Programming GTK in Free Pascal

Florian Klampfl
and
Michaél Van Canneyt

September 2000

1 Introduction

In this second article on programming the GTK toolkit, a more advanced use of the
GTK library is presented. Techniques to create a new GTK widget are discussed
by creating two custom widgets.

The first widget is realized by combining existing GTK widgets to create a new
widget, a GTKFileEdit component, modeled after the TFileEdit component found
in the RXLib library for Delphi.

When constructing the second widget, the focus will be on how a widget should
draw itself in GTK.

2 Preliminaries

Whatever the method used when creating new GTK widgets, it is necessary to split
the functionality of the widget in 2 parts. The first part is the functionality that is
common to all instances of the new widget. This part is by far the most important
one, and is implemented in the ’class record’. This record will be initialized with
a class initialization function. It will also contain pointers to callbacks to draw a
particular instance or callbacks to react on user events.

The second part concerns the particular instance of the widget that is created,
it contains the data that determines the state of an instance after it is created, it
is the actual object created by the user. This part of the widget is implemented in
the ’Object record’. For this record also there is a initalization function.

When the two records have been defined, some standard methods must be im-
plemented in order to integrate the new widget in the GTK library. Implementing
some methods for the user to manipulate the properties of the new widget finishes
the creation of a new widget.

Since GTK is implemented in C, the programmer must obey some rules in order
to preserve the object-oriented aspect of the GTK library. More precisely, when
defining the class and object records, care must be taken to specify the parent
object or class as the first element in the newly created structure. This will allow
typecasting of the widget to its parent objects.

Taking a look at the TGtkContainer widget, we see that the declaration of the
object record starts with the declaration of its parent widget TGtkWidget:

TGtkContainer = record
widget : TGtkWidget;
focus_child : PGtkWidget;
flag0 : longint;
resize_widgets : PGSList;

end;

The same is true for the TGtkContainerClass record:

TGtkContainerClass = record
parent_class : TGtkWidgetClass;
n_child_args : guint;

/)

end;

For both the components that will be made, such records will be made.

3 A filename edit component

The TGTKFileEdit component presented here is composed out of three other com-
ponents; first of all a single line edit control, in which the user can type a filename
if he wishes. The second is a button. The button is always placed on the right
edge of the edit control, and has the same height. The third component is an image
component, which is used to display an image on the button'

Since the edit and button component must be kept together, we use a TGtkHBox
as the 'Parent’ component, and this component will be used to keep the edit and
button control. There is no need to consider the image component, since it will be
placed inside the button.

Having decided that, the structure of the record for the instance of the compo-
nent is more or less determined:

Type

PGtkFileEdit = "TGtkFileEdit;
TGtkFileEdit = Record

Box : TGtkHBox;

Edit : PGtkEntry;

Button : PGtkButton;

Image : PGtkPixmap;

Dialog : PGtkFileSelection;
end;

The first field of the record contains the parent record, as required by the OOP
structure of GTK. The other fields are used to contain references to the other
controls used. The Dialog field will be filled with the reference to the file selection
dialog which is created when the user clicks the button, at all other times it will
contain a nil pointer. Remark that the first field is a record, and all other fields are
pointers.

Since the fields of the record are 'Public’ the user can access the button and
edit components, and set or read their properties, and set additional signals. (e.g.
a 'change’ signal for the edit component)

The class record for the TGTKFileEdit component should contain as a first
field the parent class record, in this case TgtkHBoxClass. Furthermore in the class
record the default bitmap that will be displayed on the button will be stored. For
this two fields are needed; one to keep the bitmap (DefaultPixmap, and another one
to keep a bitmask that is used to determine the transparant pixels in the bitmap
(DefaultBitMap):

PGtkFileEditClass = "TGtkFileEditClass;
TGtkFileEditClass = Record
Parent_Class : TgtkHBoxClass;
DefaultPixmap : PGdkPixmap;

In GTK a button does not necessarily contains a caption, it is an empty placeholder, which
can be filled with whatever you want, in this case an image. To have the button display a caption,
a label is placed in it.

DefaultBitMap : PGdkBitmap;
end;

As usual, a pointer type is defined which points to the record. The fields of the
class record will be filled in by the initialization code for our component, as will be
shown below.

A new widget must be registered with GTK by calling the gtk_type_unique func-
tion. This function returns a unique identifier that can be used to refer to your new
widget. This value must be accessible when creating new instances.

Usually, this is done by registering the component with the GTK library in-
side a function which returns this unique ID to the user: The GtkFileEdit_get_type
function. When this function is called for the first time, it will register the new
class with GTK, which will in turn supply a unique ID for the new component.
This ID is returned and also stored, and will be returned the next times when the
GTKFileEdit_get_type function is called.

The GTKFileEdit_get_type function looks like this gtk\ _type_unique:

Function GtkFileEdit_get_type : Guint; cdecl;

Const
GtkFileEditinfo : TGtkTypelnfo =
(type-name : 'GtkFileEdit’;

object_size : SizeOf(TGtkFileEdit);

class_size : SizeOf(TGtkFileEditClass);

class_init_func : TGtkClasslnitFunc(@GtkFileEditClasslnit);
object_init_func : TGtkObjectlnitFunc(@GtkFileEditlnit);

reserved_1 : Nil;
reserved_2 : Nil;
base_class_init_func : Nil
)
begin

if (GtkFileEditType=0) then
GtkFileEditType:=gtk_type_unique (gtk_hbox_get_type , @GtkFileEditlnfo);
Result:=GtkFileEditType;
end;

Registering the new widget is done by passing a TGtkTypelnfo record to gtk_type_unique,
where the fields of this record are filled with the following information:

type_name Contains the name of the type that must be registered.

object_size The size of the object record. GTK itself will allocate the memory
when an new instance of the object is created, so it must know the size of the
object.

class_size The size of the class object. Only one instance of this record will be
created (by GTK)

class_init_func The address of a function that will initialize the class record. This
function accepts as a single arument a pointer to the class record to be ini-
tialized. This function will normally be called only once.

object_init_func The address of a function that will initialize an instance of the
object. The function must accept as a single argument a pointer to an instance
of the object. This instance will be created by GTK. This function is called
for each instance of the object.

The other three fields of the record are unfortunately not documented, so they are
left blank.

Along with the TGtkTypelnfo record, the tyoe the type of the parent class (ac-
quired with its own gtk_hbox_get_type function) is passed to the gtk_type_unique func-
tion.

If a class_init_func was specified when registering the new type, then GTK will
call this method; it should initialize any class-specific data in the class record. In
the case of the GTKFileEdit, the bitmap which is used to fill the button is loaded:

Procedure GtkFileEditClasslinit (CObj : PGtkFileEditClass); cdecl;

begin
With Cobj”~ do
DefaultPixMap:=gdk_pixmap_create_from_xpm (Nil , @DefaultBitmap ,
Nil , "fileopen .xpm');
end;

The gdk_pixmap_create_from_xpm does 2 things: It loads a bitmap from the fileopen.xpm
file and returns a PGdkPixmap pointer. At the same time it returns a pointer to a
bitmask which designates the transparant regions of the bitmap.

The result of this function is stored in the class record, so the bitmap is available
when a new instance of the class is created.

The GtkFileEditClasslnit and GtkFileEdit_get_type functions are not called auto-
matically by GTK. There are basically 2 solutions to do this as described below.

The first one is specific to Free Pascal: the GtkFileEdit_get_type can be called from
the unit initialization code; This means that the objects are registered with GTK,
even if they’re not used. It also means that the GTK library must be initialized
first, and hence should also be initialized in the initialization code of some unit.

The second method is the method used in C: The function to create a new
instance of the TGTKFileEdit class, GTKFileEdit_new, calls the get_type function to
register the class if needed, as follows:

Function GtkFileEdit_new : PGtkWidget; cdecl;

begin
Result:=gtk_type_-new (GtkFlleEdit_get_type)
end;

When the first instance of the GTKFileEdit widget is created, the call to GtkFileEdit_get_type
will register the widget class first. Subsequent calls to create a new instance will
just use the stored value of the ID that identifies the GTKFileEdit class.

To be able to create an instance of the GTKFileEdit class, one more procedure
must be implemented, as can be seen from the class registration code: GtkFileEditlnit .
This procedure will initialize (i.e. create) a new instance of the class; it should do
whatever is necessary so the instance is ready for use.

In the case of the GTKFileEdit class, this simply means that all widgets of which
the class is composed, must be created and placed to gether. This is shown in the
following code:

Procedure GtkFileEditlnit (Obj : PGtkFileEdit); cdecl;

Var
PClass : PGtkFileEditClass;

begin
PClass:=PGtkFileEditClass (PGtkObject(Obj)". klass);
With Obj” do
begin

Edit := PgtkEntry(gtk_entry_new);
Button := PgtkButton(gtk_button_new);
Image := PgtkPixMap(gtk_pixmap_new (PClass".DefaultPixmap,

PClass ". DefaultBitmap));
gtk_container_add (PGtkContainer(Button),PGtkWidget(Image));
gtk_box_pack_start (PgtkBox(Obj),PGtkWidget(Edit), True, True,0);
gtk_box_pack_start(PgtkBox(Obj),PGtkWidget(Button),h False , True,0);
gtk_signal_connect (PgtkObject(Button), "clicked ',

TGtkSignalFunc(@GtkFileEditButtonClick), Obj);
end;
gtk_widget_show_all (PGtkWidget(Obj));
end;

The code is self explanatory; the sub-widgets are created, and a reference to them
is stored in the fields of our instance record. Note that the ancestor (a gtkHbox) is
not initialized, this has been done already by the OOP mechanism of GTK.

After the objects are created, they are put together in the horizontal box, with
the options chosen in such a way that the composed widget scales well if needed.
The bitmap image is of course placed in the button.

Lastly, a signal handler is added to the button, so that when it is clicked, we
can take appropriate action (i.e. show a dialog to select a file). Note that as the
Data parameter for the signal, the reference to the GTKFileEdit instance is passed.

Now the class is ready to be created and shown. However, it doesn’t do anything
useful yet. The callback for the button click must still be used.

The callback for the button must create a file selection dialog, show it, and when
it has been closed by a click on the ’OK’ button, it should set the text of the edit
widget to the name of the selected file.

In order to do this, some extra callbacks are needed, as can be seen in the
following code:

Procedure GtkFileEditButtonClick (Obj : PGtkObject; Data : PgtkFileEdit); cdecl;

Var
Dialog : PGtkFileSelection;

begin
Dialog := PGtkFileSelection(gtk_file_selection_new (' Please_select.a.file'));
Data”.Dialog:=Dialog;
gtk_signal_connect (PGTKObject(Dialog ~.ok_button), 'clicked ",
TGTKSignalFunc(@GtkStoreFileName), data);
gtk_signal_connect_object (PGtkObject((Dialog)".ok_button), 'clicked ",
TGTKSIGNALFUNC (@gtk_widget_destroy), PgtkObject(Dialog));
gtk_signal_connect_object (PGtkObject((Dialog)".cancel_button), clicked ',
TGTKSIGNALFUNC (Q@gtk_widget_destroy), PgtkObject(Dialog));
gtk_widget_show (PgtkWidget(dialog));
end;

The listing shows that an instance of the file selection dialog is created, and that its
signals are set up so that when the user clicks the 'Cancel’ button, the file selection
dialog is simply destroyed, and when the ’OK’ button is selected, first a callback is
called in which the name of the selected file will be retrieved, and secondly the file
selection dialog is destroyed. Two remarks concerning this code are in order:

1. The order in which the signals are connected to the ’clicked’ event of the OK
button is important, since they will be triggered in the order that they were
connected.

2. A reference to the dialog is stored in the GTKFileEdit instance, and the reference
to the GTKFileEdit is passed as the Data parameter of the signal.

Finally, when the 'OK’ button of the file selection dialog is clicked, the following
callback is executed to store the filename in the edit widget of the GTKFileEdit
widget:

Procedure GtkStoreFileName(Button : PgtkButton;
TheRec : PGtkFileEdit); cdecl;

begin
With TheRec” do
begin
gtk_entry_set_text (Edit, gtk_file_selection_get_filename (Dialog));
Dialog:=Nil;
end;
end;

The callback also removes the reference to the file selection dialog. This could also
have been done by explicitly setting a ’destroy’ signal handler for the dialog, but
since the dialog is destroyed after the ’OK’ button is clicked, it is done here.

Now the GTKFileEdit is ready for use. It is possible to add some utility functions
to the class, for instance one to get or set set the filename:

Procedure GtkFileEdit_set_filename (Obj : PGtkFileEdit; FileName : String); cdecl;

begin
gtk_entry_set_text (Obj"~.Edit,PChar(FileName));
end;

Function GtkFileEdit_get_filename (Obj : PGtkFileEdit) : String;cdecl;

begin
Result:=StrPas(gtk_entry_get_text(Obj".Edit));
end;

The widget can now be used like any other GTK widget:

program exl;
{$mode objfpc}

uses
glib , gtk , fileedit;

procedure destroy(widget : pGtkWidget ; data: pgpointer); cdecl;
begin

gtk_main_quit ();
end;

var
window ,
fileed ,
box ,
Button : PgtkWidget;

begin
gtk_init (@argc, Qargv);
window := gtk_window_new (GTKWINDOW_TOPLEVEL);
fileed := gtkfileedit_new;
gtk_container_set_border_width (GTK_.CONTAINER(Window) ,5);
box:=gtk_vbox_new (true ,10);
button:=gtk_button_new_with_label ('Quit");

gtk_box_pack_start(pgtkbox(box),PGtkWidget(fileed), False,6 False ,0);

gtk_box_pack_start(pgtkbox(box), pgtkWidget(button), True, False ,0);

gtk_container_add (GTK_Container(window), box);

gtk_signal_connect (PGTKOBJECT (window), 'destroy ',
GTK_SIGNAL_.FUNC (@destroy), NULL);

gtk_signal_connect_object (PgtkObject(button), ' clicked ',
GTK_SIGNAL_.FUNC(@gtk_widget_destroy),
PGTKOBJECT (window)) ;

gtk_widget_show_all (window);

gtk_main ();

end.

The result will look something like figure 77

Figure 1: The GTKFileEdit in action

fhu:urnefmin:haelx‘l’pcfdncsfgtkzexﬁﬂleeﬁit.pp

it

This widget is of course not finished, it can be enhanced in many ways: Some
additional functionality would be to provide a filter for the dialog, or to set the
directory initialiy displayed, provide a title for the dialog, set a different image
on the button, verify that the selected file exists, and so on. these can be added
in much the same way that the GTKFileEdit_get_filename and GTKFileEdit_set_filename
were implemented.

The fact that the parts making up the widget, such as the button and the edit
widgets, are available as fields in the instance record makes it possible for the user
to set additional properties, provided by these widgets. One could imagine the user
connecting to the ’changed’ signal of the edit, to check whether or not the filename
being typed exists, and enabling or disabling other widgets accordingly. The usage
of the file selection dialog itself also makes this clear.

4 A LED digit widget

The second widget to be presented in this article is a widget displaying a LED digit;
such as found in many CD-Player displays or digital clocks. This will demonstrate
how to draw a widget on the screen.

A descendent which reacts to mouse clicks will also be created, which will demon-
strate how to react to user events such as mouse clicks.

A digit consists out of 7 segments, which can be either lit or not lit (dimmed).
For each of the 10 digits (0..9) the state of each of the segments must be specified.
For this we introduce some types and constants:

Type
TLEDSegment = (IsTop,IsCenter ,IsBottom,
IsLeftTop ,IsRightTop,
IsLeftBottom , IsRightBottom);
TLedSegments = Array[TLedSegment] of boolean;

Figure 2: Corners of a digit
1==n

sh—14

I

FL——4

Const
DigitSegments : Array[0..9] of TLEDSegments =

(
(true,false ,true, true, true,true, true), // 0
(false ,false ,false ,false ,true, false , true), // 1
(true ,true ,true, false ,true, true, false), // 2
(true,true ,true, false ,true, false b true), // 3
(false ,true, false ,true,true, false , true), // 4
(true ,true ,true , true, false , false , true), // 5
(true,true ,true , true, false ,true, true), // 6
(true,false ,false ,false ,true, false , true), /) 7
(true ,true , true, true, true, true,true), // 8
(true ,true ,true , true, true, false b true) // 9
)E

The meaning of each of these types and the constant is obvious.

Each segment is drawn between 2 points, located on a rectangle with 6 points,
as shown in figure 7?7 Each segment is drawn between 2 corners: a start corner
and an end corner. For each segment the start and end corner are stored in the
SegmentCorners array.

Type
TSegmentCorners = Array [1..2] of Byte;

Const
SegmentCorners : Array [TLEDSegment] of TSegmentCorners =

(

These constants will facilitate the drawing of the digit later on.
For the digit widget, 2 records must again be introduced; one for the class, and
one for the instances of objects:

Type
TPoint = Record
X, Y : gint;
end;

PGtkDigit = "TGtkDigit;
TGtkDigit = Record
ParentWidget : TGtkWidget;
borderwidth ,
digit : guint;
Corners : Array [1..6] of TPoint;
end;

PGtkDigitClass = "TGtkDigitClass;
TGtkDigitClass = Record

Parent_Class : TGtkWidgetClass;
end;

The class record TGtkDigitClass contains no extra information in this case, it has the
parent class record as its ony field, as required bythe GTK object model. It could
however be used to store some default values to be applied to new widgets, as was
the case for the GTKFileEdit widget.

The object record contains three extra fields:

borderwidth The distance between the segments and the border of the widget.
digit The digit to be displayed.

Corners this array contains the locations of each of the corners between which the
segments will be drawn.

The GTKDigit class must be registered with GTK, and this happens in the same
manner as before:

Function GtkDigit_get_type : Guint;cdecl;

Const
GtkDigitlnfo : TGtkTypelnfo =
(type-name : 'GtkDigit';

object_size : SizeOf(TGtkDigit);

class_size : SizeOf(TGtkDigitClass);

class_init_func : TGtkClasslnitFunc(@GtkDigitClasslnit);
object_init_-func : TGtkObjectlnitFunc(@GtkDigitlnit);

reserved_1 : Nil;
reserved_2 : Nil;
base_class_init_func : Nil
)
begin

if (GtkDigitType=0) then
GtkDigitType:=gtk_type_unique (gtk_widget_get_type , @GtkDigitInfo);
Result:=GtkDigitType;
end;

In the class initialization code, the real difference between this widget and the
previous one becomes clear:

Procedure GtkDigitClasslnit (CObj : PGtkDigitClass); cdecl;

begin
With PGtkWidgetClass(Cobj)" do
begin

size_request:=Q@GTKDigitSizeRequest;
expose_event:=Q@GTKDigitExpose;
size_allocate:=Q@GTKDigitSizeAllocate;
end;

end;

Here GTK is told that, in order to determine the size of the widget, it should first
call GTKDigitSizeRequest; this will provide GTK with an initial size for the object.
After GTK has placed all widgets in the window, and has determined the sizes and
positions it will allocate to each widget in the form, it will call GTKDigitSizeAllocate
to notify the GTKDigit widget of the size it is being allocated.

Finally, the expose_event callback is set; this informs GTK that when a part of
the widget should be drawn (because it is visible to the user), GTKDigitExpose should
be called. There are actually 2 callbacks to draw a widget; one of them is the draw
function and the other is the (here used) expose function. The draw function of
GTKWidget just generates an expose event for the entire widget, and for the current
widget this is enough. There are, however, cases where it may be necessary to
differentiate between the two for optmization purposes.

The object initialization function simply initializes all fields to their default
values:

Procedure GtkDigitlnit (Obj : PGtkDigit); cdecl;
Var | : longint;

begin
gtk_widget_set_flags (pgtkWidget(obj),GTK.NO.WINDOW);
With Obj" do
begin
Digit:=0;
BorderWidth:=2;
For |1:=1 to 6 do
with Corners[i] do
begin
X:=0;
Y:=0;
end;
end;
end;

The interesting thing in the initialization function is the call to gtk widget_set_flags ;
this tells GTK that the GtkDigit does not need its own window. Indeed, it will use its
parent window to draw itself when needed. This also means that no extra resources
must be allocated for the widget.

The size_request callback will in our case simply ask for some default size for the
digit:
Procedure GTKDigitSizeRequest (Widget : PGtkWidget;

Request : PGtkRequisition); cdecl;

Var BW : guint;

begin
With PGTKDigit(Widget)” do
BW:=BorderWidth;
With Request” do
begin
Width:=20+2xBW;
Height:=40+2+BW;
end;
end;

usually, GTK will allocate a size at least equal to the size requested. It may however
be more than this.

When GTK has decided what the real size of the widget will be, the GTKDigitSizeAllocate
will be called:

procedure GTKDigitSizeAllocate(Widget : PGTKWidget;
Allocation : PGTKAIllocation); cdecl;

10

begin
Widget ”. Allocation:=Allocation 7;
SetDigitCorners(PGtkDigit (Widget), False);
end;

This procedure first of all stores the allocated size in the widget, and then it calls
SetDigitCorners to calculate the positions of the corners of the segments; this is done
as follows:

Procedure SetDigitCorners(Digit : PGtkDigit; lgnoreOffset : Boolean);

Var
BW : guint;
W,H,SX,SY : gint;

i : longint;
Widget : PGTKWidget;

begin
Widget:=PGTKWidget(Digit);
BW:=Digit ~. Borderwidth ;
If IgnoreOffset then
begin
SX:=0;
SY:=0;
end
else
begin
SX:=Widget ". Allocation .x;
SY:=Widget ". Allocation .y;
end;
W:=Widget ". Allocation . Width —2:+BW,
H:=(Widget ". Allocation . Height —2«BW) div 2;
With PGTKDigit(Widget)" do
For [:=1 to 6 do
begin
Case | of
1,3,5 : Corners[i].X:=SX4BW;
2,4,6 : Corners[i].X:=SX+BWAW;
end;
Case | of
1,2 : Corners[i].Y:=SY+4BW;
3,4 : Corners[i].Y:=SY4BWHH;
5,6 : Corners[i].Y:=SY4BW+2xH
end;
end;
end;

Since the GTKDigit will draw on its parents window, it must take into account the
offset (x,y) of the allocated size. The reason that this is parametrized with the
IgnoreOffset parameter will become clear when the descendent widget is introduced.
This function could be adapted to give e.g. a slight tilt to the digits.
Remains to implement the expose_event callback:

Function GTKDigitExpose (Widget : PGTKWidget;
ExposeEvent : PGDKEventExpose) : gint;cdecl;

Var
Segment : TLedSegment;

begin

11

With PGTKDigit(Widget)" do
For Segment:=IsTop to IsRightBottom do
if DigitSegments[Digit][Segment] then
gdk_draw_line (widget " .window ,

PgtkStyle (widget ~. thestyle) .fg_g
Corners[SegmentCorners[Segment][1
Corners[SegmentCorners[Segment][1
Corners[SegmentCorners [Segment] [2
Corners[SegmentCorners[Segment][2

)

widget ".state],

cl
11-X
11.Y,
11.X%,
11-Y
else
gdk_draw_line (widget ".window,
PgtkStyle (widget ~.thestyle)" .bg_g
Corners[SegmentCorners[Segment][1
Corners[SegmentCorners[Segment][1
Corners[SegmentCorners [Segment][2
Corners[SegmentCorners [Segment] [2

);

widget ".state],

cl
1].X
11.Y
1].X
11.Y

end;

Here the need for the types and constants, introduced in the beginning of this
section becomes obvious; without them, a huge case statement would be needed to
draw all needed segments.

Note that when a segment of our digit is not ’lit’, it is drawn in the background
color. When the digit to be displayed changes, the segments that are no longer lit,
must be ’dimmed’ again.

Finally we provide 2 methods to get and set the digit to be dislayed:

Procedure GtkDigit_set_digit (Obj : PGtkDigit; Digit : guint);cdecl;

begin
if Digit in [0..9] then
begin
Obj".Digit:=Digit;
gtk_widget_draw (PGTKWidget(Obj), Nil);
end;
end;

Function GtkDigit_get_digit (Obj : PGtkDigit) : guint;cdecl;

begin
Result:=0bj". Digit;
end;

Obviously, when setting the digit to be displayed, the widget must be redrawn, or
the display would not change till the next expose event. Calling gtk-widget_draw
ensures that the digit will be displayed correctly.

Now the widget is ready for use; it can be created and put on a window in the
same manner as the GTKFileEdit control; the code will not be shown, but is available
separately.

The result is shown in figure ?7.

The widget can be improved in many ways. The segments can be tilted, a bigger
width can be used; the can have rounded edges and so on.

The widget as presented here doesn’t react on user events; it has no way of doing
that, since it doesn’t have an own window; Therefore a descendent is made which
creates its own window, and which will react on mouse clicks; this widget will be
called GTKActiveDigit.

12

Figure 3: The GTKDigit widget in action.

IE 5
]

The Istinline—GTKActiveDigit— widget is a descendent from its inactive coun-
terpart. Therefore the class and object records will be (almost) empty:

Type
PGtkActiveDigit = "TGtkActiveDigit;
TGtkActiveDigit = Record
ParentWidget : TGtkDigit;
Button : guint8;
end;

PGtkActiveDigitClass = "TGtkActiveDigitClass;
TGtkActiveDigitClass = Record

Parent_Class : TGtkDigitClass;
end;

The Button field is used to store which button was used to click on the digit.
The registration of the new widget is similar to the one for GTKDigit, and doesn’t
need more explanation:

Const
GtkActiveDigitType : guint = O0;

Function GtkActiveDigit_get_type : Guint;cdecl;

Const
GtkActiveDigitlnfo : TGtkTypelnfo =
(type_name : 'GtkActiveDigit';

object_size : SizeOf(TGtkActiveDigit);

class_size : SizeOf(TGtkActiveDigitClass);

class_init_func : TGtkClasslnitFunc(@GtkActiveDigitClasslnit);
object_init_func : TGtkObjectlnitFunc(@GtkActiveDigitlnit);

reserved_1 : Nil;
reserved_2 : Nil;
base_class_init_func : Nil
);
begin

if (GtkActiveDigitType=0) then
GtkActiveDigitType:=gtk_type_unique(gtkdigit_get_type ,@GtkActiveDigitinfo);
Result:=GtkActiveDigitType;
end;

13

Function GtkActiveDigit_.new : PGtkWidget; cdecl;

begin
Result:=gtk_type_new (GtkActiveDigit_get_type)
end;

The first real difference is in the class initialization routine:

Procedure GtkActiveDigitClasslnit (CObj : PGtkActiveDigitClass); cdecl;

begin
With PGtkWidgetClass(Cobj)” do
begin
realize := Q@GtkActiveDigitRealize;
size_allocate := Q@GtkActiveDigitSizeAllocate;

button_press_event:=Q@GtkActiveDigitButtonPress;
button_release_event:=Q@GtkActiveDigitButtonRelease;
end;

end;

The realize and size_allocate of the parent widget GTKDigit are overriden here. Also
2 events callbacks are assigned in order to react on mouse clicks.

The object initialization function must undo some work that was done ba the
parent’s initialization function:

Procedure GtkActiveDigitlnit (Obj : PGtkActiveDigit); cdecl;

begin
gtk_widget_unset_flags (pgtkWidget (obj),GTK.NOWINDOW);
With Obj” do
Button:=0;
end;

This is necessary, because the GTKActiveDigit will create it’s own window.

For this widget, the realize callback must do a little more work. It must create
a window on which the digit will be drawn. The window is created with some
default settings, and the event mask for the window is set such that the window
will respond to mouse clicks:

Procedure GtkActiveDigitRealize(widget : PgtkWidget); cdecl;

Var
attr : TGDKWindowAttr;
Mask : gint;

begin

GTK_WIDGET_SET_FLAGS (widget , GTK_REALIZED);
With Attr do

begin
x := widget~.allocation .x;
y = widget . allocation .y;

width:=widget ". allocation .width;
height:=widget ". allocation . height;
wclass:=GDK_INPUT_OUTPUT;
window_type:=gdk_window_child;
event_mask:=gtk_widget_get_events(widget) or GDK_EXPOSURE_MASK or
GDK_BUTTON_PRESS_MASK OR GDK_BUTTON_RELEASE_MASK;

visual:=gtk_widget_get_visual (widget);
colormap:=gtk_widget_get_colormap (widget);
end;

Mask:=GDK.WA X or GDKWA.Y or GDK_WA_VISUAL or GDK WA _COLORMAP;

14

widget *. Window:=gdk_window_new (widget ". parent ~.window , @attr , mask);

widget ". thestyle:=gtk_style_attach (widget".thestyle ,widget ~.window);

gdk_window_set_user_data(widget ".window , widget);

gtk_style_set_background (widget ".thestyle ,widget ~.window , GTK_.STATE_ACTIVE);
end;

After the window was created, its userdata is set to the widget. This ensures that
the events which occur in the window are passed on to our widget by GTK. Finally
the background of the window is set to some other style than the default style.

The size allocation event should in principle do the same as that for the GTKDigit
widget, with the exeption that the calculation of the corners for the segments must
now not be done relative to the parent window:

procedure GTKActiveDigitSizeAllocate (Widget : PGTKWidget;
Allocation : PGTKAIllocation); cdecl;
begin
Widget ". allocation:=Allocation ”;
if GTK.WIDGET_REALIZED(widget) then
gdk_window_move_resize (widget ". window,
Allocation ".x,
Allocation ™.y,
Allocation . width ,
Allocation ~. height);
SetDigitCorners (PGTKDigit(Widget), True);
end;

This explains the need for the IgnoreOffset parameter in the SetDigitCorners function.
All that is left is to implement the mouse click events:

Function GtkActiveDigitButtonPress(Widget: PGtKWidget;
Event : PGdkEventButton) : gint;cdecl;

begin
PGTKActiveDigit (Widget)".Button:=Event " . Button;
end;

Function GtkActiveDigitButtonRelease (Widget: PGtKWidget;
Event : PGdkEventButton) : gint;cdecl;

Var
Digit : PGtkDigit;
D : guint;

begin

Digit:=PGTKDigit(Widget);
D:=gtkdigit_get_digit(Digit);
If PGTKActiveDigit(Digit)".Button=Event".Button then
begin
If Event”.Button=1 then
GTKDigit_set_digit(Digit ,D+1)
else if Event”.Button=3 then
GTKDigit_set_digit(Digit ,D—1)

else
GTKDigit_set_digit(Digit ,0);
end;
PGTKActiveDigit(Digit)".Button:=0;

end;

As can be seen, the digit will be incremented when the left mouse button is clicked.
The digit is decremented when the right button is clicked. On systems with 3 mouse
buttons, a click on the middle mouse button will reset the digit to 0.

15

After all this, the widget is ready for use, and should look more or less like the
one in figure ?77.

Figure 4: The GTKActiveDigit in action.

It

The widgets presented here are not complete; many improvements can be made,
but their main purpose was to demonstrate that implementing some new widgets
is very easy and can be achieved with little effort; what is more, the OOP structure
of GTK is very suitable for the implementation of small enhancements to existing
components, as was shown with the last widget presented.

16

