
Programming GTK in Free Pascal

Florian Klämpfl
and

Michaël Van Canneyt

July 2000

1 Introduction

The GTK library is a popular widget library for the X-Windows system. It is used
as the basis for the GIMP graphical manipulation program and for the GNOME
application framework. With its ports to Microsoft Windows and BeOS, it allows
to program a graphical interface for any application in a platform independent way.

GTK is implemented in C, but it is possible to access its functionality from Free
Pascal. For this, its headers have been translated to Pascal, so a program written
in Free Pascal can make use of the functionality offered by GTK and its companion
libraries GDK and GLIB. In fact, there is an open source project (Lazarus) which
makes use of GTK in order to build an open-source alternative to the visual classes
offered by Inprise’s Delphi.

This article intends to present an introduction to programming GTK in Free
Pascal. It by no means covers all of the functionality that GTK offers, as this
would probably require a complete manual.

The first section gives some general considerations on the GTK toolkit.

2 GTK is a C library

Since GTK is an external library, some import units describing the calls in the
libraries are needed. Three libraries make up the GTK programming kit:

glib this library contains some general programming tools, and defines platform
independent types, which are used throughout the other libraries. To use this
library, it is sufficient to include the glib unit in your uses clause.

gdk encapsulates the Windowing system (X or Windows) underlying GTK. It con-
tains routines to draw on the screen, and react to various mouse or keyboard
events. To use these routines, the gdk unit must be included in the uses clause
of a unit or program.

gtk contains the widget library. This is a series of controls such as edit boxes,
drop-down lists and many more, which are organised in an OOP structure.
Since the library is written in C, there is no programming language support
for this structure.

All definitions of the gtk library are contained in the gtk unit, which must be
included in the uses clause of any program or unit that needs their function-
ality.

The GTK toolkit was programmed in C. This has some consequences for the
Pascal interface, since some C constructs do not port easily to Pascal. When using
the Pascal translation of the C headers, the following must be kept in mind:

1

1. Reserved words: Pascal reserved words in types, record element names etc.
have been prepended with the word ’the’. For example label becomes thelabel .

2. Functions and procedures have been kept with the same names.

3. Types have been prepended with T, that is, the C type GtkWidget has become
TGtkWidget.

4. Pointers to types have been defined as the type name, prepended with a P.
GtkWidget ∗ becomes PGtkWidget.

5. Records with bit-size elements: C allows to store parts of a record in individual
bits; whereas in Pascal, the minimum size of an element in a record is a byte.
To accommodate this, functions were defined to retrieve or set single bits from
a record. The functions to retrieve a bit have the name of the record field.
The procedure to set a bit has the name of the field prepended with ’set ’.
For example

s t r u c t SomeStruct
{

g c ha r ∗ t i t l e ;
g u i n t v i s i b l e : 1 ;
g u i n t r e s i z e a b l e : 1 ;

} ;

translates to

TSomeStruct = record
t i t l e : Pgchar ;
f l a g 0 : word ;

end ;
f unct ion v i s i b l e (var a : TGtkCListColumn) : g u i n t ;
procedure s e t v i s i b l e (var a : TGtkCListColumn ; v i s i b l e : g u i n t) ;
f unct ion r e s i z e a b l e (var a : TGtkCListColumn) : g u i n t ;
procedure s e t r e s i z e a b l e (var a : TGtkCListColumn ; r e s i z e a b l e : g u i n t) ;

6. Macros. Many C macros have not been translated. The typecasting macros
have been dropped, since they’re useless under Pascal. Macros to access record
members have been translated, but they are to be considered as read-only. So
they can be used to retrieve a value, but not to store one. e.g.

f unct ion GTK WIDGET FLAGS(wid : p g t k w i d g e t) : l o n g i n t ;

can be used to retrieve the widget flags, but not to set them. so things like

GTK WIDGET FLAGS(wid):=GTK WIDGET FLAGS(wid) and s o m e f l a g ;

will not work, since this is a function, and NOT a macro as in C.

7. Calling conventions: A C compiler uses another calling convention than the
Free Pascal compiler. Since many GTK functions need a callback, these call-
back must use the C calling convention. This means that every function that
is called by GTK code, should have the cdecl modifier as a part of its decla-
ration.

Compiling a GTK application is no different than compiling any other Free
Pascal application. The only thing that needs to be done is to tell the free Pascal
compiler where the gtk, gdk and glib libraries are located on your system. This can
be done with the -Fl command-line switch. For example, supposing the gtk library
is located in /usr/X11/lib, the following command-line could be used to compile
your application:

2

ppc386 -Fl/usr/X11/lib mygtkapp.pp

This example supposes that the gtk unit is be in your unit search path. If it is not,
you can add it with the -Fu switch.

3 The bricks of a GTK application

The building-blocks of a a GTK application are the widgets. Widgets are the
equivalent of Delphi’s controls. And although GTK is not an object oriented library,
the library defines a record TGtkWidget which contains all settings common to all
widgets; all widgets start with this record, and add their own specific data to it.
This creates a tree-like structure with all the widgets present in the GTK library,
to which your own widgets can be added.

All functions that create a particular widget return a pointer to a TGtkWidget

record. It is not recommended to manipulate the contents of the widget record
directly; GTK offers many functions to manipulate the members of the record, e.g.
gtk widget set parent or gtk widget get name. To this set of functions, each new widget
adds a few functions that are specific to this particular widget.

Each widget has a specific function and a specific look; there are many widgets
to choose from. A complete list of widgets is outside the scope of this article; the
GTK reference manual offers an overview of available widgets. In general it can
be said that most widgets one would expect are present in the GTK library: Edit
fields, buttons, check-boxes, various lists, menus, combo-boxes, tree views, and some
pre-defined dialogs.

Any of these widgets is created with a gtk WIDGET NAME new call. This call can
accept arguments; The number and type of arguments depend on the widget. For
example, to create a button that displays a text, the call is defined as follows:

g t k b u t t o n n e w w i t h l a b e l (ALAbel : PChar)

All widgets can be destroyed with the gtk widget destroy call, irrespective of their
type.

4 Showing things on the screen

To show things on the screen, it is necessary to create a window. A window is
created with the the gtk window new call. This call accepts as an argument the type
of window to be created.

Creating a window creates it’s structure in memory, but doesn’t show it on
screen. To show this window on the screen,a call to the gtk widget show function is
needed, as can been seen in example 1.

program ex1 ;

{$mode ob j f p c }

uses
g l i b , gtk ;

procedure d e s t r o y (w i d g e t : pGtkWidget ; data : p g p o i n t e r) ; cdec l ;
begin

g t k m a i n q u i t () ;
end ;

var
window : pGtkWidget ;

3

begin
g t k i n i t (@argc , @argv) ;
window := gtk window new (GTK WINDOW TOPLEVEL) ;
g t k s i g n a l c o n n e c t (pGTKOBJECT (window) , ’ d e s t r o y ’ ,

GTK SIGNAL FUNC (@ d e s t r o y) , NULL) ;
g t k w i d g e t s h o w (window) ;
gtk main () ;

end .

If the window contains widgets, the gtk widget show function must be called for each
widget.

Looking at example 1, one notices 2 special calls: gtk init and gtk main. These
calls should be present in any program that uses the GTK library.

The first call initialises the GTK library. Among other things, it reads the
command-line to see e.g. which display should be used.

The second call is the heart of the GTK widget library: It starts the message loop
of GTK. This call will not return, unless somewhere else in the program gtk main quit

is called. As long as the call doesn’t return, GTK will wait for events such as mouse
clicks, key-presses and so on. It will handle these events, but it will not notify you
of any of these events except if you specifically ask for it.

A window by itself is of course not very interesting. To make it more interesting,
some elements should be added.

Adding a widget to a parent is done with the gtk container add call. This call
places a widget in a container. A container is a widget which can contain other
widgets; not all widgets are containers, however.

Example 2 shows how to add a widget (a button) to a container (the window in
this case). It also shows that the container has some specific properties, which can
be manipulated as well (in this case, the border width). Since not each widget is a
container, the window pointer must be typecasted to GTK CONTAINER in order to
be accepted by the container handling calls.

program ex2 ;

{$mode ob j f p c }

uses
g l i b , gtk ;

procedure d e s t r o y (w i d g e t : pGtkWidget ; data : p g p o i n t e r) ; cdec l ;
begin

g t k m a i n q u i t () ;
end ;

var
window : PGtkWidget ;
but ton : PGtkWidget ;

begin
g t k i n i t (@argc , @argv) ;
window := gtk window new (GTK WINDOW TOPLEVEL) ;
but ton := g t k b u t t o n n e w w i t h l a b e l (’ C l i c k me ’) ;
g t k c o n t a i n e r s e t b o r d e r w i d t h (GTK CONTAINER(Window) , 5) ;
g t k c o n t a i n e r a d d (GTK Container (window) , but ton) ;
g t k s i g n a l c o n n e c t (PGTKOBJECT (window) , ’ d e s t r o y ’ ,

GTK SIGNAL FUNC (@ d e s t r o y) , NULL) ;
g t k w i d g e t s h o w (button) ;
g t k w i d g e t s h o w (window) ;

4

gtk main () ;
end .

Adding more than 1 widget to a container is not trivial in GTK. The reason
for this is that GTK has not been designed to set widgets at a specific location in
their parent widget. Instead, GTK asks that you ’pack’ your objects in their parent
widget. This means that if the parent widget is resized, it’s child widgets are resized
as well, depending on the packing options that were set.

One of the reasons that the GTK library was set up this way, is that the size of
a widget is not well-defined. For instance, the size of a button depends on whether
it is the default widget of the window or not. Given that this is so, the placement
of such a button is not well-defined either.

The most common ways of packing widgets in a parent widget are the following:

1. using a vertical box.

2. using a horizontal box.

3. using a table.

We’ll discuss these ways in the subsequent. There are other ways, but these are
probably the most important ones.

4.1 Using boxes

A horizontal or vertical box can be used to contain a row or column of widgets.
Various options can be set to modify the spacing between the widgets, the alignment
of the widgets in the box, or the behaviour of the box when the user resizes the
parent widget. Boxes work only in one direction. The widgets inside a horizontal
box always have the height of the box, and widgets in a vertical box always have
the width of the vertical box.

You can create a horizontal box with the gtk hbox new call. It accepts 2 argu-
ments: The first one is a boolean. It tells GTK whether the children should have
the same space in the box. The second one is an integer, which tells GTK how
much space to leave between the widgets in the box. Likewise, a vertical box can
be created with the gtk vbox new call. This call accepts the same arguments as the
first box.

Adding widgets to a box happens with the gtk box pack start or gtk box pack end

calls. The former adds a widget at the start of the box, the latter adds a widget at
the end of the box. Both functions accept the same arguments:

(Box : PGtkBox ; Widget : PGtkWidget ;
expand g b o o l e a n ; f i l l : g b o o l e a n ; padd ing : g u i n t) ;

The expand argument tells the box whether it should take the size of it’s parent
widget, or whether it should resize itself so that it is just large enough to fit the
widgets. The latter allows to justify the widgets in the box (but only if the box
is not homogeneous. If the box should keep the size of it’s parent, then the fill

argument decides what is done with the extra space available.
If fill is True then the extra space is divided over the widgets. If fill is False

then the extra space is put in between the widgets.
The padding adding tells the box to add extra space for this particular widget.
The following program shows the use of a box:

program ex3 ;

{$mode ob j f p c }

5

uses
g l i b , gtk ;

f unct ion newbutton (ALabel : PChar) : PGtkWidget ;

begin
R e s u l t := g t k b u t t o n n e w w i t h l a b e l (ALabel) ;
g t k w i d g e t s h o w (r e s u l t) ;

end ;

procedure d e s t r o y (w i d g e t : pGtkWidget ; data : p g p o i n t e r) ; cdec l ;
begin

g t k m a i n q u i t () ;
end ;

var
window ,
t o t a l b o x ,
hbox , vbox : PgtkWidget ;

begin
g t k i n i t (@argc , @argv) ;
window := gtk window new (GTK WINDOW TOPLEVEL) ;
// Box to d i v i d e window i n 2 h a l v e s :
t o t a l b o x := gt k vb ox ne w (t r u e , 1 0) ;
g t k w i d g e t s h o w (t o t a l b o x) ;
// A box f o r each h a l f o f the s c r e e n :
hbox := gtk hbox new (f a l s e , 5) ;
g t k w i d g e t s h o w (hbox) ;
vbox := g tk vb ox ne w (t r u e , 5) ;
g t k w i d g e t s h o w (vbox) ;
// Put boxes i n t h e i r h a l v e s
g t k b o x p a c k s t a r t (GTK BOX(t o t a l b o x) , hbox , t r u e , t r u e , 0) ;
g t k b o x p a c k s t a r t (GTK BOX(t o t a l b o x) , vbox , t r u e , t r u e , 0) ;
// Now f i l l boxes w i th bu t ton s .
// Ho r i z o n t a l box
g t k b o x p a c k s t a r t (GTK BOX(hbox) , newbutton (’ Button 1 ’) , f a l s e , f a l s e , 0) ;
g t k b o x p a c k s t a r t (GTK BOX(hbox) , newbutton (’ Button 2 ’) , f a l s e , f a l s e , 0) ;
g t k b o x p a c k s t a r t (GTK BOX(hbox) , newbutton (’ Button 3 ’) , f a l s e , f a l s e , 0) ;
// V e r t i c a l box
g t k b o x p a c k s t a r t (GTK BOX(vbox) , newbutton (’ Button A ’) , t r u e , t r u e , 0) ;
g t k b o x p a c k s t a r t (GTK BOX(vbox) , newbutton (’ Button B ’) , t r u e , t r u e , 0) ;
g t k b o x p a c k s t a r t (GTK BOX(vbox) , newbutton (’ Button C ’) , t r u e , t r u e , 0) ;
// Put t o t a l b o x i n window
g t k c o n t a i n e r s e t b o r d e r w i d t h (GTK CONTAINER(Window) , 5) ;
g t k c o n t a i n e r a d d (GTK Container (window) , t o t a l b o x) ;
g t k s i g n a l c o n n e c t (PGTKOBJECT (window) , ’ d e s t r o y ’ ,

GTK SIGNAL FUNC (@ d e s t r o y) , NULL) ;
g t k w i d g e t s h o w (window) ;
gtk main () ;

end .

What the program does is the following: It creates a window, which it splits up
in two halves by means of the totalbox widget. This is a vertical box, which will
contain two other boxes: a vertical box and a horizontal box. Each of these two
boxes is filled with buttons. The behaviour of the boxes can be seen when the
window is resized.

The effect of the various arguments to the pack calls can be seen by changing

6

