
REST clients: Using the Google APIs in Free Pascal

Michaël Van Canneyt

May 3, 2015

Abstract

This article demonstrates how to use Free Pascal components that implement the
Google APIs, to access Google’s services. Using the Google APIs presumes use of
OAuth 2, and the use of REST technologies. The article will also show how you can
create your own Google API in Pascal using the Google Discovery service.

1 Introduction

More and more, applications are connected to the Web or implemented solely on the web
(Facebook, twitter). Data is fetched from and stored in the web, even for traditionally desk-
top oriented software such as spreadsheets or word-processing software. Prime examples
are Google docs (or Apps) and more recently Microsoft Office365. One could even say
that these WEB apis become equally important as the traditional OS and installed software
APIS: Software running on Tablets and smartphones are expected to interact with online
services.

To be able to interact with these web applications and this data, APIs are needed. This
is increasingly done using REST technologies. (REST stands for Representational State
Transfer). REST is not a protocol, rather an architectural way to make data available on the
web. It rests on 2 pillars:

1. Everything is a resource, acessible through a URI - which almost implies use of
the HTTP protocol. In database terms one could say that every record of a table is
accessible through its own URI.

2. Data manipulation follows mostly the CRUD (Create Read Update Delete) pattern,
much as data in a database. These operations nicely translate to HTTP verbs POST,
GET, PUT and DELETE.

Since all this is very much the technology used in web browsers, it is easy to understand
and use. The downside of being an architecture is that there is no strict protocol, each
application developer can develop his own protocol.

Where XML was the format of choice for messages in SOAP-related APIs, for REST APIs
this is replaced mostly with data descriptions in JSON format (JavaScript Object Notation),
which has several advantages over XML: it is less verbose (that applies to the specification
as well: the JSON specification fits on an A4 page), is less sensitive to whitespace, and has
some native notion of data types (string, boolean, number, object, array). Last but not least,
it is a subset of Javascript, and as such can be handled natively by any browser.

Obviously all the data on the web needs to be protected from unauthorized access. This
protection is increasingly done using OAuth (version 2). OAuth is also implemented using
JSON. OAuth in essence relies on the user giving consent to an application (mostly the
browser) to use data on his or her behalf.

1



Figure 1: The Google APIs component palette

Figure 2: The google drive demo program

All the technologies needed to perform REST operations and OAuth authorization are
available in Free Pascal. It was therefor only a matter of time before a comprehensive
set of components became available to easily access web APIs. Indeed, the various Google
APIS are now available as components (figure ?? on page ??) for the lazarus component
palette, so they can be dropped on a form, making it really easy to access the Google APIS.

In this article we’ll describe how to access the Google APIs using REST in Free Pascal and
Lazarus, and demonstrate how they can be used in sample applications such as the Google
Drive demo (figure 2 on page 2) To understand better how the various classes are hooked
up, they will not be dropped on the component paletter, but we’ll create and connect them
in code.

Access to Microsoft Office365 is also worked on, but is the subject of a later contribution.

2 Architecture

The Free Pascal implementation of the web APIS makes several assumptions:

1. Transport uses the HTTP(s) protocol. Several TCP/IP socket implementations exist
(Synapse, lnet, Indy, the FPC native client). Each developer has his own preference
which implementation he uses. So, the REST APIs should work with each of those.

That means that the HTTP request and response mechanism is abstracted in a new
class TFPWebClient. Concrete implementations of this abstract class have been
made for Synapse and TFPHTTPClient.

2. Authentication of the HTTP requests happens using OAuth2, but other mechanisms
can be implemented as well. Since the OAuth2 protocol involves exchanging tokens
with a webserver, it needs a HTTPS transport layer as well.

3. Serialization of objects is done using JSON. Therefor the basic REST object contains
a JSON serialization mechanism, based on RTTI.

2



The upshot of these architectural decisions is that there are several classes involved in the
REST implementation:

TFPWebclient to handle HTTP(s) messages. A descendent of this client is needed, which
uses a particular TCP/IP suite to actually send the request and read the response. A
request is represented by a TWebRequest class, the response will come in the form
of a TWebresponse class.

Requests are executed using the ExecuteRequest and ExecuteSignedRequest
methods: To each TFPWebclient instance, a TRequestSigner component can
be attached: this component is allowed to examine the request and response when
they are sent or received. This allows a request to be signed, for instance by adding
a Authorization header with a Bearer token.

TFPOauth2Handler is a class that handles OAuth 2 authentication. Technically, it is a
descendent of a TRequestSigner that will add the OAuth2 header. This class
may use the TFPWebclient instance (or a second TFPWebclient instance) to
execute token exchange requests as part of the OAuth2 flow.

The class can be used in offline mode (for desktop apps) as wel as in online mode
(for web applications).

TRestObject This is the basic object that represents a REST resource. It has 2 important
methods: LoadFromJSON and SaveToJSON. These methods use the RTTI to
create a JSON representation of the object, or to read the object properties from a
JSON representation. It also has an mechanism to record which properties have been
changed.

The mechanism to record property changes is needed because many REST APIs allow both
PUT and PATCH (or UPDATE) methods. A PUT method generally completely replaces a
resource with the new value specified in the request, whereas PATCH modifies the resource
by applying the changes in the request to the existing resource.

To be able to support PATCH-like functionality, a mechanism is needed to record which
properties have changed, and to send only these properties in a request. This mechanism
is implemented using the property Index mechanism. Each property has a unique index,
and a property setter which accepts this index (the property getter may or may not use this
index). When the property is set, the index is used to record the change. Since the index is
unique, the RTTI can then be used to construct a list of property names that were modified.

Armed with these objects, a REST API client can be made: all that needs to be done is
create descendents of TRestObject, and load them from a HTTP response. To modify data
on the REST server, the object’s properties are set, and the object serialized to JSON. This
JSON is then sent (with the appropriate HTTP method) to the server. That is basically it.

3 Service descriptions

Google has more than 100 APIs, each of which has more than 1 resource, containing much
data structures which can be manipulated. To write objects and serialization code for each
of these resources would be a very tedious task indeed. Luckily, this is not necessary.
Google offers a Google Service Discovery service, which returns a JSON document that
completely describes each of its rest-based APIs. The Google discovery service is de-
scribed at

https://developers.Google.com/discovery/

3



The service consists of 2 parts: it lists the services offered by Google, and it offers a
description of the REST API for each of these services. For people acquainted with SOAP
implementations: This description is equivalent to the WSDL description document. it is
based on JSON schema:

http://json-schema.org/

The REST API description also contain information on the authorizations needed to use the
resources in the APIs (the so-called authorization scope). It is very important to be aware
of these scopes: the user of the API will be asked for consent based on these scopes. More
on this below.

The Microsoft REST APIs are based on their OData specification, and OData based ser-
vices have a similar document (the service document), based on EDMX, described at:

https://www.odata.org/

Unfortunately, the EDMX description is still in XML (somewhat awkward if the JSON
format is to be used) and not as complete as the Google-provided descriptions, implying
that always a certain (very small) amount of manual interpretation is required.

Converters for these 2 formats have been implemented in FPC: The Google Service Dis-
covery REST description document can be converted automatically to a complete Object
Pascal implementation of a client for the REST APIs. There are 2 programs available to do
this:

• A command-line program which can be used to convert a single API to an object
pascal unit. The REST description can be a file with the JSON description of the
service, or the program can download a service description from the Google service
discovery server.

• A GUI program that allows you to browse and search the Google APIs and convert
a selected API to an Object pascal unit.

The Google service discovery itself is a REST API. So, an Object Pascal implementation
can be generated for it, using the command-line program. This has been done, and the
Google discovery program was constructed using this unit.

The code to convert a Google REST API description to an Object pascal unit is a component
(TDiscoveryJSONToPas), which can be descended from and modified if need be: if
the choices made by the author for the generated code are not to your particular liking, the
code can easily be modified to generate different code. It has 3 important methods:

LoadFromStream This method can be used to load a REST service description from a
stream containing valid JSON. There are 2 auxiliary methods LoadFromFile and
LoadFromJSON to make life easier.

SaveToStream Calling this will generate the pascal code, and save the resulting code to
stream. The SaveToFile method will do the same but save directly to file, and
will set the unit name of it was not yet set.

Execute can be used to generate the code. The code is then available in the Source
property.

There are some properties that can be used to control the code: the parent class name for
the generated resource classes, the unit name to generate, the indentation can be set and so

4



forth. The component can be found in the googlediscoverytopas unit. A similar component
was made to convert the Microsoft OData service discriptions to Pascal code.

A small command-line program (googleapiconv) is available that can be used to generate
a pascal source file from a service description file. It can also fetch the description from
the Google discovery service, based on the name (and version) of the service, or simply by
providing a URL. For example, the following command will generate a unit for the Google
calendar API :

googleapiconv -s calendar/v3 -o calendar.pp

the same can be obtained using

googleapiconv -u http://www.googleapis.com/discovery/v1/apis/calendar/v3/rest -o calendar.pp

4 A service description breakdown

Since the Google Discovery service is a service, there is a description of itself in the
Google discovery service. Therefor, the command-line program was used to create a unit
googlediscovery which implements the Google discovery service API.

A Google API breaks down in 4 parts, all of which have a base class in the googleservice
unit:

TGoogleClient This is a simple component that handles the transport and authorization, it
uses a TFPWebClient and a TFPOauth2Handler to communicate with Google
servers.

TGoogleAPI There is a descendent of this component for each Google service API, which
handles all calls to the service. It uses a TGoogleClient component to handle
actual communication.

The code generator creates 1 descendent of this class in the unit it creates for the
service. For the Google discovery service, the class is called TDiscoveryAPI.
This class contains some class methods that expose metadata about the service: The
base URL for the service, what authorization scopes are used, where documentation
and icons for this service can be found etc.

This class contains a method called ServiceCall which is used by all resources
in the API to execute service requests. It will use the client to do the actual HTTP
request.

TGoogleResource For each resource exposed by the service, a descendent of this class
is generated that has all the methods for that resource, as described in the REST
service description. TGoogleResource uses an instance of the TGoogleAPI
class to handle all calls to the service. For the Discovery API, there is 1 resource
class TApisResource.

TGoogleBaseObject for each data type used in the API, a descendent of this class is
used: it is a descendent of TBaseObject and handles loading from and saving to
JSON. For the Discovery service, there are 2 main datatypes that descend from this
base class: TDirectoryList for the list of services, and TRestDescription
which describes a REST api. The latter is used to create a pascal unit.

The JSON serialization mechanism works with an object factory: when it needs to create
an object of a certain type (the ’kind’ in Google parlance), it looks in the factory to see

5



which class must actually be created. The TGoogleAPI object will register all the classes
it uses in the factory. It is possible to override the classes in the factory, so that when a class
is requested a descendent of the class can be returned.

For instance, the TDirectoryList is registered with name discovery#directoryList.
To have the API return a TMyDirectoryList item whenever it requires a discovery#directoryList
instance, the TMyDirectoryList can simply be registered with the same name:

TMyDirectoryList.RegisterObject;

The class must override the RestKindName class method for this to work correctly:

Function TMyDirectoryList.RestKindName : string;

begin
Result:=’discovery#directoryList’;

end;

The advantage is that this mechanism allows the programmer to create descendents of
the classes in an API which have custom behaviour and properties, rather than modify
the service description unit. When data arrives from the server, his private classes will
be instantiates instead of the declared stock classes. When the service changes, the API
converter can then regenerate the service description unit, and not all customizations are
lost.

If the object factory does not contain a definition for a certain class, the serializer will
always fall back to instantiating an instance of the declared property type.

5 Using the generated APIs

Armed with these base classes, it is time to start using them to create an actual program.

The Google discovery demo program uses the googlediscovery unit to create a small
GUI program. Using this GUI program the following actions can be performed:

• View and search in available services.

• Open the documentation of a service in a browser.

• View the JSON rest description of the service.

• Generate a unit based on the REST description of a service.

The main form of the application simply shows a list of services, with a button to (re)fetch
the list, and a textbox to filter the list.

The OnCreate event is used to set up everything:

procedure TMainForm.FormCreate(Sender: TObject);
begin

// set up communication.
FClient:=TGoogleClient.Create(Self);
FClient.WebClient:=TSynapseWebClient.Create(Self);
// Register all classes so they can be streamed.
TDiscoveryAPI.RegisterAPIResources;

6



// create the API and hook it up to the Google client.
FDiscoveryAPI:=TDiscoveryAPI.Create(Self);
FDiscoveryAPI.GoogleClient:=FClient;
// The code generator uses its own objects.
TDiscoveryJSONToPas.RegisterAllObjects;
UpdateCaption;

end;

The first 2 lines set up the communication: in the example code, the synapse descendent of
the TFPWebClient class is used to handle transport. To be able to stream all objects in
the discovery API, all resources needed for the API are registered. Then an instance of the
Discovery API is created, and connected to the client component. The last 2 lines handle
initialization of the code generator, and update the caption of the Google API.

In general the above mechanism will be the same for all applications that want to commu-
nicate with a Google service API.

The TApisResource class represents the resources exposed by the discovery API, and
was generated by the code generator as follows:

TApisResource = Class(TGoogleResource)
Public

Class Function ResourceName : String; override;
Class Function DefaultAPI : TGoogleAPIClass; override;
Function GetRest(_api: string; version: string) : TRestDescription;
Function List(AQuery : string = ’’) : TDirectoryList;
Function List(AQuery : TApislistOptions) : TDirectoryList;

end;

The first 2 methods are for the API’s internal bookkeeping for the factory methods. The
interesting methods are List and GetRest: The latter requires the name and the version
of the API, and will return a description of the REST API in the TRestDescription
instance. These 2 parameters are required and are encoded in path of the URI used to
access the resource: this is a feature of the API and reflected in the signature of the methods
generated by the API.

As seen in the declaration, the List method of this resource comes in 2 forms: One ac-
cepts a string, the other a structure of type TApislistOptions. This pattern can be
seen in all resource classes generated by the code generator, and this is a design choice:
The Google REST description document describes for each call what optional parame-
ters the call accepts, usually these parameters serve to filter the returned response. These
parameters are passed to the API in the query variables encoded in the URL.

This is always translated by the code generator to 2 calls: rather than creating a method that
contains all the parameters in its signature, a record is declared that contains each parameter
as a field. For the Listmethod, these parameters are described in TApisListOptions:

TApisListOptions = Record
_name : string;
preferred : boolean;

end;

Since the API can change and to allow for custom queries, whenever there are such optional
parameters for a method, the method is generated twice, the second form just accepts a
query string which is passed on as-is in the URL (which means it must be URL-encoded).
Internally, the method using the record just constructs the query from non-empty fields in
the record, and calls the latter method.

7



So how to use the TApisResource and its methods ?

Each API class has methods to create the resource instances used in the API. For the dis-
covery API, there is only 1 resource, so the number of methods is limited:

TDiscoveryAPI = Class(TGoogleAPI)
//Add create function for resources
Function CreateApisResource(AOwner : TComponent) : TApisResource;
Function CreateApisResource : TApisResource;
//Add default on-demand instances for resources
Property ApisResource : TApisResource Read GetApisInstance;

end;

The CreateApisResource call will create an instance of TApisResource, and
hooks it up to itself, so the resource can execute service calls. Optionally, an owner for
the resource can be specified (if none is specified, the API instance is the owner). When
the ApisResource property is read, it will create an instance of TApisResource if
need be, and keep it in memory till the API is freed.

The same pattern is reused in all the API classes generated by the API code generator.

In the demo application, when the Refresh button or menu item is chosen, the list of
available API’s is fetched and displayed. This happens using the List method of the
TApisResource.

procedure TMainForm.DoFetch;

begin
// Free any previous list.
FreeAndNil(FDirectory);
// Get the new list using a default ApisResource.
FDirectory:=FDiscoveryAPI.ApisResource.List();
ShowDiscovery(MIPreferredOnly.Checked,EFilter.Text);

end;

The second line of code gets the list of services. For this, it uses the default ApisResource
property of the TAPIDiscovery instance. This first line cleared any previous list. The
result of any API methods needs to be freed by the user. Note that the base classes used in
the APIs will always free properties of class or dynamic array type when they are destroyed:
the user does not need to do this, but the needs to be aware of it.

The ShowDiscovery method shows all services in the list. It has 2 arguments that can
be used to filter the list: PreferredOnly and a filter on text (the title, name, description
and labels are filtered on this text).

Google APIs come in different versions, and one of these version is the preferred version,
normally this is the version that should be used in new implementations. To cater for this,
the demo program has a check menu which can be used to show only the preferred versions
of an API.

The ShowDiscovery method just fills a listview with the result of the call:

procedure TMainForm.ShowDiscovery(PreferredOnly : Boolean;
FilterOn : String);

Var
DLI : TDirectoryListitems;
LI : TListItem;

8



begin
FilterOn:=LowerCase(Filteron);
LVServices.Items.BeginUpdate;
try

LVServices.Items.Clear;
LVServices.Column[1].Visible:=Not PreferredOnly;
For DLI in FDirectory.Items do

if ShowItem(DLI) then
begin
LI:=LVServices.Items.Add;
LI.Caption:=DLI.name;
LI.Data:=DLI;
With LI.SubItems,DLI do

begin
Add(BoolToStr(preferred,’True’,’False’));
Add(id);
Add(title);
Add(version);
Add(description);
Add(discoveryLink);
Add(discoveryRestUrl);
Add(documentationLink);
Add(icons.x16);
Add(icons.x32);
Add(DoComma(labels));
end;

end;
UpdateCaption;

finally
LVServices.Items.EndUpdate;

end;
end;

The call to ShowItem decides whether an item must be shown or not, depending on the
options to ShowDiscovery.

The rest of the program uses the properties of the TDirectoryListitems: the in-
stances are stored in the Data property of the listitems in the listview. For instance, to
show the documentation of a particular API, the following code is used:

function TMainForm.CurrentAPI: TDirectoryListitems;
begin

If Assigned(LVServices.Selected)
and Assigned(LVServices.Selected.Data) then
Result:=TDirectoryListitems(LVServices.Selected.Data)

else
Result:=Nil;

end;

procedure TMainForm.AViewHelpExecute(Sender: TObject);
begin

OpenURL(CurrentAPI.DocumentationLink);
end;

9



Things can hardly get more simple than this.

To view the JSON description of a service, the following code is used:

procedure TMainForm.APreViewRestExecute(Sender: TObject);

Var
DLI : TDirectoryListitems;

begin
DLI:=CurrentAPI;
ViewRestAPI(DLI.Name,DLI.DiscoveryRestUrl);

end;

procedure TMainForm.ViewRestAPI(const AName, AURL: String);
Var

S : TMemoryStream;

begin
S:=TMemoryStream.Create;
try
if HttpGetBinary(AURL,S) then

begin
ViewFile(S,sJSON,’REST discovery for ’+AName);
S:=Nil;
end;

finally
S.Free;

end;
end;

The HttpGetBinary call is a part of the Synapse TCP/IP suite, and the ViewFile call
just shows a secondary form with a syntax highlighter.

The other functionality of the program are simple variations on these calls, the code for it
will not be presented here. The program can be seen in action in figure 3 on page 11.

6 Setting up OAuth 2 on Google

The Google discovery service is publicly available. This means that anyone can call
these services, no authentication or authorization is required. Most other services, how-
ever, do need authorization to be used. The Google API converter overrides 2 method of
TGoogleAPI:

Class Function APIAuthScopes : TScopeInfoArray;virtual; abstract;
Class Function APINeedsAuth : Boolean ;virtual;

The first method, APIAuthScopes lists the scopes for which authentication can be re-
quested when an API is used. The second method, APINeedsAuth, returns True if
the API needs authorization. (this is the case when the APIauthscopes array is non-
empty). The ServiceCall method of the TGoogleAPI class uses this function to
decide whether it must make a signed or unsigned request.

For the Google Discovery service, the APINeedsAuth returns False. Setting up OAuth
2 for an application requires several steps:

10



Figure 3: The Google Service Discovery demo

Figure 4: Defining an application in Google

1. The developer needs a Google account.

2. In the Google developer console, the application must be registered. The Google
developer console is available at:

https://console.developers.google.com/project

The console currently looks as figure 4 on page 11, where one application is defined.

3. When the application is defined, access to Google APIs must be set up. This is done
under the API’s and Auth - APIs section of the console. The programmer needs
to declare to Google which APIs his application will use.

If this is not done correctly, then any calls to an API will fail, even if the authorized
user has given consent that the application may do so.

When authorizing, the Google authentication service will present a consent screen,
which will list all actions that an application is allowed to perform on behalf of the

11



Figure 5: Selecting APIs for the application in Google

user. The list of actions reflects what APIs the programmer has selected here. The
API selection is shown in figure 5 on page 12.

4. As a last step, a pair of keys must be generated for the application. This is done under
the API’s and Auth - Credentials section of the console. One key is a unique
identifier for the application (the client ID), the other is a secret key (a password).
These are used when asking for user consent: they are sent to Google authorization
server when the application needs permission to fetch data from a user.

Through the OAuth 2 protocol flow, the application will then end up with a new token
(the access token) that it will use to ask permissions to acces data on behalf of the
user.

The credentials configuration is shown in figure 6 on page 13. Depending on what
kind of application you are developing, different settings must be used.

For desktop applications, the ’native client application’ type must be chosen, and
urn:ietf:wg:oauth:2.0:oob or http://localhost must be chosen as
the Redirect URI.

In the Google Developer Console a new Client ID and Client Secret can then be
generated.

The client ID and Secret must be used in the code of your application - preferably scrambled
somehow. Google offers a JSON download of this data, the contents of this file must be
kept secret. If this data becomes public, then another programmer can impersonate your
application and start downloading or, worse, wreak havoc on the user’s data (and you will
get the blame for it).

7 Setting up OAuth 2 in the application

Once the server part was set up, the application part can be configured. To demonstrate
this, the Google Calendar demo program is used. It makes use of the googlecalendar unit,
generated with the API code generator. The calendar demo shows a list of calendars of the

12



Figure 6: Configuring application credentials

user, and allows to view the items in the calendar. The list of calendars and events in the
calendar are simple listboxes, to make it simpler to understand.

The application starts in much the same way as the discovery service demo:

procedure TMainForm.FormCreate(Sender: TObject);
begin

// Set up Google client.
FClient:=TGoogleClient.Create(Self);
FClient.WebClient:=TSynapseWebClient.Create(Self);
FClient.WebClient.RequestSigner:=FClient.AuthHandler;
FClient.AuthHandler.WebClient:=FClient.WebClient;
FClient.AuthHandler.Config.AccessType:=atOffLine;
// We want to enter a code.
FClient.OnUserConsent:=@DoUserConsent;
// Create a calendar API and connect it to the client.
FCalendarAPI:=TCalendarAPI.Create(Self);
FCalendarAPI.GoogleClient:=FClient;
// Register calendar resources.
TCalendarAPI.RegisterAPIResources;
LoadAuthConfig;

end;

The code differs only in the setup of the authentication handler: The webclient’s RequestSigner
property is set to the Google Client AuthHandler property. When the webclient needs
to sign a request (Basically, it adds an authorization handler), it checks the AuthHandler.
This will check if an access token is available. For the authentication handler to be able to
do its work, 2 properties must be set:

FClient.AuthHandler.Config.AccessType:=atOffLine;
FClient.OnUserConsent:=@DoUserConsent;

13



The first line tells the authentication handler class that the application is an offline appli-
cation. The second line registers an event handler: for an offline application, this event
handler is called if user consent is needed. The last line of the OnCreate event handler
loads the configuration from an ini file; we’ll get back to this.

Now, when the application needs to do a service call to a Google service, the authentication
handler will check if it has an access token. If it does not, and it does not have a refresh to-
ken (with which it can ask an access token from Google), it will call the DoUserConsent
event handler.

When the event handler is called, several things must be done:

1. The event handler gets an URL to a Google authentication server, which must be
displayed in a browser.

2. Google authentication server will then ask the user to log in (if he or she is not yet
logged in) and will ask permission for your application to access the calendar.

3. The browser will then display an authorization code, which must be entered by the
user in the program.

4. Once the user has entered the authorization code, the event handler may return, pass-
ing the code back to the authorization handling component.

In the calendar demo application, there is a groupbox with an edit control and 2 buttons
(OK and cancel). In this edit control the user can enter the authorization code returned by
Google. Initially, this groupbox is invisible.

The code for this event handler looks as follows:

Procedure TMainForm.DoUserConsent(Const AURL: String;
Out AAuthCode: String);

begin
// Make the code entry visible.
GBAccess.Visible:=True;
EAccessCode.Text:=’<enter code here>’;
FAccessState:=acsWaiting;
// Show the URL in the browser
OpenUrl(AURL);
// Wait for the user to enter the code
While (FAccessState=acsWaiting) do

Application.ProcessMessages;
// If the user has entered the code, return it
if FAccessState=acsOK then

AAuthCode:=EAccessCode.Text;
GBAccess.Visible:=False;

end;

The code starts by showing the button and edit control. It then repeatedly runs the applica-
tion message loop to wait for the user to enter the authorization code. The OK and Cancel
buttons simply set a state, which is picked up in the loop:

procedure TMainForm.BSetAccessClick(Sender: TObject);
begin

FAccessState:=acsOK;
end;

14



procedure TMainForm.BCancelClick(Sender: TObject);
begin

FAccessState:=acsCancel;
end;

Obviously, it would be annoying for the user to have to login and enter this code each time
the application is used. Fortunately, this is not necessary: the application saves the tokens
it received after the first calls to the server.

procedure TMainForm.SaveRefreshToken;

Var
ini:TIniFile;

begin
// We save the refresh token for later use.
With FClient.AuthHandler.Session do
if RefreshToken<>’’ then

begin
ini:=TIniFile.Create(’Google.ini’);
try

With ini do
begin
WriteString(’Session’,’RefreshToken’,RefreshToken);
WriteString(’Session’,’AccessToken’,AccessToken);
WriteString(’Session’,’TokenType’,AuthTokenType);
WriteDateTime(’Session’,’AuthExpires’,AuthExpires);
WriteInteger(’Session’,’AuthPeriod’,AuthExpiryPeriod);
end;

finally
Ini.Free;

end;
end;

end;

The above code shows what properties of the user session must be saved. For safety rea-
sons, it is better not to save the AccessToken in a desktop application. But for instance in a
CGI web application, the access token can better be saved, to avoid having to exchange the
refresh token for an access token each time the Google service needs to be called.

In the OnCreate handler of the application, an attempt is made to load these tokens from
the ini file, together with the client ID and secret:

procedure TMainForm.LoadAuthConfig;

Var
ini:TIniFile;

begin
ini:=TIniFile.Create(’Google.ini’);
try

With FClient.AuthHandler.Config,Ini do
begin
// Registered application needs calendar scope

15



ClientID:=ReadString(’Credentials’,’ClientID’,’’);
ClientSecret:=ReadString(’Credentials’,’ClientSecret’,’’);
AuthScope:=ReadString(’Credentials’,’Scope’,

’https://www.googleapis.com/auth/calendar’);
// We are offline.
RedirectUri:=’urn:ietf:wg:oauth:2.0:oob’;
end;

With FClient.AuthHandler.Session,Ini do
begin
// Session data
RefreshToken:=ReadString(’Session’,’RefreshToken’,’’);
AccessToken:=ReadString(’Session’,’AccesToken’,’’);
AuthTokenType:=ReadString(’Session’,’TokenType’,’’);
AuthExpires:=ReadDateTime(’Session’,’AuthExpires’,0);
AuthExpiryPeriod:=ReadInteger(’Session’,’AuthPeriod’,0);
end;

finally
Ini.Free;

end;
end;

If the application is run the first time, the session tokens are empty, and the user consent
event will be called. Later runs of the application will load the refresh and access token
from the ini file, and the user no longer needs to log in or enter an access code. Unless he
revokes the right of the application to work on his/her behalf.

Needless to say, these tokens should be stored in a safe way. The above method of loading
the client secret and ID was implemented done for convenience, but is not recommended
for use in real life applications: the Client ID and Client Secret must be secret, and an .ini
file is not suitable in such case.

The code to fetch the events and calendar list is in fact very similar to the code used in the
discovery demo, but we’ll show it anyway:

procedure TMainForm.BFetchCalendarsClick(Sender: TObject);

var
Entry: TCalendarListEntry;
Resource : TCalendarListResource;
EN : String;

i:integer;
begin

LBCalendars.Items.Clear;
FreeAndNil(CalendarList);
Resource:=Nil;
try

Resource:=FCalendarAPI.CreateCalendarListResource;
CalendarList:=Resource.list(’’);
SaveRefreshToken;
if assigned(calendarList) then

for i:= 0 to Length(calendarList.items)-1 do
begin
Entry:=calendarList.items[i];
EN:=Entry.Summary;

16



Figure 7: The calendar demo program in action

if EN=’’ then
EN:=Entry.id+’ (’+Entry.description+’)’;

LBCalendars.Items.AddObject(IntToStr(i)+’: ’+EN,Entry);
end;

BFetchEvents.Enabled:=LBCalendars.Items.Count>0;
finally

FreeAndNil(Resource);
end;

end;

The code differs on 2 accounts:

• The code does not make use of the default calendarlist resource of the Calendar API.
Instead it uses the CreateCalendarListResource to create a private instance,
which is freed at the end of the routine.

• After the call to list the calendars is made, the SaveRefreshToken routine is
called explicitly to save the refresh token. This can also be handled in different ways:
The TOAuth2Handler has an event called OnAuthSessionChange which is
called whenever the session information changes, and the Store property which can
be set to a component that handles storing and retrieving of session and configuration
variables.

The result of all this code can be seen in figure 7 on page 17:

8 Conclusion

REST is an important architecture in web APIs. When done right, it makes developing a
client library very easy. Google offers a complete REST api for its services, and Lazarus
and Free Pascal contain now a complete client-library implementation for the Google APIs,
as has been demonstrated here. This client library is somewhat young and certainly subject
to improvement, but is certainly usable. Not all aspects have been treated here: much can be
said about authentication, getting information about the logged in user, saving sesion state
information. A similar library for the Microsoft Office365 environment is in the works. All
these topics will be treated in a future contribution.

The author is indebted to Ludo Brands and the late Reinier Olieslagers for their ideas on
how to handle serialization and implementation of the OAuth 2 protocol.

17


	Introduction
	Architecture
	Service descriptions
	A service description breakdown
	Using the generated APIs
	Setting up OAuth 2 on Google
	Setting up OAuth 2 in the application
	Conclusion

