
An introduction to generics

Michaël Van Canneyt

December 27, 2021

Abstract

Generics have been available in Free Pascal and in Delphi for quite some time now,
and are increasingly used thoughout the VCL. In this article, we take a closer look at
this language construct.

1 Introduction: the problem

Object Pascal is a strongly typed language. This is one of the good reasons for using Object
Pascal, since it ensures that if the code compiles, it will not contain too many obvious
mistakes that can happen in languages with e.g. dynamic typing, such as passing a string
or an object to a function that expects an integer. The compiler will catch such an error at
compile time. In dynamically typed languages, such an error will only be detected when
running the code.

It also presents a drawback. In case you want to have a structure or function that needs to
be implemented for several types, then you need to implement it separately for each type,
even if the actual code for the function looks 100% the same.

For instance:

Function Min(A,B : Integer) : Integer;

begin
If A<B then

Result:=A
else

Result:=B;
end;

This function can be used with an integer type (in fact, all integer-like types such as byte,
word etc.). But it cannot be used with a string. In Javascript, the function

function min (a,b) {
if (a<b) {

return a;
} else {

return b;
}

}

can be used with all basic types (all types for which < is defined); you need to write it only
once. In Object Pascal, you need to write the function for each type that you wish to use it

1

with, the overloading feature of the language takes care of selecting the right version when
it is used.

When implementing the above function Min(), even though the code inside the function
will look 100% the same, the function must be written for each type separately.

2 The solution: Generics

If we want to reduce the number of functions that we must implement, then basically, what
is required is a function in which the type of the parameters and return value is a parameter
itself, so it can be specified at a later time, and let the compiler generate the function for us,
with the type we specify.

Something like

Function Min(A,B : T) : T;

begin
If A<B then

Result:=A
else

Result:=B;
end;

Where T is unknown.

This requirement, to be able to specify the type of some fields or function parameters later
on, extends to structures: TList from the classes unit (or TCollection) is a classical
example.

The TList type can be used with pointers. Using some typecasting, it is possible to make
descendents that accept objects: Given a class TMyClass one can make a TMyClassList
descendent of TList with a default array property that has type TMyClass. Some over-
loads are needed with typecasts, but it works.

With generics, it is possible to define a list class in which the type of the elements is not
yet determined, but which can be filled in later. The statement where the actual type is
determined, is called instantiating in Delphi, or specializing in Free Pascal.

Roughly, this is something like:

TList<T> = Class
Property Items [Aindex : Integer] : T Read GetA;

end;

Here, T would be a placeholder for a type.

Generic types (and functions in FPC) are the solution to this problem.

Generic types can be made using records (with or without methods), classes and arrays and
procedural types. In Free Pascal, it is also possible to create actual generic functions or
procedures.

The compiler implementation of generics in Free Pascal and Delphi is presumably quite
different, which means that some things which are possible in Free Pascal, will not be
possible in Delphi. Since Free Pascal aims to be Delphi compatible, the opposite should
not be the case (barring bugs in Free Pascal, obviously).

2

3 Declaring generics

A generic type is first and foremost a type, and as such must be declared in the Type
declaration block of a unit or a class or record.

The template types (i.e. the types that are still unknown) are indicated between single
brackets < and > after the type name.

A generic type can have one or more template type identifiers, separated by a comma.

In the following, TKey and TItem are placeholders for types:

type
TDictionaryItem<TKey,TItem> = record

FKey: TKey;
FItem: TItem;

end;

The same can be done for a class:

type
TDictionaryItem<TKey,TItem> = class

FKey: TKey;
FItem: TItem;

end;

It is also possible to use generic types in other generic types:

type
TDictionaryItem<TKey,TItem> = record

FKey: TKey;
FItem: TItem;

end;

TDictionary<TKey,TItem> = class
FList : TArray<TDictionaryItem<TKey,TItem>>;
// Alternatively:
// FList : Array of TDictionaryItem<TKey,TItem>;
Function Find(AKey : TKey) : TItem;

end;

Note that the parameters must be repeated in the type name in the implementation:

Function TDictionary<TKey,TItem>.Find(AKey : TKey) : TItem;

It is also possible to declare a generic procedural type:

Type
TCompareProcedure<T> = Function(A,B : T) : Integer;

Lastly, for Free Pascal, functions or procedures can also be generic, which means the fol-
lowing is a valid generic function definition:

Function Min<T> (A,B : T) : T;

3

4 Generic arrays

Generic arrays are meant to solve a type assignment compatibility problem: In Delphi, 2
variable of array types are only assignment compatible if they are the same array type.

This means that the following will not compile:

Type
TA = Array of Integer;
TB = Array of Integer;

Var
A : TA;
B : TB;

begin
A:=B;

end;

Even though the elements of TA and TB have the same type, the arrays will not be assign-
ment compatible.

Note: In Free Pascal, the above will compile and work correctly. This is one of the subtle
differences between the 2 compilers.

The problem can be solved with a generic array. The following will compile.

Type
TArray<T> = Array of t;

Var
A : TArray<Integer>;
B : TArray<Integer>;

begin
A:=B;

end;

Inventing the generic array may be a bit superfluous, since you need only one TArray<T>
declaration to be able to create assignment compatible arrays for all possible situations.

In fact, TArray is defined in the SysUtils unit.

Type
TArray<T> = Array of t;

5 Instantiating generic types

When a generic type or function must actually be used using a specific type, i.e. the types
for the various templates are known, it needs to be instantiated. (or specialized, in Free
Pascal parlance).

This is done by specifying an actual type for the parameter:

type
TStringDictionaryItem = TDictionaryItem<integer,string>;

4

Here we specially created a new type based on the generic type.

Explicitly declaring a new type is not a necessity, it can also be done when declaring a
variable:

Var
MyDictItem : TDictionaryItem<string,tobject>;

When using a generic type in another generic type, as in the following;

type
TDictionaryItem<TKey,TItem> = record

FKey: TKey;
FItem: TItem;

end;

TDictionary<TKey,TItem> = class
FList : TArray<TDictionaryItem<TKey,TItem>>;
// Alternatively:
// FList : Array of TDictionaryItem<TKey,TItem>;
Function Find(AKey : TKey) : TItem;

end;

the type TDictionaryItem is not yet instantiated in the TDictionary declaration. it
will only be instantiated when the generic TDictionary type is instantiated.

Note that the compiler will generate actual code only when it encounters an instantiation
(or specialization) of a generic. It will try to make sure that it includes the code for a
instantiation with a certain type only once.

That means that for

var
A : TDictionary<string,integer>;
B : TDictionary<string,integer>;

The code for class TDictionary<string,integer> will be included only once in
the final binary.

6 Writing generic code

The code that can appear in a generic class or type is not different from other Object Pascal
code as encountered in records or classes. It works just as other code, with the caveat that
the actual type of template types is unknown.

Because Object Pascal is a strongly types language, this means that some constructs or
pascal statements are not possible, because the type of the template types is unknown during
the declaration of the generic class.

Assume the following declaration:

Type
TUtil<T> = record

function Min(A,B : T) : T;
end;

then the following code will fail to compile in Delphi:

5

function TUtil<T>.Min(A,B : T) : T;

begin
If A<B then

Result:=A
else

Result:=B;
end;

Note that in the implementation of the function, the type placeholders were repeated in the
function header.

However, the Delphi compiler will complain on this code:

[dcc32 Error] E2015 Operator not applicable to this operand type

The Delphi compiler does not know what to do with the comparison operator <. Note:
Because Free Pascal works fundamentally different, the FPC compiler will compile this; It
may, however, give an error during specialization (instantiation) of the generic type.

The only allowed operation for identifiers of type T, at this point, is an assignment, i.e. the
following will compile:

function TUtil<T>.Min(A,B : T) : T;

begin
Result:=B;

end;

The compiler can check that the Result and B identifiers have the same type, even though
the actual type is unknown. So this is valid code.

There are more things that are not allowed, for instance typecasts.

function TUtil<T>.Min(A,B : T) : T;
begin

If Integer(A)<Integer(B) then
Result:=A

else
Result:=B;

end;

The Delphi compiler will refuse this, because it cannot determine whether the typecast is
valid for the template type T.

Similarly, the Delphi compiler will complain if an attempt is made to use methods or fields
of the type T:

function TUtil<T>.Min(A,B : T) : T;
begin

If A.AsInteger<B.AsInteger then
Result:=A

else
Result:=B;

end;

The compiler cannot resolve AsInteger, so it will complain:

[dcc32 Error] E2003 Undeclared identifier: ’AsInteger’

6

7 Helping the compiler out: Generic Type restrictions

Some of the problems caused by the fact that the template types are unknown, can be
remedied with type constraints:

The compiler can be told that a template type must at least be of a certain class or interface.
Any attempt to instantiate a generic class with a template type that is not a descendent of
this class or does not implement the specified interface, will result in a compiler error.

By doing this, the compiler can for instance verify code that accesses methods or fields of
the template.

Specifying a type constraint is done in the same manner as specifying a type for a parameter
in a function or procedure:

Type
TUtil<T : TMyClass> = record

function Min(A,B : T) : T;
end;

This means that the TUtil<T> can only be instantiated with TMyClass or a descendent
of TMyClass.

Using this, the following code will work:

Type
TMyClass = Class

Function AsInteger : Integer; virtual; abstract;
end;

TUtil<T : TMyClass> = record
function Min(A,B : T) : T;

end;

TMyUtilRec = TUtil<TMyClass>;

function TUtil<T>.Min(A,B : T) : T;
begin

If A.AsInteger<B.AsInteger then
Result:=A

else
Result:=B;

end;

This works because the compiler can now verify that A.AsInteger is valid, since T is
guaranteed to be of type TMyClass.

Note that

Type
TMyOtherClass = Class

Function AsInteger : Integer;
end;

TMyUtilRec = TUtil<TMyOtherClass>;

Will not work, the compiler will complain:

7

[dcc32 Error] E2515 Type parameter ’T’ is not compatible with type ’TMyClass’

Even though TMyOtherClass has a method AsInteger.

Type restrictions follow the same rules as parameter declarations, they can be grouped:

Type
TUtil<T1,T2 : TMyClass> = record

function Min(A,B : T2) : T1;
end;

and of course in the case of multiple template types, they can have different constraints:

Type
TUtil<T1 : TMyClass; T2 : ISomeInterface> = record

function Min(A,B : T2) : T1;
end;

Additionally, it is possible to specify multiple constraints for the same type:

Type
TUtil<T : TMyClass, ISomeInterface> = record
function Min(A,B : T) : T;

end;

This means that Tmust be both a descendent of TMyClass and implement the ISomeInterface
interface when instantiating the TUtil generic.

This means the following code is valid for the generic record:

Type
TMyClass = Class

Function AsInteger : Integer;
end;

ISomeInterface = Interface
Function AsString : String;

end;

TUtil2<T : TMyClass, ISomeInterface> = record
function Min(A,B : T) : T;

end;

function TUtil2<T>.Min(A,B : T) : T;
begin

If (A.AsInteger<B.AsInteger) or (A.AsString<B.AsString) then
Result:=A

else
Result:=B;

end;

It is possible to specify simply that a template type must be a class:

Type
TUtil2<T : class> = record

8

function Min(A,B : T) : T;
end;

function TUtil2<T>.Min(A,B : T) : T;
begin

If B.InheritsFrom(A) then
Result:=A

else
Result:=B;

end;

The same can be done for a record.

Needless to say, a class and record constraint cannot be combined, because a type cannot
be a class and a record at the same time.

8 Back to the original problem

Are we now any closer to our original problem, the Min function usable with any type ?

Yes and no. In Free Pascal, the following simply works:

Type
Trec = Record

A : Integer;
// Define the < operator for TRec.
Class Operator LessThan (A,B : TRec) : Boolean;

end;

// Implement it.
Class Operator TRec.LessThan (A,B : TRec) : Boolean;

begin
Result:=A.A<B.A;

end;

// Now our generic function
Function Min<T> (A,B : T) : T;

begin
If A<B then
Result:=A

else
Result:=B;

end;

// Finally we demonstrate everything:
Var

A,B : Integer;
C,D : Trec;

begin
A:=1;
B:=2;

9

A:=Min<Integer>(A,B);
Writeln(A);
C.A:=4;
D.A:=3;
C:=Min<TRec>(C,D);
Writeln(C.A);

end.

This is because the Free Pascal compiler operates different from Delphi. When it instan-
tiates the function Min<TRec>, it “replays” the code for Min using TRec as the type.
During replay, it encounters A<B. Since it knows the operator LessThan for the type
TRec it can compile the code. The above will not work for all types, since e.g. for classes,
operators cannot be defined.

In Delphi, some extra work is necessary but in essence the above can be achieved as well;
The following will also work in Free Pascal.

The first problem is that Delphi does not support generic functions. This can be remedied
by using a static function in a record.

Type
TUtils = Record

Class Function Min(A,B : T) : T; static;
end;

Class Function TUtils.Min(A,B : T) : T;

begin
if A<B then

Result:=A
else

Result:=B;
end;

But this still does not compile, since the compiler still cannot handle the A<B.

The solution is using a template interface - which is defined in the System.Generics.Defaults
unit:

IComparer<T> = interface
function Compare(const Left, Right: T): Integer;

end;

This interface introduces a function that should return a negative result if Left<Right, a
positive result if Left>Right and zero if Left=Right.

Using this, we can rewrite the function:

TUtils2 = Record
Class Function Min<T>(A,B : T; Cmp : IComparer<T>) : T; static;

end;

With implementation

Class Function TUtils.Min<T>(A,B : T; Cmp : IComparer<T>) : T;

10

begin
if (Cmp.Compare(A,B)<0) then

Result:=A
else

Result:=B;
end;

Now, to create and pass on a IComparer interface for all basic types would be tedious
and a lot of work.

The TComparer class (defined in the same unit) will create such an interface for all basic
types automatically, allowing us to use our new function as:

A:=TUtils2.Min<Integer>(A,B,TComparer<Integer>.Default);

It is still somewhat annoying that the comparer interface must be specified each time. This
can be solved - for basic types - with the following definition of our record:

Type
TUtils<T> = Record

Class Var C : IComparer<T>;
Class Constructor Create;
Class Function Min(A,B : T) : T; static;

end;

Class Constructor TUtils<T>.Create;

begin
C:=TComparer<T>.Default;

end;

The class constructor is called once for each instantiation of this generic record, and will
store a correct IComparer interface for each record.

This means we can do

A:=TUtils<Integer>.Min(A,B);

This comes pretty close to what we actually wanted to achieve.

9 Conclusion

Clearly, for the simple case demonstrated here, it is questionable whether it is worth us-
ing generics. A simple set of overloaded functions may well be sufficient. However, for
more complicated cases the use of generic types can offer many advantages. This will be
demonstrated in a future contribution.

11

	Introduction: the problem
	The solution: Generics
	Declaring generics
	Generic arrays
	Instantiating generic types
	Writing generic code
	Helping the compiler out: Generic Type restrictions
	Back to the original problem
	Conclusion

