulate the current speed.
The handling here is quite simple, more complex handling (accelleration and so on)
coul be handled.

Procedure TPad . GoLeft ;

begin
FCurrentSpeed:=−FSpeed ;

end ;

Procedure TPad . GoRight ;

begin
FCurrentSpeed :=FSpeed ;

end ;

Procedure TPad . Stop ;

begin
FCurrentSpeed :=0;

end ;

12

The pixmap for the pad is defined in a global constant PadBitmap. It is an array
of PCHar which make up a XPM pixmap. The height and width of the bitmap are
defined in global constants PadHeight and PadWidth

Procedure TPad . CreatePixMap ;

begin
CreateSpr i t eFromData (@PadBitmap [1]) ;
Width :=PadWidth ;
He ight :=PadHeight ;
I n i t i a l P o s i t i o n ;

end ;

The Step method does the actual moving of the pad. It is called at regular intervals
by a timer. It saves the current position, and calculates the new position. A check
is done for the boundaries of the game.

Procedure TPad . Step ;

begin
Sav ePo s i t i o n ;
L e f t := L e f t+FCurrentSpeed ;
i f Le f t<=0 then

begin
FCurrentSpeed:=−FCurrentSpeed ;
L e f t :=0;
end

e l s e i f L e f t+Width>=FDrawingArea ˆ . a l l o c a t i o n . width then
begin
FCurrentSpeed:=−FCurrentSpeed ;
L e f t :=FDrawingArea ˆ . a l l o c a t i o n . width−Width ;
end ;

end ;

The implementation of the Tball class is similar to the one of the TPad, only it
introduces also a vertical speed. The speed of the ball is determined by 3 numbers:

1. A horizontal speed.

2. A vertical speed.

3. A speed factor. (a number between 0 and 100)

The sum of the absolute values of the vertical and horizontal speeds is always 100.
To change the speed direction, the horizontal speed can be set to a value between
0 and 90. This means that the ball can never fly horizontally. The actual speed
is determined by multiplying the horizontal speed and vertical speed with a speed
factor. The 2 values that are obtained like that are the actual horizontal and vertical
speed of the ball.

All this is implemented in the following class:

TBal l = Class (TSp r i t e)
Pr ivate

FBreakOut : TBreakOut ;
FCurrentSpeedX ,
FCurrentSpeedY : I n t e g e r ;
FSpeed f ac to r : I n t e g e r ;

Protected
Procedure CreatePixMap ; ove r r i d e ;
Procedure SetSpeed (Value : I n t e g e r) ;

Publ i c

13

Constructor Crea te (BreakOut : TBreakOut) ;
Procedure Step ;
Procedure I ncSpeed (Value : I n t e g e r) ;
Procedure F l i pSpeed (Fl ipX , F l i pY : Boolean) ;
Property CurrentSpeedX : I n t e g e r Read FCurrentSpeedX Write SetSpeed ;
Property CurrentSpeedY : I n t e g e r Read FCurrentSpeedY ;
Property SpeedFactor : I n t e g e r Read FSpeedFactor Write FSpeedFactor ;

end ;

The FlipSpeed method is used to change the ball’s direction when it hits a brick
or one of the borders of the game. The IncSpeed method increases the speed of
the ball.

As usual, the implementation of these methods is quite straightforward;

Constructor TBal l . C rea te (BreakOut : TBreakOut) ;

begin
I nhe r i t ed Crea te (BreakOut . FDrawingArea) ;
FBreakOut := breakout ;
FCurrentSpeedY :=−100;
FCurrentSpeedX :=0;
FSpeedFactor :=10;

end ;

The CreatePixmap uses the global constant BallPixmap to create the pixmap. The
with and height are stored in the BallWidth and BallHeight constants.

Procedure TBal l . CreatePixMap ;

begin
CreateSpr i t eFromData (@Bal lBitmap [1]) ;
Width :=Ba l lWidth ;
He ight := Ba l lH e i g h t ;

end ;

The SetSpeed value is the write handler for the CurrentSpeedX property. It makes
sure that the value stays within certain bounds, and that the sum of the horizontal
and vertical speeds remains 100.

Procedure TBal l . SetSpeed (Value : I n t e g e r) ;

begin
I f Value<−FMaxXspeed then

Value:=−FMaxXSpeed
e l s e i f Value>FMaxXspeed then

Value :=FMaxXspeed ;
FCurrentSpeedX :=Value ;
I f FCurrentSpeedY>0 then

FCurrentSpeedY :=100−Abs (FCurrentSpeedX)
e l s e

FCurrentSpeedY:=−100+Abs (FCurrentSpeedX) ;
end ;

The IncSpeed procedure increases or decreases the speed of the ball, making sure
it doesn’t get smaller as 10.

Procedure TBal l . IncSpeed (Value : I n t e g e r) ;

begin
FSpeedFactor :=FSpeedFactor+Value ;
I f FSpeedFactor<10 then

14

FSpeedFactor :=10;
end ;

Procedure TBal l . F l i pSpeed (Fl ipX , F l i pY : Boolean) ;

begin
I f F l i pX then

FCurrentSpeedX:=−FCurrentSpeedX ;
I f F l i pY then

FCurrentSpeedY:=−FCurrentSpeedY ;
end ;

The last method of TBall is the Step method, which moves the ball on the screen.
It adjusts the speed when the ball hits the border of the game area, and calls the
TBreakOut.LostBall method when the ball hits the bottom of the game area.

Procedure TBal l . Step ;

begin
Sav ePo s i t i o n ;
L e f t := L e f t + Round ((FCurrentSpeedX ∗FSpeedFactor / 100)) ;
Top :=Top + Round ((FCurrentSpeedY ∗FSpeedFactor / 100)) ;
i f Le f t<=1 then

begin
F l i pSpeed (True , F a l s e) ;
L e f t :=1;
end

e l s e i f L e f t+Width>=FDrawingArea ˆ . a l l o c a t i o n . width then
begin
F l i pSpeed (True , F a l s e) ;
L e f t :=FDrawingArea ˆ . a l l o c a t i o n . width−Width−1;
end ;

i f Top<=1 then
begin
F l i pSpeed (Fa l s e , True) ;
Top :=1;
end

e l s e i f Top+Height>=FDrawingArea ˆ . a l l o c a t i o n . He ight then
FBreakOut . L o s tB a l l

end ;

6 Game logic

The previous objects were concerned with the grapical representation of the game.
The logic of the game is concentrated in 2 other objects: TBlockList, which man-
ages the blocks in the game, and TBreakOut, which implements the game logic.

The TBlockList class is a simple descendent of TList:

TBlockL i s t = Class (TL i s t)
FTotalRows , FTotalColums , FStartRow , FBlockRows , FSpac ing : Byte ;
FBreakOut : TBreakOut ;
FCo lor : PGDKColor ;
Function DRawingArea : PGTKWidget ;
FPixMap : PGDKPixmap ;

Publ i c
Constructor Crea te (BreakOut : TBreakOut) ;
Destructor Dest roy ; ove r r i d e ;
Procedure Ch e c kCo l l i s i o n (B a l l : TBa l l) ;

15

Procedure DrawBlocks ;
Procedure DrawBlocks (Const Area : TGdkRectangle) ;
Procedure Crea t eB l o ck s ;
Procedure FreeB lo ck s ;
Property TotalRows : Byte Read FTotalRows Write FTotalRows ;
Property TotalColumns : Byte Read FTotalColums Write FTotalColums ;
Property StartRow : Byte Read FStartRow Write FStartRow ;
Property BlockRows : Byte Read FBlockRows Write FBlockRows ;
Property BlockSpac ing : Byte Read FSpac ing Write FSpac ing ;
Property PixMap : PGDKPixMap Read FPixMap Write FPixMap ;

end ;

It introduces some properties which control the look of the game: TotalRows,
TotalColumns is the total number of columns and rows in which blocks can be
placed. StartRow and BlockRows determines how many blocks are actually placed.
BlockSpacing determines the amount of space between the blocks. The CheckCollision
determines whether a ball has hit one of the blocks. The DrawBlocks draws only
the blocks that intersect with the rectangle defined in the Area parameter. The
other methods are self explaining.

The implementation of the TBlockList class is -as usual- quite simple:

Constructor TBlockL i s t . C rea te (BreakOut : TBreakOut) ;

begin
FBreakOut :=BreakOut ;

end ;

Function TBlockL i s t . DrawingArea : PGtkWidget ;

begin
Re su l t :=FBreakOut . FDrawingArea ;

end ;

Destructor TBlockL i s t . Des t roy ;

begin
I f FColor<>Ni l then

FreeMem(FCo lor) ;
F r e eB lo ck s ;

end ;

Procedure TBlockL i s t . DrawBlocks ;

Var
I : Long in t ;

begin
I f Count=0 then

Crea t eB l o ck s ;
For I :=0 to Count−1 do

TBlock (I t ems [i]) . draw ;
end ;

Procedure TBlockL i s t . DrawBlocks (Const Area : TGdkRectangle) ;

Var
i : l o n g i n t ;
i n t e r s : TgdkRectangle ;

16

begin
For I :=0 to Count−1 do

With TBlock (I t ems [i]) do
FNeedRedraw:= g d k r e c t a n g l e i n t e r s e c t (@area , @Frect , @ i n t e r s)<>0;

DrawBlocks ;
end ;

The gdk rectangle interset returns 0 if 2 rectangles do not intersect, and returns
a nonzero constant if they do. If they do, the last parameter is filled with the position
and size of the intersecting rectangle.

Procedure TBlockL i s t . F r e eB l o ck s ;

Var
I : l o n g i n t ;

begin
For I :=Count−1 downto 0 do

begin
TBlock (I t ems [i]) . Free ;
Delete (i) ;
end ;

end ;

The CreateBlocks method creates the blocks and draws them on the screen. It is
called when the blocklist is drawn and there are no blocks.

The algoritthm to color and place the blocks is quite simple, but a more complex
algorithm that implements patterns of blocks depending on the level, and different
colors for blocks could be implemented.

Procedure TBlockL i s t . C r ea t eB l o ck s ;

Var
Tota lHe ight , TotalWidth ,
C e l l h e i g h t , Ce l lWidth ,
I , J : I n t e g e r ;
Block : TBlock ;
Min : Byte ;

begin
FColor := A l l o c a t eC o l o r (0 , 0 , $ f f f f , DrawingArea) ;
Min:=FSpac ing d iv 2 ;
I f Min<1 then

Min :=1;
Tota lWidth :=Drawingarea ˆ . A l l o c a t i o n . Width ;
To ta lHe i gh t :=DrawingArea ˆ . A l l o c a t i o n . He ight ;
C e l l h e i g h t :=Tota lHe i gh t Div TotalRows ;
Ce l lWid th :=TotalWidth d iv TotalColumns ;
For I :=StartRow to StartRow+BlockRows−1 do

For J :=0 to TotalColumns−1 do
begin
Block :=TBlock . C rea te (S e l f) ;
With Block do

begin
Top:=Tota lHe ight −(C e l l H e i g h t ∗ I)+Min ;
L e f t :=(Ce l lWid th ∗J)+min ;
Width :=Cel lWidth −2∗min ;
He ight := Ce l lHe i gh t −2∗min ;
Co lo r := S e l f . FCo lor ;
FNeedRedraw:=True ;

17

end ;
add (Block) ;
end ;

end ;

The checkcollision function checks all blocks to see whether it collides with the ball.
If so, it flips the speed of the ball and calls the balls Hit function. This will remove
the ball from the list if it is destroyed.

Note that the flipping of the speed of the ball checks where the ball came from,
i.e. looks at the previous position of the ball.

Procedure TBlockL i s t . C h e c kCo l l i s i o n (B a l l : TBal l) ;

var
brec t , i n t s : t g d k r e c t a n g l e ;
B : TBlock ;
i : i n t e g e r ;
f l i p x , f l i p y : Boolean ;

begin
For I :=Count−1 downto 0 do

begin
B:=TBlock (I t ems [i]) ;
BRect :=B. FRect ;
i f g d k r e c t a n g l e i n t e r s e c t (@Ba l l . F rec t , @BRect , @ i n t s)<>0 then

begin
F l i pY :=((Ba l l . Fprev iousTop>=(B. Top+B. He ight)) and

(B a l l . CurrentSpeedY <0)) or
((B a l l . Fprev iousTop+Ba l l . Height<=B. Top) and
(B a l l . CurrentSpeedY >0)) ;

F l i pX :=Not F l i pY ;
I f F l i pX then

F l i pX :=((Ba l l . FP r e v i ou sLe f t >=(B. L e f t+B. Width)) and
(B a l l . CurrentSpeedX <0)) or

(((B a l l . FP r e v i o u s L e f t+Ba l l . Width)<=B. L e f t) and
(B a l l . CurrentSpeedX >0)) ;

B a l l . F l i pSpeed (Fl ipX , F l i p y) ;
i f B. Hi t and not (Count=0) then

g tk w idge t d r aw (DrawingArea , @BRect) ;
Break ;
end ;

end ;
end ;

Finally, the TBreakOut class encapsulates the rest of the game logic. Its decla-
ration is as follows:

TBreakOut = Class (TObject)
Pr ivate

FLeve l : I n t e g e r ;
FBa l l s : I n t e g e r ;
FBGGC : PGDKGC;
FBackGroundColor : PGDKColor ;
FPad : TPad ;
FBa l l : TBa l l ;
FB l o c kL i s t : TB lockL i s t ;
FDrawingArea : PGTKWidget ;
FPixMap : PGDKPixMap ;
Procedure DrawBackGround (Area : TGdkrectAngle) ;
Procedure DrawBoard (Exposed : PGdkEventExpose) ;

18

Procedure CreateGC ;
Procedure CreatePixMap ;
Procedure CopyPixMap (Area : TGdkRectangle) ;
Procedure Ch e c kCo l l i s i o n ;
Procedure F r e eBa l l ;
Procedure NextLeve l ;
Procedure Nex tBa l l ;
Procedure GameOver ;
Procedure Lo s tB a l l ;
Procedure Redrawgame ;

Publ i c
Constructor Crea te (DrawingArea : PGtkWidget) ;
Procedure Draw(Exposed : PGDKEventExpose) ;
Procedure Step ;
Property B l o c kL i s t : TB lockL i s t Read FB l o c kL i s t ;
Property Pad : TPad Read FPad ;
Property Le v e l : I n t e g e r Read F l e v e l ;
Property Ba l l s : I n t e g e r Read FBa l l s Write FBa l l s ;

end ;

The purpose of most of the methods of TBreakOut is self-evident. The Draw method
will be called when the drawing area on which the game is drawn is exposed. The
Step method will be called by a timer routine, and this will move all pieces in the
game, creating the illusion of movement. These are the only 2 public routines of
the component.

The constructor simply initializes the Ball and blocklist components. It does
not create a ball, this will be created when the ball enters the game.

Constructor TBreakOut . Crea te (DrawingArea : PGtkWidget) ;

begin
FDrawingArea :=DrawingArea ;
FB l o c kL i s t :=TB lockL i s t . C rea te (S e l f) ;
FPad:=TPad . Crea te (FDrawingArea) ;
FBa l l s :=5;

end ;

The following routines are mainly concerned with the drawing of the various
parts of the game.

Procedure TBreakOut . DrawBoard (Exposed : PGdkEventExpose) ;

begin
I f FBGGC=Ni l then

CreateGC ;
DrawBackGround (Exposed ˆ . Area) ;

end ;

Procedure TBreakOut . CreateGC ;

begin
FBGGC:=gdk gc new (FDrawingArea ˆ .Window) ;
FBackGroundColor := A l l o c a t eC o l o r (0 , 0 , 0 , FDrawingArea) ;
g d k g c s e t f o r e g r o u n d (FBGGC, FBackGroundColor) ;
g d k g c s e t f i l l (FBGGC, GDK SOLID) ;

end ;

The graphics context is needed for the drawing of the background of the game; it
sets the drawing color to black and the fill style to solid. The graphics context is

19

then used in the DrawBackground method to draw the background on the pixmap
with the game image:

Procedure TBreakOut . DrawBackGround (Area : TGdkrectAngle) ;

begin
With Area do

gdk d r aw r e c t a n g l e (PGDKDrawable (FPixMap) ,FBGGC,−1 ,x , y , Width+1,He ight +1);
end ;

The pixmap that contains the game image is created the first time the breakout
game is drawn. It is created using the gdk pixmap new function, which needs a
PGDKwindow as the first parameter; from this window certain device properties are
copied.

After the pixmap is created, it is assigned to the pad and blocklist objects.

Procedure TBreakOut . CreatePixMap ;

begin
I f FPixMap<>Ni l then

GDK pixmap unref (FPixMap) ;
With FDrawingAreaˆ do

FPixMap:=gdk pixmap new (Window , A l l o c a t i o n . Width , A l l o c a t i o n . Height ,−1) ;
FB l o c kL i s t . PixMap:=FPixMap ;
FPad . FDrawPixMap:=FPixMap ;
I f Assigned (FBa l l) then

FBa l l . FDrawPixMap:=FPixMap ;
end ;

The following routine does the actual drawing of the screen: It copies the pixmap
with the game image to the actual window. Not the whole pixmap is drawn (this
would be very inefficient), but just the part indicated by the Area parameter.

Procedure TBreakOut . CopyPixMap (Area : TGdkRectangle) ;

begin
gdk draw pixmap (FDrawingArea ˆ .Window ,

g t k w i d g e t g e t s t y l e (FDrawingArea) ˆ . f g g c [GTK WIDGET STATE(FDrawingArea)] ,
FPixMap ,
a r ea . x , a r ea . y ,
a r ea . x , a r ea . y ,
a r ea . width , a r ea . h e i g h t) ;

end ;

The CopyPixmap method is called as much as needed by the Draw method. This
method tries to determine the minimum amount of drawing needed to restore the
game image on the screen.

It will draw the board, the exposed blocks, the previous position of the ball and
pad on the pixmap. After that the changed portions of the pixmap are copied to
the screen.

Procedure TBreakOut . Draw(Exposed : PGDKEventExpose) ;

Var
Rect : TGdkRectangle ;

begin
i f FPixMap=Ni l then

CreatePixMap ;
i f Exposed<>Ni l then

begin

20

DrawBoard (Exposed) ;
FB l o c kL i s t . DrawBlocks (exposed ˆ . a r ea)
end

e l s e
begin
I f Assigned (FBa l l) then

i f FBa l l . GetChangeRect (Rect) then
begin
DrawBackground (Rect) ;
FBLockL is t . d rawBlocks (Rect) ;
end ;

i f FPad . GetChangeRect (Rect) then
DrawBackground (Rect)

end ;
FPad . Draw ;
i f Assigned (FBa l l) Then

FBa l l . draw ;
I f Exposed<>Ni l then

CopyPixMap (Exposed ˆ . Area) ;
I f ass igned (FBa l l) then

i f FBa l l . GetChangeRect (Rect) then
CopyPixMap (Rect) ;

i f FPad . GetChangeRect (Rect) then
CopyPixMap (Rect) ;

IF Assigned (FBa l l) then
CopyPixMap (FBa l l . FRect) ;

CopyPixMap (FPad . FRect) ;
end ;

The RedrawGame forces a redraw of the whole game, by forcing an expose event on
the drawing area:

Procedure TBreakout . Redrawgame ;

Var
Rect : TgdkRectangle ;

begin
Rect .X:=FDrawingArea ˆ . a l l o c a t i o n . x ;
Rect .Y:=FDrawingArea ˆ . a l l o c a t i o n . y ;
Rect . Width :=FDrawingArea ˆ . a l l o c a t i o n . Width ;
Rect . He ight :=FDrawingArea ˆ . a l l o c a t i o n . He ight ;
g tk Widget draw (FDrawingArea , @rec t)

end ;

The Step procedure is the central part of the game logic: it moves the various
components on the screen, and checks for collisions between the ball and the pad or
the blocks. If a ’game over’ or ’end of level’ condition is detected, the appropriate
methods are called to handle these situations.

Procedure TBreakOut . Step ;

begin
FPad . Step ;
I f Assigned (FBa l l) then

FBa l l . Step ;
C h e c kC o l l i s i o n ;
I f FB l o c kL i s t . Count=0 then

NextLeve l ;
i f Not Assigned (FBa l l) and (FBa l l s =0) then

21

GameOver ;
end ;

The CheckCollision method checks for collisions of the ball with the pad or with
a block. The blocklist handles the collisions with a block, the collision between the
ball and the pad is handled here, in much the same was as it was handled by the
blocklist for the blocks. The only difference is that the speed of the ball is altered,
depending on the speed of the pad:

1. If the pad was moving at the moment of impact, then the speedfactor of the
ball is increased or decreased, depending on whether the ball and pad were
moving in the same direction, or in opposite directions.

2. The angle of the ball is altered using the Slope of the pad. The horizontal
component of the speed is increased (or decreased) with a factor that depends
on the place where the ball hits the pad. If the pad is hit in the middle, no
change takes place. If it is not hit in the middle, the alteration is proportional
to the distance between the middle of the pad and the point of impact.

Procedure TBreakOut . C h e c kCo l l i s i o n ;

Var
I n t e r s : TGdkrectang le ;

begin
I f Assigned (FBa l l) then
begin
i f g d k r e c t a n g l e i n t e r s e c t (@FBal l . FRect , @FPad . Frect , @ i n t e r s)<>0 then

I f (FBa l l . FPreviousTop<FPad . Top) and (FBa l l . FCurrentSpeedY>0) then
begin
FBa l l . F l i pSpeed (Fa l s e , True) ;
I f (FPad . CurrentSpeed<>0) then

i f (FBa l l . FCurrentSpeedX ∗FPad . Cur rentSpeed)>0 then
FBa l l . IncSpeed (H i t A c c e l l e r a t i o n)

e l s e
FBa l l . IncSpeed(−H i t A c c e l l e r a t i o n) ;

FBa l l . CurrentSpeedX := FBa l l . CurrentSpeedX+
(Round (((FBa l l . L e f t+(FBa l l . Width d iv 2)) −

(FPad . l e f t+Fpad . Width d iv 2))
∗ (FPad . S lope / 1 0 0))) ;

end ;
FB l o c kL i s t . C h e c kC o l l i s i o n (FBa l l) ;
end ;

end ;

The following methods control the logic of the game. They are kept as simple as
possible, but they can be altered to make the game more interesting or visually
attractive.

Procedure TBreakOut . F r e eBa l l ;

begin
FBa l l . Free ;
FBa l l :=Ni l ;

end ;

Procedure TbreakOut . Nex tBa l l ;

begin

22

I f FBa l l=Ni l then
begin
FBa l l :=TBal l . C rea te (S e l f) ;
FBa l l . Top:=FPad . Top−1;
FBa l l . L e f t :=FPad . L e f t + (FPad . Width d iv 2) ;
FBa l l . CurrentSpeedX :=FPad . Cur rentSpeed ∗5 ;
FBa l l . FPrev iousTop := FBa l l . Top ;
FBa l l . FP r e v i o u s L e f t := FBa l l . L e f t ;
FBa l l . FDrawPixMap:= S e l f . FPixMap ;
FBa l l . Draw ;
end ;

end ;

Procedure TBreakOut . Nex tLeve l ;

Var
Area : TGdkRectangle ;

begin
I f Assigned (FBa l l) then

F r e eBa l l ;
FPad . FSpeed :=FPad . Speed+L e v e l A c c e l l e r a t i o n ;
FPad . I n i t i a l P o s i t i o n ;
RedrawGame ;

end ;

Procedure TBreakout . L o s tB a l l ;

begin
Dec (FBa l l s) ;
I f FBa l l s=0 then

GameOver ;
F r e eBa l l ;
Fpad . I n i t i a l P o s i t i o n ;
RedrawGame ;

end ;

Procedure TBreakout . GameOver ;

begin
end ;

All the code for these three objects is collected in the unit blocks.
The main program uses the TBreakOut object to draw the game on a screen: A

simple, non-sizable window is created, and a TGTKDrawingArea widget is dropped
on it. A signal handler for the expose event of the widget is installed (the Exposed

function), as well as a timeout which will step the game every 50 milliseconds (the
Step function). After that, event handlers are installed for the keyboard, to the
user can move the pad (the KeyPress function). The ’delete’ event is also handled,
to destroy the window (the Close function).

The only logic in these functions consists of communicating the events to the
TBreakout object, and to set the movement of the Pad based on the key that was
hit. The program listing is presented without further comment.

program breakout ;

{$mode ob j f p c }

uses g l i b , gdk , gtk , b l o c k s ;

23

Type
TBreakOutWindow = Class (TObject)
Publ i c

window ,
a r ea : PGtkWidget ;
BreakOut : TBreakOut ;

end ;

Var
GameWindow : TBreakOutWindow ;

Function C lo s e (w idget : PGtkWidget ;
even t : PGdkEvent ;
data : g p o i n t e r) : boo l ean ; cdec l ;

Begin
g t k ma i n qu i t () ;
C l o s e := f a l s e ;

End ;

f unct ion Exposed (Widget : PGtkWidget ;
even t : PGdkEventExpose ;
Data : g p o i n t e r) : I n t e g e r ; cdec l ;

begin
TBreakOutWindow (Data) . BreakOut . Draw(Event) ;
r e s u l t :=0;

end ;

f unct ion KeyPress (Widget : PGtkWidget ;
even t : PGdkEventKey ;
Data : g p o i n t e r) : I n t e g e r ; cdec l ;

begin
with TBreakOutWindow (Data) . BreakOut do

Case even t ˆ . k e y v a l of
g d k l e f t : Pad . G o l e f t ;
g d k r i g h t : Pad . GoRight ;
gdk down : Pad . Stop ;
Ord (’ ’) : Nex tBa l l ;

end ;
R e s u l t :=0;

end ;

f unct ion Step (data : Gpo i n t e r) : i n t e g e r ; cdec l ;

Var
Rect : TGdkRectangle ;

begin
With TBreakOutWindow (Data) do

begin
With Breakout do

begin
Step ;
Draw(Ni l) ;
end ;

end ;

24

Re su l t := i n t e g e r (True) ;
end ;

Begin
g t k i n i t (@argc , @argv) ;
GameWindow:=TBreakOutWindow . Crea te ;
With GameWindow do

begin
window := gtk window new (GTK WINDOW TOPLEVEL) ;
g t k w i n d ow s e t p o l i c y (PgtkWindow (Window) , 0 , 0 , 1) ;
g t k s i g n a l c o n n e c t (PGTK OBJECT (window) , ’ d e l e t e e v e n t ’ ,

GTK SIGNAL FUNC(@Close) , Ni l) ;
g t k c o n t a i n e r s e t b o r d e r w i d t h (GTK CONTAINER (window) , 1 0) ;
a r ea := g tk d r aw i ng a r e a new () ;
g t k c o n t a i n e r a d d (GTK CONTAINER(window) , Area) ;
BreakOut :=TBreakOut . Crea te (a r ea) ;
With BreakOut . B l o c k L i s t do

begin
TotalRows :=20;
TotalColumns :=10;
StartRow :=15;
BlockRows :=5;
B lockSpac ing :=2;
end ;

g t k s i g n a l c o n n e c t (GTK OBJECT (a r ea) , ’ e x po s e e v en t ’ ,
GTK SIGNAL FUNC(@Exposed) ,GameWindow) ;

g t k d r aw i n g a r e a s i z e (PGTKDRAWINGAREA(a r ea) , 6 00 , 4 00) ;
g t k w i d g e t s e t e v e n t s (window ,GDK KEY RELEASE MASK) ;
g t k s i g n a l c o n n e c t (PGTKObject (Window) , ’ k e y p r e s s e v e n t ’ ,

GTK SIGNAL FUNC(@KeyPress) , GameWindow) ;
g t k t imeou t add (50 , @Step , GameWindow) ;
g t k w i d g e t s h ow a l l (window) ;
gtk main () ;
end ;

End .

end .

The result of the program can be seen in figure ??. The program can be enhanced
in many ways:

1. More different colors for the blocks.

2. Different patterns of blocks when going to new levels.

3. Add some messages at the end of a level, or at game over.

4. Add a pause mode.

5. Add a menu to start/stop the game, and with some preferences (game size,
player level)

6. add a score based on the time it takes to finish a level.

And many more things can probably be done. The program as it is now is playable,
and fulfills it purpose: to demonstrate that simple game programming using the
drawing facilities offered by GTK/GDK toolkit is possible and can be quite easy.

25

Figure 2: The breakout program in action.

26

