
Programming GTK in Free Pascal: Making a

real-world application.

Florian Klämpfl
and

Michaël Van Canneyt

January 2001

1 Introduction

In the third article on programming the GTK toolkit, the use of several GTK
widgets is demonstrated by building a real-world application.

The main widgets to be shown are the Toolbar, CList and Tree widgets. Along
the way, some other widgets such as a dialog will be shown as well.

The program to show all this will be a small file explorer. It will not perform
all functions that one would expect from a file explorer, but it is not meant to be,
either. It just demonstrates how one could go about when making a file explorer.

The File explorer will have 2 main components. One is a directory tree which
can be used to select a directory. the other is a Clist, a component that presents a
list of items in a table with headings. The Clist will be used to display the files in
the directory selected in the directory tree.

The functionality included will be limited to viewing the properties of a file, and
deleting a file. The view can be customized, and sorting of columns by clicking the
column header is possible.

Each window developed in the article will be described in a record, i.e. all
window elements will have a field in a record that points to the GTK widget used.
Several forms will be developed, and each form will be put in a separate unit. Signal
callbacks will in general receive a ’userdata’ pointer that points to the window
record. This approach mimics the object oriented approach of GTK, and is similar
to the approach in Delphi, where instead of a object, a window class is used.

2 The main window

The main window will consist of a menu, a tool bar, a directory tree and the file
list. The bottom of the screen will contain a statusbar. Between the directory tree
and the file list is a splitter that can be used to resize the directory tree.

Right-clicking on the file list will show a popup menu, from which file actions
can be selected.

All the widgets in the main window will be stored in a big record TMainWindow:

TMainWindow = Record
FDir ,
FMask : S t r i n g ;
Window : PGtkWindow ;
Menu : PGtkMenuBar ;
Too lbar : PGtkToolBar ;
D i r T r e e : PGtkTree ;

1

F i l e L i s t : P G t k C l i s t ;
Pane : PGtkPaned ;
S t a t u s B a r : PGtkStatusBar ;
F i l e s H e a d e r , D i rHeader : PGtkLabel ;
// h e l p e r o b j e c t s − Menu
A c c e l : PGtkAccelGroup ;
MFile ,
MView ,
MColumns ,
MHelp ,
// Main menu i t ems
PMFiles : PGtkMenu ;
MI F i l e ,
M I F i l e P r o p e r t i e s ,
M I F i l e D e l e t e ,
MIExit ,
MiColumns ,
MIAbout ,
MIHelp : PGtkMenuItem ;
MIShowTit les ,
MIShowExt ,
MIShowSize ,
MiShowDate ,
MIShowAttrs : PGtkCheckMenuItem ;
// F i l e s PopupMenu I tems :
P M I F i l e P r o p e r t i e s ,
P M I F i l e D e l e t e : PGtkMenuItem ;
// Pack ing boxes
VBox ,
LeftBox ,
RightBox : PGtkBox ;
// S c r o l l boxes
TreeScro l lWindow ,
L i s t S c r o l l W i n d o w : PGtkScrol ledWindow ;
// Tree r oo t node .
RootNode : PGtkTreeItem ;

end ;
PMainWindow = ˆTMainWindow ;

The record resembles a form class definition as used in Delphi, it contains all possible
widgets shown on the window.

The most important ones are of course the DirTree and FileList fields, the Menu

which will refer to the main menu and the PMfiles which will hold the popup menu.
The Status bar is of course in the StatusBar field, and the ToolBar field will hold the
main toolbar of the application.

The FDir field will be used to hold the currently shown directory and the FMask

field can be used to store a file mask that determines what files will be shown in
the list.

All these fields are filled in using the function NewMainForm :

Function NewMainForm : PMainWindow ;

The function starts as follows :

begin
R e s u l t :=New(PMainWindow) ;
With R e s u l t ˆ do

begin
FMask:= ’ ∗ .∗ ’ ;
Window:=PgtkWindow (gtk window new (GTK WINDOW TOPLEVEL)) ;

2

g t k w i n d o w s e t t i t l e (Window , S F i l e E x p l o r e r) ;
g t k w i d g e t s e t u s i z e (PgtkWidget (Window) , 6 4 0 , 4 8 0) ;
g t k s i g n a l c o n n e c t (PGTKOBJECT (window) , ’ d e s t r o y ’ ,

GTK SIGNAL FUNC (@ d e s t r o y) , R e s u l t) ;
g t k w i d g e t r e a l i z e (PgtkWidget (window)) ;

This is a more or less standard GTK setup for a window. Note that the pointer
to the window record is passed to the ’destroy’ signal handler for the window, and
that the window widget is realized (so a actual window is created). The necessity
for the ’realize’ call is explained below.

After the window is created, the main widgets on the form are created:

Menu:=NewMainMenu (R e s u l t) ;
ToolBar := NewToolbar (R e s u l t) ;
S t a t u s B a r := PgtkSt atusBar (g t k s t a t u s b a r n e w) ;
F i l e L i s t := N e w F i l e L i s t (R e s u l t) ;
D i r T r e e := NewDir t ree (R e s u l t) ;
PMFiles := NewFilePopupMenu (R e s u l t) ;

The functions used to create these widgets will be discussed further on.

Menu The menu is created in the function NewMainMenu

ToolBar The toolbar is created in the NewToolbar function.

FileList The CList component which will show the file data. Created using NewFileList.

DirTree The directory tree showing the directory structure of the disk is created
using NewDirtree.

PMFiles is the popup menu for the file list and is created in the NewFilePopupMenu

function.

Each function will set the fields which contain the helper widgets.
After the main widgets have been created, it is time to put them on the form,

and the rest of the NewMainForm function is concerned mainly with placing the
widgets in appropriate containers.

A splitter widget in GTK is called a paned window. It can be created using one
of the following functions:

f u n c t i o n gtk hpaned new : PGtkWidget ;
f u n c t i o n gtk vpaned new : PGtkWidget ;

Since the directory tree and file explorer window will be located left to each other,
a gtk hpaned new call is needed for the file explorer.

The paned window has 2 halves, in each of which a widget can be placed. This is
done using the following calls:

procedure g t k p a n e d a d d 1 (paned : PGtkPaned ; c h i l d : PGtkWidget) ; c d e c l ;
procedure g t k p a n e d a d d 2 (paned : PGtkPaned ; c h i l d : PGtkWidget) ; c d e c l ;

The first function adds a widget to the left pane, the second to the right pane (or
the top and bottom panes if the splitter is vertical).

With this knowledge, the Directory Tree and File List can be put on the form.
In the case of the file explorer, 2 widgets will be packed in vertical boxes which are
on their turn put the left and right panes of the splitter:

Pane:= PgtkPaned (gtk hpaned new) ;
Di rHeader := PgtkLabe l (g t k l a b e l n e w (pchar (SDirTree))) ;
Le f tBox :=PGtkBox (gt k vb ox ne w (f a l s e , 0)) ;
g t k b o x p a c k s t a r t (Le f tbox , PGtkWidget (Di rHeader) , F a l s e , F a l s e , 0) ;
g t k b o x p a c k s t a r t (Le f tbox , PgtkWidget (TreeScro l lWindow) , t r u e , True , 0) ;
g t k p a n e d a d d 1 (pane , PGtkWidget (L e f t b o x)) ;

3

The left-hand side vertical box (LeftBox) contains a label (DirHeader) which serves as
a heading for the directory tree (DirTree). It displays a static text (in the constant
SDirTree).

The right pane can be filled in a similar way with the file list:

F i l e s H e a d e r := PgtkLabe l (g t k l a b e l n e w (pchar (S F i l e s I n D i r))) ;
RightBox :=PGtkBox (gtk vb ox ne w (f a l s e , 0)) ;
g t k b o x p a c k s t a r t (Rightbox , PGtkWidget (F i l e s H e a d e r) , F a l s e , F a l s e , 0) ;
g t k b o x p a c k s t a r t (Rightbox , PGtkWidget (L i s t S c r o l l W i n d o w) , t r u e , True , 0) ;
g t k p a n e d a d d 2 (pane , PGtkWidget (R ightbox)) ;

The right-hand side vertical box contains a label FileHeader which serves as a heading
for the file list (FileList). It will be used to display the current directory name
(SFilesInDir constant).

After the directory tree and file view have been put in a paned window, all that
is left to do is to stack the statusbar, paned window, toolbar and menu in a vertical
box VBox which covers the whole window:

VBox:=PGtkBox (gt k vb ox ne w (f a l s e , 0)) ;
g t k c o n t a i n e r a d d (PGtkConta iner (Window) , PgtkWidget (VBox)) ;
g t k b o x p a c k s t a r t (vbox , PGtkWidget (Menu) , F a l s e , F a l s e , 0) ;
g t k b o x p a c k s t a r t (vbox , PGtkWidget (ToolBar) , F a l s e , F a l s e , 0) ;
g t k b o x p a c k s t a r t (vbox , PGtkWidget (Pane) , t r u e , t r u e , 0) ;
g t k b o x p a c k s t a r t (vbox , PGtkWidget (S t a t u s B a r) , f a l s e , f a l s e , 0) ;
g t k w i d g e t s h o w a l l (PGtkWidget (vbox)) ;
end ;

end ;

The destroy signal of the window does nothing except destroying the main window
record and telling GTK to exit the event loop:

procedure d e s t r o y (w i d g e t : pGtkWidget ; Window : PMainWindow) ; c d e c l ;
begin

g t k c l i s t c l e a r (Window ˆ . F i l e L i s t) ;
d i s p o s e (Window) ;
g t k m a i n q u i t () ;

end ;

The call to gtk clist clear serves to clear the file list window. The necessity for this
call will be explained below.

3 The file list

The file list is constructed using the GTK CList widget. This is a powerful widget
that contains a lot of functionality, comparable to the TListView component found
in Delphi.

A the file list widget is created using the following function:

Function N e w F i l e L i s t (MainWindow : PMainWindow) : P G t k C l i s t ;

Const
T i t l e s : Array [1 . . 6] of pchar =

(’Name ’ , ’ e x t ’ , ’ S i z e ’ , ’ Date ’ , ’ A t t r i b u t e s ’ , ’ ’) ;

begin
MainWindow ˆ . L i s t S c r o l l W i n d o w :=

PGtkScrol ledWindow (g t k s c r o l l e d w i n d o w n e w (Nil , N i l)) ;
g t k s c r o l l e d w i n d o w s e t p o l i c y (MainWindow ˆ . L i s t S c r o l l W i n d o w ,

GTK POLICY AUTOMATIC ,

4

GTK POLICY AUTOMATIC) ;
R e s u l t := P G t k C l i s t (G t k C l i s t N e w w i t h t i t l e s (6 , @ T i t l e s)) ;
g t k C o n t a i n e r a d d (PGTKContainer (MainWindow ˆ . L i s t S c r o l l W i n d o w) ,

PGtkWidget (R e s u l t)) ;

A Clist object is not capable of drawing scroll bars if it contains too many items for
its size, so first a Scrolled Window is created in which the Clist object is embedded. A
scrolled window is a container widget which does nothing except providing scrollbars
for the widget it contains.

A scrolled window is created using the gtk scrolled window new function:

f u n c t i o n g t k s c r o l l e d w i n d o w n e w (h a d j u s t m e n t : PGtkAdjustment ;
v a d j u s t m e n t : PGtkAdjustment) : PGtkWidget

The Adjustment parameters can be used to pass scrollbar widgets that the scrolled
window should use to do it’s work. If none are passed, the scrolled window will
create the needed scrollbars by itself.

The visibility of the scrollbars can be controlled with the policy property of the
scrolled window:

g t k s c r o l l e d w i n d o w s e t p o l i c y (s c r o l l e d w i n d o w : PGtkScrol ledWindow ;
h s c r o l l b a r p o l i c y : TGtkPol icyType ;
v s c r o l l b a r p o l i c y : TGtkPol icyType)

The horizontal and vertical policies can be set to the following values:

GTK POLICY AUTOMATIC Scrollbars are only visible if they are needed.

GTK POLICY ALWAYS Scrollbars are always visible.

After the creation of the scrolled window, the file list is created and added to
the scrolled window. A CList widget can be created using 2 calls;

f u n c t i o n g t k c l i s t n e w (columns : g i n t) : PGtkWidget ;
f u n c t i o n g t k c l i s t n e w w i t h t i t l e s (columns : g i n t ;

t i t l e s : PPgchar) : PGtkWidget ;

In both cases, the number of columns in the list must be passed. If the column
header titles are fixed and known, they can be passed in the gtk clist new with titles

call, but they can still be set and retrieved later on with the following calls:

Procedure g t k c l i s t s e t c o l u m n t i t l e (c l i s t : PGtkCList ;
column : g i n t ;
t i t l e : Pgchar) ; c d e c l ;

f u n c t i o n g t k c l i s t g e t c o l u m n t i t l e (c l i s t : PGtkCList ;
column : g i n t) : Pgchar ; c d e c l ;

Note that the column indices are 0 based.
After the CList widget has been created, some properties can be set:

g t k c l i s t s e t s h a d o w t y p e (R e s u l t ,GTK SHADOW ETCHED OUT) ;

This call sets the border around the clist. The possible values for the last parameter
(the TGtkShadowType) of gtk clist set shadow type are:

GTK SHADOW NONE No border.

GTK SHADOW IN the clist appears lowered.

GTK SHADOW OUT the clist appears raised.

GTK SHADOW ETCHED IN the clist appears with a lowered frame.

GTK SHADOW ETCHED OUT the clist appears with a raised frame.

5

The justification of a column in the list can be set:

g t k c l i s t s e t c o l u m n j u s t i f i c a t i o n (r e s u l t , 2 , GTK JUSTIFY RIGHT) ;

column 2 will contain the file sizes, so it is set right-justified. Other possible values
are for justification are GTK JUSTIFY LEFT, GTK JUSTIFY CENTER, and GTK JUSTIFY FILL,
which have their obvious meanings.

To be able to select multiple items (or rows) at once, the selection mode of the
CList must be set:

g t k c l i s t s e t s e l e c t i o n m o d e (R e s u l t , GTK SELECTION MULTIPLE) ;

Possible modes of selection are:

GTK SELECTION SINGLE Only one row can be selected at any given time.

GTK SELECTION BROWSE Multiple items can be selected, however the se-
lection will always return 1 item.

GTK SELECTION MULTIPLE Multiple items can be selected, and the selec-
tion will contain all selected items.

GTK SELECTION EXTENDED The selection is always Nil.

The selection is a field (selection) of type PGList in the TGtkCList record. A PGlist

is a pointer to a doubly linked list with data pointers. More details about this will
follow.

The elements in the list list can be sorted.

g t k c l i s t s e t a u t o s o r t (R e s u l t , True) ;
I f DefCompare=N i l then

DefCompare := R e s u l t ˆ . compare ;
g t k c l i s t s e t c o m p a r e f u n c (R e s u l t ,

TGtkCListCompareFunc (@Fi leCompareFunc)) ;

By default, a CList sorts by comparing the texts in the current sort column of the
items in the list. This sorting happens using the compare function of the CList. The
standard compare function of the list is saved here in a variable DefCompare, so it can
still be used. Using the gtk clist set compare func the compare function to be used
when sorting can be set, and it is set to the function FileCompareFunc, which will be
discussed later on.

The gtk clist set auto sort can be used to set the auto-sort feature of the Clist.
If auto-sort is on, adding new items to the CList will insert them in the correct
order. If auto-sort is off, new items are appended to the beginning or end of the
list.

After the sort function is set, handlers are attached to 2 signals:

g t k s i g n a l c o n n e c t (PgtkObject (R e s u l t) , ’ b u t t o n p r e s s e v e n t ’ ,
TGtkSigna lFunc (@ShowPopup) , MainWindow) ;

g t k s i g n a l c o n n e c t (PgtkObject (R e s u l t) , ’ c l i c k c o l u m n ’ ,
TGtkSigna lFunc (@ F i l e C o l u m n C l i c k) , MainWindow) ;

The first handler connects to a mouse button press event. This will be used to
detect a right mouse click, and to show a popup menu:

Procedure ShowPopup (Widget : PGtkWidget ;
Event : PGdkEventButton ;
Window : PMainWindow) ; c d e c l ;

begin
i f (e v e n t ˆ . t h e t y p e=GDK BUTTON PRESS) and

(e v e n t ˆ . but ton =3) then

6

gtk menu popup (Window ˆ . PMFiles , Nil , Nil , Nil , NIl , 3 , e v e n t ˆ . time) ;
end ;

The gtk menu popup function does nothing but showing the menu; when a menu
item is clicked, the menu will close by itself.

The second handler connects to the ’click column’ event. This event is emitted
if the user clicks on the column header. It will be used to switch the sort order of
the file list:

Procedure F i l e C o l u m n C l i c k (L i s t : PGtkCList ; Column : g i n t ; Window : PMainWindow) ; c d e c l ;

Var
I : l o n g i n t ;
NS : TGtkSortType ;

begin
I f Column<>L i s t ˆ . s o r t c o l u m n Then

begin
g t k c l i s t s e t s o r t t y p e (L i s t , GTK SORT ASCENDING) ;
g t k c l i s t s e t s o r t c o l u m n (l i s t , Column) ;
end

e l s e
begin
I f (L i s t ˆ . S o r t t y p e=GTK SORT ASCENDING) Then

NS:=GTK SORT DESCENDING
e l s e

NS:=GTK SORT ASCENDING ;
g t k c l i s t s e t s o r t t y p e (L i s t , NS) ;
end ;

g t k c l i s t s o r t (l i s t) ;
end ;

The function starts by retrieving the current sort column. If it is different from the
column the used clicked on, then 2 things are done:

1. The sort type is set to ascending.

2. The sort column is set to the column the user clicked.

If, on the other hand, the user clicks on a column that is the sort column, the sort
type is simply reversed. After the sort column and sort type are set, the list is
epxlicitly sorted. (neither of the calls that set the sort order or sort column forces
a sort).

The sort happens using the compare function (FileCompareFunc) that was set when
the CList was created:

Function Fi leCompareFunc (L i s t : PGtkCList ; Row1 , Row2 : PGtkCListRow) : L o n g i n t ; Cdecl ;

Var
SC : L o n g i n t ;

begin
SC:= L i s t ˆ . s o r t c o l u m n ;
I f SC i n [2 , 3] then

begin
SC:=SC−2;
R e s u l t := PLongint (Row1 ˆ . Data) [SC]−PLongint (Row2 ˆ . Data) [SC] ;
end

El se
R e s u l t := DefCompare (L i s t , Row1 , Row2) ;

end ;

7

This function receives 3 arguments:

• The list that needs to be sorted.

• 2 pointers to the row objects that must be compared.

The result must be an integer that is negative if the first row should come before
the second or larger than zero if the second row should come before the first. If the
result is zero then the columns are considered the same.

The function checks what the sort column is. If it is not the size (2) or date (3)
column, then the default row compare function (which was saved in the DefCompare

variable when the list was created) is used to compare the rows. If the size or date
columns must be compared, the user data associated with the rows is examined. As
will be shown below, the user data will point to an array of 2 Longint values that
describe the size and datestamp of the file. The approriate values are compared
and the result is passed back.

To fill the file list with data, the FillList function is implemented:

Function F i l l L i s t (L i s t : PGtkCList ;
Const Dir , Mask : S t r i n g) : I n t e g e r ;

Var
I n f o : TSearchRec ;
S i z e : I n t 6 4 ;
I , J : l o n g i n t ;

begin
R e s u l t :=0;
S i z e :=0;
g t k c l i s t f r e e z e (L i s t) ;
Try

g t k c l i s t c l e a r (L i s t) ;
I f F i n d F i r s t (A d d T r a i l i n g S e p a r a t o r (D i r)+Mask ,

f a A n y F i l e , I n f o)=0 then
Repeat

Inc (S i z e , I n f o . S i z e) ;
A d d F i l e T o L i s t (L i s t , I n f o) ;
Inc (R e s u l t) ;

U n t i l FindNext (I n f o)<>0;
FindClose (i n f o) ;

f i n a l l y
For I :=0 to 4 do

begin
J:= g t k c l i s t o p t i m a l c o l u m n w i d t h (L i s t , i) ;
g t k c l i s t s e t c o l u m n w i d t h (L i s t , i , J) ;
end ;

g t k c l i s t t h a w (L i s t)
end ;

end ;

This function is very straightforward. To start, it ’freezes’ the list with gtk clist freeze ;
this prevents the list from updating the screen each time a row is added or deleted.
Omitting this call would cause serious performance degradation and screen flicker.

After freezing the list, it is cleared; Then a simple loop is implemented that scans
the given directory with the given file mask using the FindFirst/FindNext calls. For
each file found it calls the AddFileToList function, that will actually add the file to
the list view, using the information found in the search record.

8

The AddTrailingSeparator adds a directory separator to a string containing the
name of a directory if this does not end on a separator yet. It can be found in the
futils unit.

After the loop has finished, the optimal width for each column is retrieved using
the gtk clist optimal column width function and the result is used to set the column
width. As a result, the columns will have the correct size for displaying all items.

When this has been done, the list is ’thawed’ with gtk clist thaw , which means
that it will repaint itself if needed. This happens in a finally block since the

gtk clist freeze and gtk clist thaw work with a reference counter. For each ’freeze’
call the counter is increased. It is decreased with a ’thaw’ call. When the counter
reaches zero, the list is updated.

The function that actually adds a row to the list view is quite simple:

Procedure A d d F i l e T o L i s t (L i s t : PGtkCList ; I n f o : TSearchRec) ;

Var
Texts : Array [1 . . 6] of A n s i S t r i n g ;
FSD : PLongint ;
I : l o n g i n t ;

begin
Texts [1] : = ExtractFi leName (I n f o .Name) ;
Texts [2] : = E x t r a c t F i l e E x t (I n f o .Name) ;
Texts [3] : = F i l e S i z e T o S t r i n g (I n f o . S i z e) ;
Texts [4] : = DateTimeToStr (FileDateToDateTime (I n f o . Time)) ;
Texts [5] : = F i l e A t t r s T o S t r i n g (I n f o . A t t r) ;
Texts [6] : = ’ ’ ;
i := g t k c l i s t a p p e n d (L i s t , @Texts [1]) ;
FSD:=GetMem(2∗ SizeOf (L o n g i n t)) ;
FSD [0] : = I n f o . S i z e ;
FSD [1] : = I n f o . Time ;
g t k c l i s t s e t r o w d a t a f u l l (L i s t , I , FSD , @DestroySortData) ;

end ;

The gtk clist append call accepts 2 paramers: a CList, and a pointer to an array of
zero-terminated strings. The array must contain as much items as the CList has
columns (in the above, the last column is always empty, as this gives a better visual
effect). The call adds a column at the end of a list; An item can be inserted at the
beginning of the list with gtk clist append , which accepts the same parameters. An
item can be inserted at certain position:

g t k c l i s t i n s e r t (c l i s t : PGtkCList ; row : g i n t ; t h e t e x t : PPgchar) ; c d e c l ;

Note that all these calls do the same thing if the ’auto sort’ was set for the CList.
The FileAttrsToString function converts file attributes to a string of characters

that indicate whether a given attribute is present. It can be found in the futils unit
and will not be shown here.

After the file data was appended to the CList, an array of 2 longints is allocated
on the heap. The first longint is filled with the size of the file, the second with the
date of the file. The pointer to this array is then associated with the row that was
just inserted with the gtk clist set row data full call. There are 2 calls to associate
data with a row:

g t k c l i s t s e t r o w d a t a (c l i s t : PGtkCList ;
row : g i n t ;
data : g p o i n t e r) ; c d e c l ;

g t k c l i s t s e t r o w d a t a f u l l (c l i s t : PGtkCList ;
row : g i n t ; data : g p o i n t e r ;
d e s t r o y : : T G t k D e s t r o y N o t i f y) ;

9

the first call is used to add data to a clist that will not need to be destroyed if the
row is deleted. The second call can be used to pass a callback that will be called
when the row is destroyed.

In the case of the file list, the DestroySortData call is used to dispose the array
with sort data:

Procedure D e s t r o y S o r t D a t a (FSD : P o i n t e r) ; c d e c l ;

begin
FreeMem(FSD) ;

end ;

The reason that the file list is cleared when the main window is destroyed now
becomes apparent: when the list is cleared, all data associated with the file list is
freed. If the call to gtk clist clear is omitted before destroying the main window,
the list is not cleared and all data stays in memory even after the window closes.

The display of the column titles of the file list can be switched on or off. To do
this a check menu item (’Hide titles’) is added to the ’View’ menu. If the menu is
clicked, the following callback is executed:

Procedure T o g g l e F i l e L i s t T i t l e s (Sender : PGtkCheckMenuItem ;
Window : PMainWindow) ; c d e c l ;

begin
I f a c t i v e (Sender ˆ)=0 then

g t k c l i s t c o l u m n t i t l e s s h o w (Window ˆ . F i l e L i s t)
e l s e

g t k c l i s t c o l u m n t i t l e s h i d e (Window ˆ . F i l e L i s t)
end ;

The active function checks whether a check menu item is currently checked ot not
and shows or hides the titles.

Not only can the column titles be switched on or off, it is also possible to control
whether or not a given column must be shown;

Under the ’View’ menu, there is a ’Hide columns’ submenu that contains 4 check
menus that can be used to toggle the visibility of the columns in the file list. All
the check menu items are connected to the following callback:

Procedure T o g g l e F i l e L i s t C o l u m n s (Sender : PGtkCheckMenuItem ;
Window : PMainWindow) ; c d e c l ;

Var Col : L o n g i n t ;

begin
With Windowˆ do

I f Sender=MIShowExt Then
Col :=1

e l s e i f Sender=MiShowSize Then
Col :=2

e l s e i f Sender=MIShowDate then
Col :=3

e l s e
Col :=4;

g t k c l i s t s e t c o l u m n v i s i b i l i t y (Window ˆ . F i l e L i s t ,
Col ,
(A c t i v e (Sender ˆ) = 0)) ;

end ;

The call gets as ’user data’ a pointer to the main window record. Using this it
checks which menu emitted the call, and updates the corresponding column with

10

the gtk clist set column visibility function.
More attributes of a CList can be set, but they will not be discussed here; the

GTK documentation and tutorial offer an overview of the possibilities.
The selection mode of the CList has been set to allow selection of multiple

rows. The Clist maintains a linked list (A Glist) with the rows that are part of the
selection. The linked list contains the indexes of the selected rows in it’s associated
data.

The linked list Glist is often used in GTK applications. It consists of the follow-
ing records:

TGList = record
data g p o i n t e r ;
next , p r e v : P G l i s t ;

end ;
P G l i s t =ˆ T G l i s t ;

The selection of a CList is of type PGlist. The data pointer can be typecasted to an
integer to return the index of a selected row.

The following function walks the selection linked list and stores the associated
filenames in a TStrings class:

Procedure G e t F i l e S e l e c t i o n (L i s t : P G t k C l i s t ; S e l e c t i o n : T S t r i n g s) ;

Var
S L i s t : PGList ;
Index : L o n g i n t ;
P : PChar ;

begin
S e l e c t i o n . C l e a r ;
S l i s t := L i s t ˆ . S e l e c t i o n ;
While S L i s t<>n i l do

begin
Index := L o n g i n t (S L i s t ˆ . Data) ;
g t k c l i s t g e t t e x t (L i s t , Index , 0 , @p) ;
S e l e c t i o n . Add (StrPas (p)) ;
S L i s t := g l i s t n e x t (S L i s t) ;
end ;

end ;

The gtk clist get text retrieves the text of a given cell in the CList (a similar func-
tion exists to set the text) , and the g list next jumps to the next element in the
linked list.

The TStrings class is the standard string container as defined in the Classes unit
of Free Pascal (or Delphi).

The above function will be used to retrieve the list of selected files so operations
can be done on the selection.

To retrieve the first (and possibly only) item of a selection, and the number of
items in a selection, the following functions can be used:

Function G e t F i l e F i r s t S e l e c t i o n (L i s t : P G t k C l i s t) : S t r i n g ;

Var
S L i s t : PGList ;
Index : L o n g i n t ;
P : PChar ;

begin
R e s u l t := ’ ’ ;

11

S l i s t := L i s t ˆ . S e l e c t i o n ;
I f S L i s t<>n i l then

begin
Index := L o n g i n t (S L i s t ˆ . Data) ;
g t k c l i s t g e t t e x t (L i s t , Index , 0 , @p) ;
R e s u l t := StrPas (p) ;
end ;

end ;

Function G e t F i l e S e l e c t i o n C o u n t (L i s t : P G t k C l i s t) : L o n g i n t ;

Var
S L i s t : PGList ;

begin
S l i s t := L i s t ˆ . S e l e c t i o n ;
R e s u l t :=0;
While S L i s t<>n i l do

begin
Inc (R e s u l t) ;
S L i s t := g l i s t n e x t (S L i s t) ;
end ;

end ;

These functions will be used further on.
The filelist is now ready to be used. To be able to select a directory from which

the files should be displayed, a Tree widget is used. How to create this tree and
connect it to the file list is explained in the next section.

4 The directory tree

The directory tree will allow the user to browse through the directories on his
system. When a directory is selected, the file view should be updated to show the
files in the selected directory.

To make the directory tree more efficient and less memory consuming, the tree is
not filled with the whole directory tree at once. Instead, only 2 levels of directories
will be put in the tree. The tree is progessively filled as the user expands the
directory nodes.

The directory tree is created in the following function:

Function NewDir t ree (MainWindow : PMainWindow) : PGtkTree ;

begin
R e s u l t := PGtkTree (g t k t r e e n e w ()) ;
With MainWindowˆ do

begin
TreeScro l lWindow := PGtkScrol ledWindow (g t k s c r o l l e d w i n d o w n e w (Nil , N i l)) ;
g t k w i d g e t s h o w (PGtkWidget (TreeScro l lWindow)) ;
g t k s c r o l l e d w i n d o w s e t p o l i c y (TreeScro l lWindow ,

GTK POLICY AUTOMATIC ,
GTK POLICY AUTOMATIC) ;

g t k s c r o l l e d w i n d o w a d d w i t h v i e w p o r t (TreeScro l lWindow , PGtkWidget (R e s u l t)) ;
RootNode := PGtkTreeItem (g t k t r e e I t e m n e w w i t h l a b e l (Pchar (P a t h S e p a r a t o r))) ;
g t k t r e e a p p e n d (R e s u l t , PgtkWidget (RootNode)) ;
s c a n d i r s (PathSeparator , R e s u l t , RootNode , True , MainWindow) ;
g t k t r e e i t e m e x p a n d (r o o t n o d e) ;
end ;

end ;

12

The function starts off by creating the tree widget which is the return value of the
function.

Similar to the Clist, the tree widget does not possess functionality for displaying
scroll bars, so a ’scrolled window’ is created, in which the tree widget is placed.

A tree can have one or more tree items connected to it. Each of these tree items
can in turn have a tree associated with it, which in turn can again have tree items
associated. This way the tree is recursively constructed.

The directory tree is filled with 1 tree item, which will represent the root direc-
tory of the disk which is browsed with the file explorer; The gtk tree item new with label

call returns a new tree item, which is then appended to the tree using the gtk tree append

call.
After this is done, the directories below the root directory are scanned and

appended to the root node in the scandirs function, explained below. If the root
node was filled, then it is expanded with gtk tree item expand (it can be collapsed
with gtk tree item collapse)

The scandirs function scans a given directory for subdirectories and appends
each directory to a subtree of a given node. The subtree is created if needed:

Procedure S c a n d i r s (Path : S t r i n g ; Tree : PgtkTree ;
Node : PGtkTreeItem ; SubSub : Boolean ;
Window : PMainWindow) ;

Var
NewTree : PGtkTree ;
NewNode : PGtkTreeItem ;
I n f o : TSearchRec ;
S , FP : A n s i S t r i n g ;

begin
NewTree:= N i l ;
FP:= A d d T r a i l i n g S e p a r a t o r (Path) ;
I f F i n d F i r s t (FP+ ’ ∗ .∗ ’ , f a A n y f i l e , I n f o)=0 then

Try
repeat

I f ((I n f o . A t t r and f a D i r e c t o r y)= f a D i r e c t o r y) then
begin
S:= I n f o .Name ;
I f (S<> ’ . ’) and (S<> ’ . . ’) then

begin
I f (Node<>N i l) then

begin
I f (NewTree=N i l) and (node<>N i l) then

begin
NewTree:= PGtkTree (g t k t r e e n e w) ;
g t k t r e e i t e m s e t s u b t r e e (Node , PGtkWidget (NewTree)) ;
end

end
e l s e

NewTree:= Tree ;
NewNode:= PGtkTreeItem (g t k t r e e i t e m n e w w i t h l a b e l (Pchar (S))) ;
g t k t r e e a p p e n d (NewTree , PgtkWidget (NewNode)) ;
g t k s i g n a l c o n n e c t (PGtkObject (NewNode) , ’ s e l e c t ’ ,

TGtkSigna lFunc (@ D i r S e l e c t) , Window) ;
g t k s i g n a l c o n n e c t (PGtkObject (NewNode) , ’ expand ’ ,

TGtkSigna lFunc (@DirExpand) , Window) ;
I f SubSub then

S c a n D i r s (FP+S , Tree , NewNode , F a l s e , Window) ;
g t k w i d g e t s h o w (PGtkWidget (NewNode)) ;

13

end ;
end ;

u n t i l FindNext (I n f o)<>0;
F i n a l l y

FindClose (I n f o) ;
end ;

g t k w i d g e t s h o w (PGtkWidget (Node)) ;
end ;

The routine is a simple loop. If a subdirectory is found then a new tree widget is
created (newTree) and appended to the given node with the gtk tree item set subtree

call.
For each found subdirectory a new treeitem is created and appended to the

subtree. 2 signals handlers are connected to the created tree item, one for ’select’
signal which is emitted when the user selects a tree item, and one for the ’expand’
signal which is emitted when the user expands a node. Each of these handlers gets
as data a pointer to the main window record.

The SubSub parameter is used to control the recursive behaviour. If it is set to
True, the Scandirs function will call itself recursively, but only once. As a result only
2 levels of subdirectories are scanned.

Finally, the created nodes are shown.
When the user expands a node, the DirExpand function is called:

Procedure DirExpand (Item : PGtkTreeItem ; Window : PMainWindow) ; c d e c l ;

Var
D i r : S t r i n g ;
SubTree : PGtkTree ;
SubNodes : PGList ;
Node : PGtkTreeItem ;

begin
SubTree := PgtkTree (Item ˆ . SubTree) ;
SubNodes := g t k c o n t a i n e r c h i l d r e n (PGtkConta iner (SubTree)) ;
While SubNodes<>N i l do

begin
Node:= PgtkTreeI tem (SubNodes ˆ . Data) ;
I f (Node ˆ . SubTree<>N i l) then

g t k t r e e i t e m r e m o v e s u b t r e e (Node) ;
S c a n d i r s (GetPathName (Node) , Nil , Node , F a l s e , Window) ;
SubNodes := g l i s t r e m o v e l i n k (SubNodes , SubNodes) ;
end ;

end ;

The function starts by retrieving the subtree of the tree item that triggered the
callback. It then retrieves the list of subnodes (treeitems) of the subtree which
represent the subdirectories of the directory node that is about to be expanded.
The Tree object descends from the GTK container object, and keeps its treeitems
in the container’s children list. This list is a Glist. The gtk container children returns
a copy of the list containing the children.

Then a simple loop is executed: for each of the found nodes, the subtree is
destroyed if it exists: gtk tree item remove subtree removes a subtree from a treeItem
and destroys it.

After the subtree is destroyed, at the subirectory is scanned for possible subdirec-
ties (remark that the SubSub parameter is set to false) and the subtree is recreated
if needed.

The directory corresponding to a given node is calculated in the GetPathName

function, explained below.

14

The next cycle of the loop is started by removing and destroying the first element
of the GList with the g list remove link call: the call returns the new start of the list
with the element removed. By passing the first element of the list as the element
to be removed the whole list is traversed.

When the user selects a tree item, the list view must be updated with the files
in that directory. This is done in the DirSelect handler for the ’select’ signal:

Procedure D i r S e l e c t (Item : PGtkTreeItem ; Window : PMainWindow) ; c d e c l ;

begin
ShowDir (Window , GetPathName (Item)) ;

end ;

Procedure ShowDir (Window : PMainWindow ; D i r : S t r i n g) ;

begin
With Windowˆ do

begin
FDir := D i r ;
F i l l L i s t (F i l e L i s t , Dir , FMask) ;
g t k l a b e l s e t t e x t (F i l e s H e a d e r , pchar (Format (S F i l e s I n D i r , [D i r]))) ;
end ;

end ;

The Showdir function will be called from other places as well hence it is put sepa-
rately; The DirSelect function does nothing but to call the ShowDir function after
it has calculated the path of the treeitem that triggered the ’select’ signal:

Function GetPathName (Item : PGtkTreeItem) : S t r i n g ;

Var P : PChar ;
PTree : PGtkTree ;

begin
g t k l a b e l g e t (PgtkLabe l (PGtkBin (Item) ˆ . C h i l d) ,@P) ;
R e s u l t := StrPas (P) ;
I f (PGtkWidget (i tem) ˆ . Parent<>N i l) then

begin
PTree := PGtkTree (PgtkWidget (Item) ˆ . Parent) ;
I f (P t r e e ˆ . L e v e l <>0) Then

R e s u l t := A d d T r a i l i n g S e p a r a t o r (GetPathName (PgtkTreeI tem (PTree ˆ . Tree Owner)))+ R e s u l t
end ;

end ;

It is a simple recursive mechanism. The only issue with this routine is that one
should know that the parent of a tree item is a tree, and that the owner of the
tree (in it’s Tree Owner field) is in turn again a treeitem. The Level field of a tree
determines at what level the tree is located (i.e. the number of nodes present above
the tree) and can be used to check when the algorithm should stop.

An alternate approach would have been to associate with each node some user
data, such as a string that is the full path name of the node.

With this, the tree is created and is linked to the file list, so the user has
the capability to select any directory and display it’s contents; The user can also
customize the view of the file list.

However, no actions can be performed on the files. This is treated in the next
sections, where a toolbar and popup menu are used to allow the user to do things
with the shown files.

15

5 Adding a popup menu

To allow the user to do something with the displayed files, a popup menu is addd
to the file list. Adding a popup menu is not different from adding a main menu to
a form, just it will not be attached to a menu bar. The popup menu will be hidden
till the user right-clicks in the file list.

The popup menu is created in the following function:

Function NewFilePopupMenu (MainWindow : PMainWindow) : PGtkMenu ;

begin
r e s u l t :=PGtkMenu (gtk menu new) ;
g t k s i g n a l c o n n e c t (PGtkObject (r e s u l t) , ’ show ’ ,

TGtkSigna lFunc (@ P M F i l e s A c t i v a t e) , MainWindow) ;
With MainWindowˆ do

begin
P M I F i l e P r o p e r t i e s :=AddItemToMenu (R e s u l t , Acce l , ’ P r o p e r t i e s ’ , ’ ’ ,

Tg tk S i gna lF unc (@ D o P r o p e r t i e s) ,
MainWindow) ;

P M I F i l e D e l e t e :=AddItemToMenu (R e s u l t , Acce l , ’ D e l e t e ’ , ’<c t r l >d ’ ,
Tg tk S i gna lF unc (@ D e l e t e F i l e) ,
MainWindow) ;

end ;
end ;

The AddItemToMenu functions were developed in an earlier articles, and have been
collected in the ’menus’ unit.

The ’show’ handler attached to the menu is used to set the state of some of the
menu items when the menu pops up:

Procedure P M F i l e s A c t i v a t e (Widget : PGtkWidget ; Window : PMainWindow) ; c d e c l ;

Var S t a t e : TGtkStateType ;

begin
i f G e t F i l e S e l e c t i o n C o u n t (Window ˆ . F i l e L i s t)>1 then

S t a t e :=GTK STATE INSENSITIVE
e l s e

S t a t e :=GTK STATE Normal ;
g t k w i d g e t s e t s t a t e (PgtkWidget (Window ˆ . P M I F i l e P r o p e r t i e s) , S t a t e) ;

end ;

When more than 1 file is selected in the file view, the properties menu item is
disabled.

The popup menu will appear if the user clicks the right button in the file list;
The necessary event handler for that (ShowPopup) was attached to the CList and
discussed earlier on.

The delete menu item has the following ’click’ handler:

Procedure D e l e t e F i l e (Widget : PGtkWidget ; Window : PMainWindow) ; c d e c l ;

Var i : l o n g i n t ;
S : T S t r i n g L i s t ;

begin
S:= T S t r i n g L i s t . C r e a t e ;
Try

G e t F i l e S e l e c t i o n (Window ˆ . F i l e L i s t , S) ;
For I :=0 to S . Count−1 do

begin

16

For I :=0 to S . Count−1 do
S y s U t i l s . D e l e t e F i l e (Window ˆ . FDir+S [i]) ;

end ;
F i n a l l y

I f S . Count>0 then
R e f r e s h F i l e V i e w (Window) ;

S . Free ;
end ;

end ;

The routine simply retrieves the selection list and deletes all files present in it; After
that the file view is refreshed.

The properties popup menu action will be treated later on.

6 Adding a toolbar

The toolbar in the file explorer application will contain 2 buttons with a pixmap on
them; the pixmap will be loaded from data compiled into the binary. The actions
performed by the toolbar buttons will be the same as the actions in the popup
menu: show a file’s properties and delete the file.

The creation of the toolbar for the file explorer program is done in the following
function:

Function NewToolbar (MainWindow : PMainWindow) : PGtkToolbar ;

begin
R e s u l t := pGtkToolBar (g t k t o o l b a r n e w (GTK ORIENTATION HORIZONTAL ,

GTK TOOLBAR ICONS)) ;
g t k t o o l b a r a p p e n d i t e m (r e s u l t ,

Nil ,
’ F i l e P r o p e r t i e s ’ ,
n i l ,
CreateWidgetFromXPm (PgtkWidget (MainWindow ˆ . Window) ,

@PropertiesXPM) ,
Tg tk S ig na lF unc (@ D o P r o p e r t i e s) ,
MainWindow) ;

g t k t o o l b a r a p p e n d i t e m (r e s u l t ,
Nil ,
’ D e l e t e F i l e ’ ,
Nil ,
CreateWidgetFromXPm (PgtkWidget (MainWindow ˆ . Window) ,

@DeleteXPM) ,
Tg tk S ig na lF unc (@ D e l e t e F i l e) ,
MainWindow) ;

end ;

The gtk toolbar new function creates a new toolbar. The first argument to this call
specifies the orientation for the toolbar. Possible values for the orientation are:

GTK ORIENTATION HORIZONTAL The toolbar is filled horizontally;

GTK ORIENTATION VERTICAL The toolbar is filled vertically;

The second argument determines the style of the toolbar; it can have the following
values:

GTK TOOLBAR TEXT Toolbuttons just show a text.

GTK TOOLBAR ICONS Toolbuttons just show a pixmap.

17

GTK TOOLBAR BOTH toolbuttons show both a pixmap and text.

The style determines what widgets will be placed on new toolbuttons that are
added with the gtk toolbar append item or gtk toolbar prepend item calls. If buttons
are added to the toolbar manually, the style has no effect.

The gtk toolbar append item call adds a new toolbar button to the end of a tool-
bar. The gtk toolbar prepend item item inserts a new button at the beginning of the
toolbar. Both accept the following arguments:

1. a pointer to the toolbar to which the item should be added.

2. a zero-terminated string with the text to be shown on the button.

3. a zero-terminated string with the tooltip text (the hint) for the button.

4. a zero terminated private tooltip text for the button.

5. an icon wiget, usually a GtkPixmap.

6. A callback function of type TGtkSignalFunc that will be executed when the user
clicks the button.

7. Callback data pointer which will be passed to the callback.

A toolbutton can also be inserted at a certain position with the gtk toolbar insert item

call. It accepts an additional (last) argument, the position at which to insert the
toolbutton.

For the toolbar of the file explorer program, the buttons contain no text (since
the GTK TOOLBAR ICONS style was chosen for the toolbar) they do contain an icon,
a pixmap widget.

The pixmap widget is created with the following function:

f u n c t i o n CreateWidgetFromXPM (Window : PGtkWidget ;
Data : PPChar) : PGtkWidget ;

Var
mask : PGdkBitmap ;
pixmap : PGdkPixMap ;

begin
pixmap := g d k p i x m a p c r e a t e f r o m x p m d (window ˆ . window , @mask , n i l , ppgchar (Data)) ;
R e s u l t := gtk p ixmap new (Pixmap , Mask) ;
g t k w i d g e t s h o w (R e s u l t) ;

end ;

This function accepts 2 arguments: A GTK window, and a pointer to an array or
zero-terminated strings which describe the pixmap. With these it creates a gdk
pixmap object with the gdk pixmap create from xpm d call. this function expects the
following arguments:

1. A pointer to a GDK window object. In the above, the GDK window of the
main window widget is used. This explains why the gtk widget realize call was
made when creating the main window: When the widget is realized, a window
is allocated to it. If the main window widget was not realized, then it’s gdk
window would be nil.

2. The address of a PGdkBitmap which will be used to store the mask of the
created pixmap. The mask determines the transparent items in the bitmap,
and can be used when creating a pixmap widget. This may be nil.

18

3. A pointer to a color that should be considered the transparent color. This
may be nil, in which case a default color is used.

4. A pointer to a XPM pixmap structure.

After the GDK pixmap and the mask were created, a pixmap widget is created from
the GDK bitmap, and the widget is shown.

The pixmap data is in XPM format. The XPM format is an array of zero-
terminated strings which are organized as follows:

1. A string describing the pixmap dimensions and the number of colors. The
string is of the form

’width height #colors chars/color’,

So the string

’16 16 4 1’

means a 16x16 bitmap, using 4 colors, described by 1 character per color.

2. A series of strings that describe the color. the number of strings should equal
the count specified in the first string. The color descriptions should have the
following form:

’X c #YYYYYY’

here ’X’ must be replaced by N characters, where N is the number of characters
per color that was specified in the first string. The YYYYYY is a RGB color
value, in hex format. Each red,green or blue value must contain 2 or 4 char-
acters. The string ’#FF0000’ would describe red, just as ’#FFFF00000000’
would describe red.

Instead of a rgb value, ’None’ can be specified to indicate a transparent color.
Some examples of valid colors would be:

’. c #000000’, { Black }

’# c #000080’, { Dark Blue }

’a c None’, { Transparent }

’b c #f8fcf8’, { greyish }

3. A series of strings of characters, each string describes one line of the pixmap
and is composed of the color characters described in the color section. Each
line has the same length, namely the width of the image multiplied with the
number of characters per color. Obviously, there should be as many strings
as the height of the pixmap.

The fxbitmaps unit contains 2 such bitmaps; comments have been added.
After the toolbar has been added, the main form is finished. The form in action

is shown in figure ??.
The toolbar contains a button to show the properties dialog. This dialog will

show the various properties of a file, and is discussed in the next section.

19

Figure 1: The main window in action.

7 Adding some dialogs

Adding some dialogs to the file explorer program is not so difficult. Three are
created, an about dialog, a file properties dialog, and a dialog that allows to enter a
file mask which will then be applied to the file view. All three dialogs will be based
on the standard GTK dialog.

Adding a dialog that shows the properties of a file is quite easy. The standard
GTK dialog widget contains 3 widgets; a vertical box (vbox) which can be used to
drop widgets in, a separator and a horizontal box (action area), which can be used
to put buttons (such as an ’OK’ button) in.

The file properties dialog consists mainly of a table packed with labels and some
checkboxes. It is created in the following function:

Type
T F i l e P r o p e r t i e s D i a l o g = Record

Window : P g t k D i a l o g ;
Table : PGtkTable ;
OkButton : PGtkButton ;
L a b e l s : Array [0 . . 1 , 0 . . N r T a b l e L i n e s] of PGtkLabel ;
CheckBoxes : Array [C h e c k B o x L i n e S t a r t . . N r T a b l e L i n e s] of PgtkCheckButton ;

end ;
P F i l e P r o p e r t i e s D i a l o g = ˆ T F i l e P r o p e r t i e s D i a l o g ;

Function N e w F i l e P r o p e r t i e s D i a l o g (Fi leName : S t r i n g) : P F i l e P r o p e r t i e s D i a l o g ;
Const

C h e c k A t t r s : Array [C h e c k B o x L i n e S t a r t . . N r T a b l e L i n e s] of I n t e g e r
= (faReadOnly , f a A r c h i v e , faHidden , f a S y s F i l e) ;

Var
I n f o : TSearchRec ;

20

I : L o n g i n t ;

begin
R e s u l t :=New(P F i l e P r o p e r t i e s D i a l o g) ;
With R e s u l t ˆ do

begin
Window:= P g t k D i a l o g (g t k d i a l o g n e w) ;
g t k w i n d o w s e t t i t l e (PgtkWindow (Window) , S P r o p s T i t l e) ;
g t k w i n d o w s e t m o d a l (PgtkWindow (Window) , True) ;
g t k w i n d o w s e t p o l i c y (PgtkWindow (Window) , 0 , 0 , 0) ;
g t k w i n d o w s e t p o s i t i o n (PGtkWindow (Window) , GTK WIN POS CENTER) ;
OkButton := PGtkButton (g t k b u t t o n n e w w i t h l a b e l (SOK)) ;
g t k b o x p a c k s t a r t (PgtkBox (Window ˆ . a c t i o n a r e a) , PGtkWidget (Okbutton) , F a l s e , F a l s e , 5) ;
g t k w i n d o w s e t f o c u s (PGtkWindow (Window) , PGtkWidget (OkButton)) ;
g t k w i d g e t s h o w (PGtkWidget (OkButton)) ;

The above are standard things: The dialog window title is set, the dialog is made
modal, the resizing of the window is prohibited with the gtk window set policy call.
Then the window is told that it should position itself in the center of the screen with
the gtk window set position call. The position specifier can be one of the following:

GTK WIN POS NONE The window manager will decide where the window
goes.

GTK WIN POS CENTER The window is placed at the center of the screen.

GTK WIN POS MOUSE The window is placed where the mouse cursor is.

After the window properties have been set, an OK button is placed in the action
area, and it gets the focus.

Next, a table is created with NrTableLines+1 rows and 2 columns, and put in the
vbox area:

Table := PgtkTable (g t k t a b l e n e w (N r T a b l e L i n e s +1 ,2 ,TRUE)) ;
g t k b o x p a c k s t a r t (PGtkBox (Window ˆ . vbox) , PGtkWidget (Table) , True , True , 1 0) ;

Then the table is filled with labels that describe the various properties; the left
column contains labels that simplu

For I :=0 to N r T a b l e L i n e s do
begin
L a b e l s [0 , i] := PGtkLabel (g t k l a b e l n e w (L a b e l T e x t s [i])) ;
g t k l a b e l s e t j u s t i f y (L a b e l s [0 , I] , GTK JUSTIFY RIGHT) ;
g t k t a b l e a t t a c h d e f a u l t s (Table , PgtkWidget (L a b e l s [0 , I]) , 0 , 1 , I , I +1);
end ;

For I :=0 to C h e c k b o x L i n e S t a r t−1 do
begin
L a b e l s [1 , i] := PGtkLabel (g t k l a b e l n e w (’ ’)) ;
g t k l a b e l s e t j u s t i f y (L a b e l s [1 , I] , GTK JUSTIFY LEFT) ;
g t k t a b l e a t t a c h d e f a u l t s (Table , PgtkWidget (L a b e l s [1 , I]) , 1 , 2 , I , I +1);
end ;

The file attributes will be represented with checkboxes:

For I := C h e c k b o x L i n e S t a r t to N r T a b l e L i n e s do
begin
checkBoxes [i] := PgtkCheckButton (g t k c h e c k b u t t o n n e w w i t h l a b e l (CheckBoxTexts [I])) ;
g t k w i d g e t s e t s t a t e (PGtKWidget (CheckBoxes [i]) , GTK STATE INSENSITIVE) ;
g t k t a b l e a t t a c h d e f a u l t s (Table , PgtkWidget (CheckBoxes [i]) , 1 , 2 , I , I +1);
end ;

21

The checkboxes are made inactive, so the user cannot change them.
After all labels and checkboxes are put in place, the file information is put into

various places:

g t k l a b e l s e t t e x t (L a b e l s [1 , 0] , PChar (ExtractFi leName (Fi leName))) ;
g t k l a b e l s e t t e x t (L a b e l s [1 , 1] , PChar (E x t r a c t F i l e P a t h (Fi leName))) ;
g t k l a b e l s e t t e x t (L a b e l s [1 , 2] , PChar (E x t r a c t F i l e E x t (Fi leName)+ S F i l e)) ;
I f F i n d F i r s t (FileName , f a A n y F i l e , I n f o)=0 Then

begin
g t k l a b e l s e t t e x t (L a b e l s [1 , 3] , PChar (F i l e S i z e T o S t r i n g (I n f o . S i z e))) ;
g t k l a b e l s e t t e x t (L a b e l s [1 , 4] , PChar (DateTimeToStr (FileDateToDateTime (I n f o . Time)))) ;
For I := C h e c k b o x L i n e S t a r t to N r T a b l e L i n e s do

I f (C h e c k A t t r s [i] and I n f o . A t t r)= C h e c k A t t r s [i] then
g t k t o g g l e b u t t o n s e t a c t i v e (PgtkToggleButton (CheckBoxes [I]) , True) ;

FindClose (I n f o) ;
end ;

Finally, the ’destroy’ callback for the window is set, and the OK button’s ’click’
signal is attached to the destroy method of the window widget:

g t k s i g n a l c o n n e c t (PGtkObject (Window) , ’ d e s t r o y ’ ,
TGTKSignalFunc (@Dest royPropDia log) , R e s u l t) ;

g t k s i g n a l c o n n e c t o b j e c t (PgtkObject (OKButton) , ’ c l i c k e d ’ ,
GTK SIGNAL FUNC(@ g t k w i d g e t d e s t r o y) ,

PGTKOBJECT(Window)) ;
end ;

end ;

Showing the properties dialog is simple:

Procedure S h o w F i l e P r o p e r t i e s D i a l o g (D i a l o g : P F i l e P r o p e r t i e s D i a l o g) ;

begin
g t k w i d g e t s h o w a l l (PgtkWidget (D i a l o g ˆ . Window)) ;

end ;

The result of all this is shown in figure ??.

Figure 2: The file properties dialog.

The handling of the mask form is a little bit more complicated than the proper-
ties dialog, since the mask form should return some information to the main form.

22

The creation of the mask form is again a standard matter, and the reader is
referred to the code on the CD-ROM to see how it is handled. The only thing
worth noting is the handling of the click on the ’OK’ button that appears on the
form.

g t k s i g n a l c o n n e c t (PgtkObject (OKButton) , ’ c l i c k e d ’ ,
TGtkSigna lFunc (@ApplyMask) , R e s u l t) ;

g t k s i g n a l c o n n e c t o b j e c t (PgtkObject (OKButton) , ’ c l i c k e d ’ ,
GTK SIGNAL FUNC(@ g t k w i d g e t d e s t r o y) ,
PGTKOBJECT(Window)) ;

Two handlers are added to the ’clicked’ signal of the ’OK’ button. The first one is
pointed to a function that will apply the mask, and the second one is redirected to
the destroy method of the dialog window wigdet.

Procedure ApplyMask (Widget : PGtkWidget ; Window : PMaskForm) ; c d e c l ;

begin
With Windowˆ do

begin
Mask:= StrPas (g t k e n t r y g e t t e x t (EMask)) ;
I f (Ca l lBack<>N i l) then

C a l l B a c k (Mask , Ca l lBackData) ;
end ;

end ;

The TMaskForm record that contains fields for all widgets on the mask entry form
also contains 2 fields that allow the OK button to notify the calling program of the
new mask:

TMaskCallBack = Procedure (Mask : S t r i n g ; Data : P o i n t e r) ;
TMaskForm = Record
{ . . . w idget f i e l d s . . . }
Mask : S h o r t S t r i n g ;
C a l l B a c k : TMaskCallBack ;
Ca l lBackData : P o i n t e r ;

end ;
PMaskForm = ˆTMaskForm ;

If the callback field is set, then the ApplyMask function will call it and pass it the
new mask and some arbitrary pointer.

The main form contains a ’file mask’ menu item, which has the following ’click’
handler:

procedure DoMask (Widget : PGtkWidget ; MainForm : PMainWindow) ; c d e c l ;

Var
S : A n s i S t r i n g ;

begin
With NewMaskFormˆ do

begin
S:=MainForm ˆ . FMask ;
g t k e n t r y s e t t e x t (EMask , PChar (S)) ;
C a l l B a c k :=@ApplyMask ;
Ca l lBackData :=MainForm ;
g t k w i d g e t s h o w a l l (PgtkWidget (Window)) ;
end ;

end ;

When the user clicks the ’file mask’ menu item, A mask entry form is created. The
current file mask is filled in the entry widget (EMask). The callback is set, and the

23

callbackdata is set to the pointer to the main window record. The callback that is
executed when the user clicks the OK button on the mask form is the following:

Procedure ApplyMask (Mask : S t r i n g ; Data : P o i n t e r) ;

begin
PMainWindow (data) ˆ . FMask:=Mask ;
R e f r e s h F i l e V i e w (PMainWindow (Data)) ;

end ;

The reason that this system of callbacks is needed is that the gtk widget show all

immediatly returns when the mask entry form is shown. Even though the mask
entry form dialog is a modal dialog (i.e. it alone will respond to mouse clicks and
key presses) the call returns immediatly, there is no counterpart for the Delphi
ShowModal function.

When the gtk widget show all returns, the mask entry form is still on the screen,
so the changes made in the mask form must be communicated back to the main
form by means of a callback which is executed when the mask entry form is closed.

The mask form in action is shown in figure ??.

Figure 3: The file properties dialog.

8 Finishing the application

In several places in this article, a reference was made to the main menu. The main
menu is created in the NewMainMenu function; since menus were discussed exten-
sively in the previous article on programming GTK, the code will not be presented
here. The various calls developed in the previous article have been collected in the
menus unit. One additional call was added which adds a check menuitem to a menu;
the call is similar to the regular menu item calls, and will not be discussed here.

The application is built in such a way that it can easily be extended. Only 2 file
actions have been implemented, but many more can be made. Missing functionality
includes:

• Renaming of files. The CList allows to put an arbitrary widget into a cell;
this functionality could be used to allow the user to change the filename by
simply editing it.

• Moving and copying of files, using drag and drop.

• Duplicating the main window, or spawning a new window.

• Opening a file in another application.

• Improve the look of the file properties form.

24

• On Windows, support for showing different drives should be added.

And without doubt, many more can be found.

25

