
Git continued: contributing

Michaël Van Canneyt

September 27, 2021

Abstract

In a previous article, we introduced the distributed version system Git, and we
showed how to use it to fetch and update sources from a remote repository. In this
article, we’ll show you how to save changes you made and how to send these changes
to the remote repository.

1 Introduction

Using Git just to download some files from a project that you want to use is somewhat
overkill: The whole point of using git is to be able to make changes, and to send those
changes back to the remote repository from where you got the sources.

If you do not plan to contribute to a project, it is much easier to just download a zip with
the sources. Both Gitlab and Github automatically make an URL available to download the
sources of a branch of a project. for Gitlab, this URL is:

https://gitlab.com/PROJECT/-/archive/BRANCH/REPONAME-BRANCH.zip

Here you must replace PROJECT with the URL of the project repository, BRANCH with
the branch name and REPONAME with the name of the repository.

For example, to download a zip with the latest sources of FPC, this is the URL to use:

https://gitlab.com/freepascal.org/fpc/source/-/archive/main/source-main.zip

The extension can be changed to other formats such as .tar, .tar.gz or tar.bz2, if
you prefer one of these formats: Gitlab and Github will determine the archive format to use
from the extension you added.

A similar mechanism exists for github:

https://github.com/PROJECT/archive/refs/heads/BRANCH.zip

So for the Free Pascal sources, the URL becomes:

https://github.com/fpc/FPCSource/archive/refs/heads/main.zip

But a source code management system such as Git is meant to be able to change the sources,
and send the changes back to the originating repository:

If you have downloaded the sources of some project and you wish to contibute some
changes back to the project, 2 steps must be done:

1. Record the changes locally (called committing).

1



2. Send the changes back to the remote repository (called pushing)

This is different from version systems like Subversion, where a commit is immediatly sent
to the remote repository.

We’ll take a look at both steps in more detail.

2 Recording a change: what must be recorded ?

Before recording changes, you need to know what the changes are that need to be recorded.
Git can tell you what files you have changed (for the files it is tracking) and what files are
in your copy of the repository that it does not know about.

The Git command which tells you this, is called status.

On the command-line, it looks like this:

> git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: myunit.pp

Untracked files:
(use "git add <file>..." to include in what will be committed)

myotherunit.pp

no changes added to commit (use "git add" and/or "git commit -a")

How to interpret this?

• The list of files after Changes not staged for commit is the list of files
that are changed locally.

• The list of files after Untracked files is a list of files that exist in your copy of
the sources, but which Git is not tracking.

If you work with TortoiseGit, then you can see the status of the files right in the Windows
Explorer, because the file icons will have a marker if they are changed:

Unversioned files have no marker. For more detail, you can use the context menu of the
explorer to select Git check for modification. Doing so will pop up the dialog
shown in figure 1 on page 3, which shows essentially the same information as the git
status command. You can modify the view by checking or unchecking some of the
options in the lower-left corner.

2



Figure 1: TortoiseGit modifications dialog

3 Recording a change: Adding a new file

The simplest case of a change you can make is simply adding a new file to the repository.
Git needs to be told that you wish to start tracking changes to a file. So, the file must be
added the repository.

Adding a file is done – not surprisingly – with the add command, for example:

git add myotherunit.pp

After this, Git knows you want to track changes to the file myotherunit.pp.

You can check this using the status command again:

> git status
On branch master
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: myotherunit.pp

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: myunit.pp

The list of files after Changes to be committed is the change that Git will record
when you actually commit the change in the next step. This list of changes is often called
the INDEX.

The process of adding a file can be done for as many files as you want: as long as you do
not commit the changes, the change is not complete, i.e. it is not yet recorded.

To do this in TortoiseGit, the context menu of the file explorer can be used:

3



Or the context menu of the status dialog:

In fact, in any TortoiseGit dialog that shows a list of files, the context menu can be used to
do some common Git operations.

Once you chose Add, TortoiseGit will confirm that the file has been added, see figure 2 on
page 5.

You can also see it in the explorer window:

4



Figure 2: TortoiseGit file added confirmation dialog

4 Recording a change: Adding a changed file

The git status command showed that a modified file (myunit.pp) was present. To
record the change in this file, it must also be added to the commit.

git add myunit.pp

This tells Git that you wish to record the changes of the file in its current state. When you
run git status again, you’ll see the following:

> git status
On branch master
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: myotherunit.pp
modified: myunit.pp

In TortoiseGit, there is nothing to do. There, all actions are performed when committing.

5



5 Committing the change

When you’re done recording changed items, it is time to finalize the recording of the
changes. This is done with the commit command:

git commit -m ’Some new hash function’

The -m command-line option allows you to enter a commit message.

If you do not use this option, Git will automatically invoke your editor program and you can
write a commit message there. It is good practice to enter a descriptive commit message: it
helps developers to search for a particular change.

Git will reply with a summary of the actions it did:

[master 2398228] * Some new hash function
2 files changed, 23 insertions(+), 1 deletion(-)
create mode 100644 myotherunit.pp

After this, the status of all files will be reported as up-to-date:

> git status
On branch master
nothing to commit, working tree clean

In TortoiseGit, commiting happens in the commit dialog, which is invoked from the ex-
plorer context menu:

It can also be invoked from the ‘Check modifications’ dialog shown earlier. When se-
lected, the dialog shown in figure 3 on page 7 pops up. In this dialog you can easily select
which files need to be committed, and if need be you can still add files that were not yet
added to the change to be committed: by checking the ‘Show Unversioned Fles’ checkbox,
untracked files can also be shown.

In the dialog, you can add the comment to the commit, and by pressing the ‘Commit’
button, the commit will be performed. If the commit is successful, TortoiseGit will show a
confirmation dialog, which shows basically the same information as you would see on the
command-line. An example is shown in figure 4 on page 7

6



Figure 3: TortoiseGit commit dialog

Figure 4: TortoiseGit commit result confirmation dialog

7



6 Sending changes to a remote repository: Push

After the commit operation, the changes have been recorded locally: your local repository
contains a new version of the files. Because Git is a distributed version system, every copy
of the repository exists as a repository on its own. That means that when you commit a
change, this change is effectively only recorded in your own copy of the repository.

But if you cloned the local repository from a remote repository and wish to contribute your
changes to the project, you will still need to send the changes which are recorded and stored
in your local repository to the remote repository.

This operation is called ‘pushing’ your changes to the server, and the command for it is
git push. This will compare the list of changes recorded on the remote repository with
the list of changes recorded locally, and sends to the remote repository all local changes
that do not yet exist on the remote repository.

How do you know where the changes will be pushed to? The git remote command
will tell you this:

> git remote -v
origin git@gitlab.com:mvancanneyt/myarticleproject.git (fetch)
origin git@gitlab.com:mvancanneyt/myarticleproject.git (push)

In this output, origin is the name of the remote repository. This name is created auto-
matically when you clone a remote repository.

Because Git is a distributed version control system, there can be multiple remote reposito-
ries: each will have its own name. In that case, the remote command will list all remote
repositories:

> git remote -v
ondrej https://gitlab.com/onpok/fpc.git (fetch)
ondrej https://gitlab.com/onpok/fpc.git (push)
origin git@gitlab.com:freepascal.org/fpc/source.git (fetch)
origin git@gitlab.com:freepascal.org/fpc/source.git (push)

The pull and push URLs can differ in theory, that is why git shows 2 URLs for each remote.

A second (and probably more likely) question is of course: Exactly what changes will be
sent to the remote server when you push? For this you can use the git log command:

git log origin/main..HEAD

The above command lists all commits between the remote revision origin/main and
the local HEAD revision: these are aliases for the last (locally known) commit on the main
branch on the server and the last local (HEAD) commit.

If you have multiple remote servers configured, you simply need to replace the origin
with the correct name of the remote repository.

Sending the change is done with the push command of Git. It’s quite simple:

git push

If all goes well, then Git will print some diagnostic messages, telling you what it is doing:

Enumerating objects: 8, done.
Counting objects: 100% (8/8), done.

8



Figure 5: TortoiseGit credentials dialog

Delta compression using up to 8 threads
Compressing objects: 100% (7/7), done.
Writing objects: 100% (7/7), 918 bytes | 918.00 KiB/s, done.
Total 7 (delta 1), reused 0 (delta 0)
To gitlab.com:mvancanneyt/myproject.git

4fcf99a..8143d7d main -> main

If you wish to push only to a single remote, you can give the name of the repository:

git push ondrej

If no repository is specified, then Git will assume ’origin’ as the name.

Depending on the configuration and where you cloned from, Git will ask you for a user-
name and password if the remote repository requires you to be authenticated: for Gitlab
and Github this will definitely be the case. Git supports several transport mechanisms:
HTTP(s) and ssh are among the most used.

ssh In this case, no credentials will be asked: Git will use the ssh keys that you configured
for your SSH setup.

https Here, the credentials must be entered once when you connnect to the remote repos-
itory. (see figure 5 on page 9 for an idea of what this looks like in TortoiseGit) By
default Git (or TortoiseGit) will then save them so they will be used the next time
you need to authenticate.

To push changes to a remote repository in TortoiseGit, the ‘Sync’ menu item in the Ex-
plorer’s context menu must be used.

9



When selected, the synchronization dialog pops up, it looks like figure 6 on page 11. This
dialog allows you to synchronize your local repository with a remote repository: It allows
you to select the repository to which you will push changes and it shows the list of local
changes that will be pushed to the selected repository: this is essentially the output of the
git log command mentioned earlier.

There are some other options, but we will not discuss them at this point.

For the push operation, the Push button below the list of changed files must be used. If all
goes well, then TortoiseGit will show the result of the operation, just as it is shown when
pushing on the command-line, see figure 7 on page 11.

It can happen that the push operation fails: if the remote repository has received changes
from other contributors which are not yet present in your local repository, then the server
will refuse to apply your changes. In that case you will first need to pull the changes from
the remote repository, and when that was successful, you can attempt to push your changes
again.

That is also the reason why TortoiseGit has a single ‘synchronization’ dialog and not sepa-
rate dialogs for push and pull: The 2 operations often must be executed one after the other,
and this is easier when the operations can be performed from a single dialog.

10



Figure 6: TortoiseGit synchronization dialog

Figure 7: TortoiseGit synchronization result confirmation dialog

11



Figure 8: All project developers have read-write access to the remote repository

7 Collaboration: Using Forks

When you clone a repository from Gitlab or Github to your local machine, chances are
that you have done so for a repository that you don’t have write access to: most projects
do not allow arbitrary developers to push changes directly back to their hosted repository.
Instead, only a limited amount of people will have write access to the repository on Gitlab
or Github, a situation depicted in figure 8 on page 12.

So if you don’t have write access to the remote repository, how can you contribute your
changes to the project?

The TortoiseGit ‘synchronization’ dialog (figure 6 on page 11) shows one possibility: The
‘Email patch’ button can be used to create a patch file and mail it to one of the developers
of the project. The project developer can then use the ‘Apply patch’ button to apply your
patch to his or her local repository and push it to the remote repository: he will presumably
have the necessary authorizations to perform the push.

This of course implies that you must know the email address of one of the developers.

However, the creators of Gitlab and Github have created an easier way to send your changes
back to the project repository: Forks.

Git is a distributed version system: this means that there can exist many copies of a repos-
itory, and they can all be kept in sync in a more or less automated manner. What sites as
Gitlab and Github do is to allow you to create a copy of a repository on their servers: this
copy is called a fork.

In Gitlab, this is done simply by clicking the ‘Fork’ button in the project page of the project
you wish to fork:

12



A similar button exists in github’s project page:

In order to create a fork, you must have an account on Gitlab or Github. The copy will be
registered under your account, and the developers will see that you have created a fork. In
difference with the original project repository, you will have full control over the fork.

The situation and possibilities are depicted in figure 9 on page 14.

• You can clone your copy locally, and write from your local copy to your forked
repository on the server (the 2 green vertical arrows at the right).

• You can also set up your fork to automatically pull changes from the original project
repository, so you will always get the latest changes from the original repository (the
dark blue arrow at the top).

• You can even register 2 remote repositories in your local copy: your fork and the
original repository. If you do this, you can manually keep your forked repository up
to date: you pull changes from the original project repository (the light-blue arrow
pointing down-right), and push them to your fork (green up arrow).

So how can you contribute changes in this scenario? This is depicted using the orange
arrow in figure 9 on page 14. The way to send back your changes is called a merge request.

When you push changes to your fork, the Gitlab or Github servers can be configured to
automatically send you an URL which you can use to create a merge request. This URL
will take you to their website, where you can fill in the details of the merge request. For
Gitlab, the merge request page looks like figure 10 on page 14.

You select the source repository (your fork) and branch (main, or the branch where you
committed your change) and target repository (this is normally the project repository) and

13



Figure 9: Flow when using a fork

Figure 10: Starting a merge request

14



Figure 11: Provide info about your request

branch where the change is supposed to go. When you continue, a dialog appears (figure 11
on page 15) where you can give the developers of the project an explanation of what your
patch does, what problem it solves, or why you think it is a necessary or useful change:
in general, provide any info to help the developers decide whether or not they want to
incorporate your change into the project.

It is worth noting that although you will be creating the merge request starting in your
forked copy of the project reposisitory, the actual merge request will end up in the original
project. You will not see it in the list of merge requests of your project.

For Gitlab, all this can be done on the command-line as well, but the process is rather
involved and requires extensive command-line skills.

A merge request is just what the name says: a request to merge a change. This has several
consequences:

• The change is not automatically merged into the repository of the developers.

• Instead, it is recorded in the Gitlab or Github platform.

• The developers are notified of your request: they receive an email with the details of
your request.

• The request is shown to them when they go on the website (see figure 12 on page 16
for how this looks for a developer of a project on gitlab).

• They can examine your changes using the website, or check out your version of the
files.

• The developers can create comments on your merge request, add comments to details
of the diff (figure 13 on page 17 shows what a developer sees from your merge
request).

15



Figure 12: The project developers see a list of merge requests

• The developers can request additional changes: if you make additional changes in
the same branch and push them to your forked repository they will automatically be
added to the merge request.

• There can be an approval process.

• Automated tests can be run.

There is a large list of possibilities: a whole ecosystem of options exist to help the project
developers to examine and process your request.

If all went well, the project developers decide to accept your merge request. The merge
request is then approved (although this is optional) and the change is actually merged into
their repository: this can be done in 2 ways:

• Using the button in the website. In that case, the request looks like figure 14 on page
18.

• By applying the changes on a local repository and pushing them to the server. De-
pending on the way this is done, the merge request will also be closed automatically.

The setup of platforms like Gitlab and Github offer a lot of configuration to automatically
handle merge requests. If CI (Continuous Integration) was set up, then they can for example
configure the server to automatically run a test suite on the sources of every merge request
and even allow your merge request to be merged automatically if the test suite runs without
fail. The details of this depend of course on the service level of your project account and
the hosting platform you are using.

8 Conclusion

In this article, we have shown how to communicate changes to a remote repository, and how
this can even be done when you do not have write access to the project’s repository: Forks
are the feature of platforms such as Gitlab and Github which make Git such a succesful
collaboration tool. But we have not yet covered all of Git - not by a long shot. In the next
Git article, we’ll cover the use of splitting large changes into smaller commits and the use
of branches in Git, as it is also a major topic when co-operating on a project managed by
Git.

16



Figure 13: Details about the merge request

17



Figure 14: The merge request was accepted and merged

18


	Introduction
	Recording a change: what must be recorded ?
	Recording a change: Adding a new file
	Recording a change: Adding a changed file
	Committing the change
	Sending changes to a remote repository: Push
	Collaboration: Using Forks
	Conclusion

