
Programming GTK in Free Pascal:

Menus

Florian Klämpfl
and

Michaël Van Canneyt

September 2000

1 Introduction

In the third article on programming the GTK toolkit, the us of menus in GTK is
explored.

Menus can be built in essentially 2 ways; the easier way through the use of a
itemfactory, and the more complex way, doing all necessary calls manually. The
advantages of both ways are discussed.

2 Menus the easy way: The item factory

The easy way to construct a menu is to use an item factory. An Item factory
gets as input an array of records, which describe a menu structure, and returns a
completely built menu, ready to be added to a window.

The great advantage of an item factory is that it is easy to use; a disadvantage
is that

1. There is less control over the produced menu items; e.g. displaying a menu
item with a small icon is not possible.

2. The callbacks of the constructed menu is different from the usual signal model,
making it difficult to combine a menu entry with a speedbutton. There are
also 2 types of callback, so type checking is not possible.

3. In Pascal, constant records must be specified using the names of the members;
this makes the array with the menu items to be rendered quite complicated.

To create a menu, first the item factory must be created. The function to do
this is defined as follows:

g t k i t em f a c t o r y n ew (c o n t a i n e r t y p e : TGtkType ;
path : Pgchar ;
a c c e l g r o u p : PGtkAccelGroup) : PGtkI temFactory ;

The three arguments to this function have the following meaning:

container type This identifies the kind of menu that will be rendered. It can have
one of the following values:

GTK MENU BAR TYPE A menu bar will be created to hold all items.

GTK MENU TYPE A menu that can be used as a popup menu, or that
can be attached as a sub-menu to another menu, will be created.

1

GTK OPTION MENU TYPE Makes everything in a drop-down style
menu which can be used to select one value.

path is the name of the menu to be generated.

accel group Is a pointer to a group of accelerators. All accellerators for the gen-
erated menu will be attached to this group.

The accelerator group needed for the item factory can be constructed using a
simple call to gtk accel group new; this function takes no arguments, and returns a
pointer to a new accelerator group.

To actually create the menu, a call to gtk item factory create items is needed;
This procedure is defined as follows:

g t k i t em f a c t o r y c r e a t e i t em s (i f a c t o r y : PGtkI temFactory ;
n e n t r i e s : g u i n t ;
e n t r i e s : PGtk I temFacto ryEnt ry ;
c a l l b a c k d a t a : g p o i n t e r) ;

The first argument to this call, ifactory , is the itemfactory; the second argument,
n entries , is the number of items in the array of records describing the menu. The
third argument, entries , is the actual array describing the menu. The last argument
callback data is a pointer that will be passed to the menu callbacks.

The menu structure that should be created by the item factory is an array of
records of the type TGtkItemFactoryEntry. This record is defined as follows:

TGtk I temFactoryEnt ry = record
path : Pgchar ;
a c c e l e r a t o r : Pgchar ;
c a l l b a c k : TGtk I t emFacto ryCa l l back ;
c a l l b a c k a c t i o n : g u i n t ;
i t em t yp e : Pgchar ;

end ;

The fields have the following meaning:

path The first entry is the path of the menu item. This indicates the place of the
menu entry in the whole menu. For instance, the menu item New in the menu
File would be designated by ’/File/New’. So, the slash is used to separate the
menu levels.

To make one of the letters of the menu item name active, so the item can be
selected by pressing the letter (on the keyboard) when the menu is opened,
the key to be used should be preceded by an underscore. In e.g. ’/File/ New’,
the letter N could be used to select the New item if the File menu is active.

accelerator To make a shortcut to the menu item so it can be activated at all
times, the shortcut name can be specified in the accelerator field. This can be
any key, together with some modifiers. e.g. ’<control>N’ will make the key
combination ’CTRL-N’ a shortcut.

The accelerator should be speciefied as normal text. A list of possible modifiers
can be found in table ??.

callback Contains a pointer to the function that should be called when the menu
item is activated. The type of the menu handler is not the same as a normal
signal handler; The actual callback should be of the type TGtkItemFactoryCallback1:

procedure (c a l l b a c k d a t a : g p o i n t e r ;
c a l l b a c k a c t i o n : g u i n t ;
w idget : PGtkWidget) ; cdec l ;

2

Table 1: List of modifier strings for shortcut keys
Modifier alias
<control> <ctl>, <ctrl>

<shift> <shft>

<alt> <mod1>

Which is not the same as the type of the callback field, so a typecast will
always be necessary.

callback action This is passed on to the callback in the callback action parameter.

item type is the type of menu item. Several types can be used; the complete list
can be found in ??, but the must important ones are ’<Item>’, which specifies
a normal menu item, and ’<Branch>’, which indicates a sub-menu.

Table 2: Possible menu item types
Item type Menu kind
’<Item>’ indicates a normal item. An empty string or Nil have the same

meaning.
’<CheckItem>’ a check menu item.
’<ToggleItem>’ a toggle menu item (same as check menu).
’<RadioItem>’ a radio item.
’<Separator>’ a separator bar.
’<Branch>’ an item to hold a submenu.
’<LastBranch>’ an item to hold a submenu, but right aligned.

Now all elements to create a menu are introduced, and the menu can be created.
The following definitions should now be clear:

Var
Window : PGtkWidget ;
MenuBar : PGtkWidget ;

Type
FC = TGtk I t emFacto ryCa l l back ;

Const
NrMenuItems = 21 ;
TheMenu : Array [1 . . NrMenuItems] of TGtk I temFactoryEnt ry = (

(path : ’ / F i l e ’ ; A c c e l e r a t o r : Ni l ;
C a l l b a c k : Ni l ; C a l l b a c k a c t i o n : 1 ; i t em t yp e : ’<Branch> ’) ,

(path : ’ / F i l e / New ’ ; A c c e l e r a t o r : ’<c t r l >N ’ ;
Ca l l b a c k : FC(@Menu) ; C a l l b a c k a c t i o n : 1 ; i t em t yp e : Ni l) ,

{ . . . }

Here the FC type is introduced to make the typecast of the Menu handler easier; the
TheMenu constant is not given completely, since it is too long and not instructive.
The complete structure can be found in the sources accompanying this article.

Using the above definitions, the menu can now be constructed:

Procedure MakeMenu ;

Var

3

Fac to r y : PGtkI temFactory ;
Acce l : PGtkAccelGroup ;

begin
Acce l := g t k a c c e l g r o up n ew ;
Fac to r y := g t k i t em f a c t o r y n ew (GTK MENU BAR TYPE, ’<main> ’ , a c c e l) ;
g t k i t em f a c t o r y c r e a t e i t em s (Factory , NrMenuItems , @TheMenu , Ni l) ;
g t k w i ndow add ac c e l g r oup (GTK Window(Window) , a c c e l) ;
MenuBar:= g t k i t em f a c t o r y g e t w i d g e t (Factory , ’<main> ’) ;

end ;

The gtk window add accel group call attaches the accelerator group that was filled up
by the item factory to the window.

The gtk item factory get widget call finally fetches the object created by the item
factory and stores it in a widget variable.

The Menu callback used in the menus is defined as follows:

procedure menu(Data : GPo inte r ;
Act i on : Gu int ;
Widget : pGtkWidget) ; cdec l ;

Var
TheLabel : PgtkWidget ;
Labe lText : Pchar ;
S : An s i S t r i n g ;

begin
TheLabel := g l i s t n t h d a t a (

g t k c o n t a i n e r c h i l d r e n (
GTK CONTAINER(Widget)) , 0) ;

g t k l a b e l g e t (g t k L ab e l (t h eLabe l) , @LabelText) ;
S := ’ Chosen menu : ’ + Strpas (L a b e l t e x t) ;
g t k l a b e l s e t t e x t (GTK LABEL(D i s p l a y L ab e l) , pchar (S)) ;

end ;

The DisplayLabel is a label located on the window, it is used to give some feedback on
the used menu. The code to extract the menu name from the menu widget passed
to the handler will be explained later on.

The result of all this is shown in figure ??.
As can be seen from the code above, the creation of a menu using an item factory

in GTK is not so hard. The drawback of the above method lies mainly in the fact
that Pascal handles constant records differently than C, which makes the array that
describes the menu structure rather difficult to read.

The second drawback is that there is little control over the created items.

3 Menus the hard way: manually

When creating menus manually, mainly 4 objects are involved:

• The menu items themselves. To a menu item, a menu can be assiciated,
creating a sub-menu.

• Menus, which contain a collection of menu items,

• A accelerator group. This will be used to keep a collection of shortcut keys
for the menu items.

• A menu bar, which can hold several menu items and their associated menus.

4

Figure 1: The menu made by the item factory.

The last object is optional, if e.g. a pop-up menu is wanted.
To create a menu in a window, the following steps are involved:

1. Create an accellerator group. The accelerator group should be connected to
the window.

2. Create a menu bar, and attach it to the window.

3. For each menu that should appear in a menu bar, do the following:

• Create a menu item, which will be shown in the menu bar.

• Create a menu to hold the items that should pop up when the menu is
activated.

4. To each menu created in the previous step, add as many menu items as needed.
Add an accelarator to the group created in step ??.

To make these steps easier (each of them involves quite some calls to GTK
functions) some functions will be introduced that make this easier.

The first function is the most simple one; it attaches a separator to a menu:

Function AddSeparatorToMenu (Menu : PgtkMenu) : PgtkMenuItem ;

begin
Re su l t :=pgtkmenuitem (gtk menu i tem new) ;
gtk menu append (Menu , pgtkWidget (r e s u l t)) ;
g tk w idge t show (PgtkWidget (r e s u l t)) ;

end ;

The function takes one parameter, Menu, the menu to which the separator will be
attached. A separator is created by simply creating an empty menu item. Creating
a new (empty) menu item is done with the gtk menu item new call.

With the gtk menu append call, the newly created item is then added to the
menu. Lastly, the item is shown; it will not become actually visible till the menu is
activated. If this is omitted, it will also not be visible when the menu is activated.

5

Adding a menu with a shortcut key to a menu is a little more involved. Some
more elements are needed:

1. The menu to which to attach the menu item.

2. The accelarator group to which the accelerator key should be added.

3. The caption of the menu. An underscore character will indicate the letter of
themenu that will be used as a shortcut to activate the item.

4. The shortcut for the menu item. An empty string means no shortcut.

5. A callback function which will be called when the menu item is activated, and
callback data which will sent to the callback.

All these elements are found in the declaration of the following function:

Function AddItemToMenu (Menu : PGtkMenu ;
Shor tCuts : PGtkAccelGroup ;
Capt ion : An s i S t r i n g ;
ShortCut : An s i S t r i n g ;
Ca l lBack : TgtkS igna lFunc ;
Ca l lBackda ta : Po i n t e r

) : PGtkMenuItem ;

Var
Key , Mod i f i e r s : g u i n t ;
Loca lAcce lGroup : PGtkAccelGroup ;
TheLabel : PGtkLabel ;

begin

The variables declared in this function will be explained as the code is presented.
First of all, a menu item must be created. Since a caption for the menu is

provided, the gtk menu item new with label will be used to create a menu that has a
label as a child:

Re su l t :=pgtkmenuitem (g t k menu i t em new w i t h l a b e l (’ ’)) ;
TheLabel :=GTK LABEL(GTK BIN(Re su l t) ˆ . c h i l d) ;
Key:= g t k l a b e l p a r s e u l i n e (TheLabel , Pchar (Capt ion)) ;

After the menu item is created, the child label is fetched. The label caption is then
set using the gtk label parse uline function. This function will search a text for
underscore characters, remove them from the text, and then set the label’s caption
with the result. All letters which had an underscore character prepended will be
underlined in the label.

The function returns the first letter that had an underscore prepended. It is
stored, so it can be used to make an accelerator:

I f Key<>0 then
begin
Loca lAcce lGroup := g t k men u e n s u r e u l i n e a c c e l g r o u p (Menu) ;
g t k w i d g e t a d d a c c e l e r a t o r (PGtkWidget (r e s u l t) , ’ a c t i v a t e i t em ’ ,

Loca lAcce lGroup , Key ,
0 , TGtkAcce lF lags (0)) ;

end ;

The call to gtk menu ensure uline accel group returns the accelarator group associated
with the menu. If no group existed yet, one will be created. The gtk widget add accelerator

call takes the following parameters:

• A pointer to a widget to which the accelerator should be attached.

6

• The name of the signal which will be triggered when the shortcut is activated.

• The accelerator group to which the shortcut should be installed, usually this
will be the accelerator group for the window to which the widget is attached,
but in this case this is the accelerator group of the menu (which will only be
active when the menu is actually shown)

• The key from the shortcut.

• The modifiers that should be pressed together with the key. For the menu,
this should be 0, since just the key should be hit.

• The accelerator flags.

After the menu item was created and it’s underlined key was made into an
accelerator, the menu can be attached to the menu:

gtk menu append (Menu , pgtkWidget (r e s u l t)) ;

If a shortcut key was passed along to the procedure, can be added to the win-
dow’s accelerator group with the following code:

I f (ShortCut<> ’ ’) and (ShortCuts<>Ni l) then
begin
g t k a c c e l e r a t o r p a r s e (pchar (ShortCut) , @key , @mod i f i e r s) ;
g t k w i d g e t a d d a c c e l e r a t o r (PGtkWidget (r e s u l t) , ’ a c t i v a t e i t em ’ ,

ShortCuts , Key ,
mod i f i e r s , GTK ACCEL VISIBLE) ;

end ;

The call to gtk accelerator parse will parse a string which describes a shortcut key,
and returns the corresponding key and modifiers, which can then be passed on to
the gtk widget add accelerator call.

After the accellerator has been installed, the only thing that remains to be done
is to connect the callback to the activation of the menu:

I f Cal lBack<>Ni l then
g t k s i g n a l c o n n e c t (PGtkObject (r e s u l t) , ’ a c t i v a t e ’ ,

Ca l lBack , Ca l lBackda ta) ;
g tk w idge t show (PgtkWidget (r e s u l t)) ;
end ;

As the last line in the procedure, the newly created menu item is shown. If the
menu isn’t visible yet, this will do nothing, but will ensure that the item is also
visible when the menu is visible.

Now a menu-item and a separator can be added to a menu. What remains to
be done is to add a menu to a menu bar. This is done in the following procedure,
which is given in its entirety:

Function AddMenuToMenuBar (MenuBar : PGtkMenuBar ;
Shor tCuts : PGtkAccelGroup ;
Capt ion : An s i S t r i n g ;
Ca l lBack : TgtkS igna lFunc ;
Ca l lBackda ta : Po i n t e r ;
A l i g nR i gh t : Boolean ;
Var MenuItem : PgtkMenuItem
) : PGtkMenu ;

Var
Key : g u i n t ;
TheLabel : PGtkLabel ;

7

begin
MenuItem:=pgtkmenuitem (g t k menu i t em new w i t h l a b e l (’ ’)) ;
I f A l i g nR i gh t Then

g t k m e n u i t em r i g h t j u s t i f y (MenuItem) ;
TheLabel :=GTK LABEL(GTK BIN(MenuItem) ˆ . c h i l d) ;
Key:= g t k l a b e l p a r s e u l i n e (TheLabel , Pchar (Capt ion)) ;
I f Key<>0 then

g t k w i d g e t a d d a c c e l e r a t o r (PGtkWidget (MenuItem) , ’ a c t i v a t e i t em ’ ,
Sho r t cu t s , Key ,
GDK MOD1 MASK,GTK ACCEL LOCKED) ;

Re s u l t :=PGtkMenu(gtk menu new) ;
I f Cal lBack<>Ni l then

g t k s i g n a l c o n n e c t (PGtkObject (r e s u l t) , ’ a c t i v a t e ’ ,
Ca l lBack , Ca l lBackda ta) ;

g tk w idge t show (PgtkWidget (MenuItem)) ;
g tk menu i t em se t submenu (MenuItem , PgtkWidget (Re s u l t)) ;
g tk menu bar append (MenuBar , PgtkWidget (MenuItem)) ;

The code for this procedure quite similar as the previous one. The main differences
are:

• The result is not a menuitem, but a whole menu. The menuitem that is
displayed in the menu bar itself is returned in the MenuItem parameter.

• The shortcut key for the underlined item is added to the window’s accelerator
group, and has the Alt key (or Mod1) as the modifier key.

• the created menu is attached to the menu item as a sub menu, and it is the
menu-item which is attached to the menu bar.

With the above calls, a menu can be constructed with a simple set of calls:

Fi leMenu :=AddMenuToMenuBar (MenuBar , a c c e l , ’ F i l e ’ ,Nil ,
Nil , Fa l s e , TempMenuItem) ;

AddItemToMenu (Fi leMenu , a c c e l , ’ New ’ , ’<c on t r o l>N ’ ,
TgtkS igna lFunc (@menu) , D i s p l a y L ab e l) ;

AddItemToMenu (Fi leMenu , a c c e l , ’ Open ’ , ’<c on t r o l>O’ ,
TgtkS igna lFunc (@menu) , D i s p l a y L ab e l) ;

AddItemToMenu (Fi leMenu , a c c e l , ’ Save ’ , ’<c on t r o l>S ’ ,
TgtkS igna lFunc (@menu) , D i s p l a y L ab e l) ;

AddSeparatorToMenu (PGtkMenu (Fi leMenu)) ;
AddItemToMenu (Fi leMenu , a c c e l , ’ Qu i t ’ , ’<c on t r o l>Q’ ,

TgtkS igna lFunc (@des t roy) , Ni l) ;
{ . . . }

The complete list of calls to create the menu can be found in the sources accompa-
gnying this article.

The second program is of course bigger than the first, due to all the code to
create the menus. Nevertheless, the manual way of creating has it’s advantages:
it’s quite easy to extend the AddItemToMenu to add a bitmap to the menu entry
as well. Using a itemfactory, there is (currently) no way to add images to a menu.

Adding a bitmap to a menu is quite easy, and requires only a few extra lines
of code. The key point is that the gtkmenuitem object is just an empty con-
tainer (it descends from gtkbin), which does not display anything by itself. The
gtk menu item new with label call creates a menu item and puts a gtklabel in it to
display the menu item caption. Instead of a label object, almost any other object
can be put in the item. This fact is used in the following code to add a bitmap in
front of the menu caption, in a new procedure to be called AddImageItemToMenu:

8

Re su l t :=pgtkmenuitem (gtk menu i tem new) ;
hbox :=PGtkHBox (gtk hbox new (f a l s e , 0)) ;
g t k c o n t a i n e r a d d (p g t k c o n t a i n e r (r e s u l t) , pgtkWidget (hbox)) ;
pixmap := gdk p i xmap c rea te f rom xpm (Nil , @BitmapData , Nil , pchar (BitMap)) ;
Image := PgtkPixMap (gtk p ixmap new (Pixmap , BitmapData)) ;
g t k b o x p a c k s t a r t (PGtkBox (hbox) , pgtkWidget (image) , f a l s e , f a l s e , 0) ;
TheLabel :=PgtkLabe l (g t k l a b e l n ew (’ ’)) ;
g t k b o x p a c k s t a r t (PGtkBox (hbox) , pgtkWidget (TheLabel) , True , True , 0) ;
Key:= g t k l a b e l p a r s e u l i n e (TheLabel , Pchar (Capt ion)) ;

In the first line, a plain menu item is created with gtk menu item new. In the following
two lines, a GTKHBox is added to the menu item, and a reference to the box is stored
in the hbox variable.

Then, a pixmap is created from a filename. The filename is passed in the BitMap

parameter to our routine. Using the newly created pixmap, an Image is created,
which can then be added to the box.

Finally, a regular GTK label is created to hold the caption of the menu item,
and added to the box. After that the procedure continues as for a normal menu.

The complete code for the above AddImageItemToMenu routine can be found in
the sources of the third example, accompagnying this article. The result can be
seen in figure ??

Figure 2: The menu with bitmaps

Some notes regarding this algorithm are in order:

1. It would be possible to have not a filename passed to the routine, but directly
pass a pixmap object as well; for instance when using a toolbar, toolbuttons
corresponding to the menu entries could share the same pixmaps as the menu
entries.

2. Some alignment issues may arise when the menu contains items with and
without bitmaps. The above code does not address these issues. To solve
them, the regular menu items should also be constructed e.g. using a hbox
or a table with an empty cell. Also, an algorithm to determine whether any
item of the menu has an image would be needed.

3. The shortcut key is no longer shown in the menu widget; The reason for this
is unknown to the authors of this article; unfortunately the lack of documen-
tation on GTK prevents the implementation of a remedy.

4. The menu callback can no longer retrieve the menu text using a straightfor-
ward approach, since the label displaying the caption is no longer the only
child widget of the menu item. The callback has been adapted for this in the
example.

Taking into account the above arguments should make it possible to write better
menu-creating routines which would replace the item factory completely, and which
would enable the use of bitmaps in menu items.

9

