
Embedding Gecko in a Delphi application

Michaël Van Canneyt

August 4, 2008

Abstract

Delphi comes standard with a TWebBrowser component that uses Internet Explorer
to show webpages. For those that prefer Free software or simply prefer Mozilla and it’s
derivatives, it is also possible to embed Gecko (the rendering engine of Mozilla) in a
Delphi application. This article shows how.

1 Introduction

Most programs these days have some kind of web component - an update page to which
one can browse, help systems, whatever. Access to the web is easily done in Delphi using
the TWebBrowser component that is distributed by default with Delphi. That component
uses the services provided by Microsoft’s Internet explorer to load and show HTML pages.
However, this is not the only possibility.

Firefox - or any other derivative of the Mozilla browser suite - is a powerful web browser.
It is based on a free set of components or API, called Gecko: Gecko is bundled in a DLL
that is deployed with FireFox (or any Mozilla application): this DLL can be used to embed
Gecko in a Delphi application.

Gecko is built using the XPCom technology: a cross-platform COM technology, which is
compatible to Microsoft’s COM implementation on Windows. Practically, this means that
Gecko defines a series of interfaces which can be used to create a Gecko application. The
interfaces map exactly to Delphi’s interfaces, and this makes it relatively easy to create a
Gecko application.

There are 2 ways to embed Gecko in a Delphi application. One is using an ActiveX wrapper
around the Gecko SDK, the other is to use the Gecko SDK directly. The second option is
the way to go, as it gives access to all of the functionality of the Gecko SDK and should be
cross-platform, whereas the ActiveX component exposes the functionality only partially,
and requires additional installation steps.

2 Gecko SDK

All interfaces of Gecko and XPMCom have been translated to Delphi (seemingly by a
Japanese programmer, whose name is hitherto unavailable to the author) and have been
declared in a series of units that are available from

http://nesitive.net/nesitive/all/b02b7441f5ef25a07110a55959e89575.html

As an alternative, there is a download on

http://ftp.newbielabs.com/Delphi Gecko SDK/Readme.htm

1



Which also has some sample applications. Finally the sources are in Subversion on source-
forge

http://sourceforge.net/projects/d-gecko

The sources on this location are changed so they work with Gecko version 1.8 and 1.9, but
the interface (in particular, the startup and history mechanisms) are slightly different. The
example here uses the version found on

http://ftp.newbielabs.com/Delphi Gecko SDK/Readme.htm

Using the version found on Sourceforge should take only minor modifications to the code.

The archives contain 2 delphi packages:

geckosdk This is a run-time package (.dpk) which contains the raw XPCom and Gecko
API definitions. This package should be simply compiled, and the resulting .bpl
should be in the PATH. This will be automatically the case for a standard Delphi
installation.

geckocomponents This run and design-time package contains 2 wrapper components: a
visual components that can be used to ember a web-browser window on a form,
and a profile manager component. This package uses the geckosdk package for the
low-level interface. The package should be compiled and installed in the IDE.

3 First steps

When the packages have been installed, a new tab called ’Gecko’should appear on the
component palette. The TGeckoBrowser component is the browser component. To
demonstrate it’s use, a new application can be created witha single form (TMainForm).
TGeckoBrowser component is dropped on it (name it GBDemo) together with an Edit Con-
trol (name it EURL) and a button (name it BGo). Some visual properties such as anchors
can be set so the form behaves nice when rescaled, and then the real work can start:

In the OnClick event handler of the BGo button, the following code can be inserted:

TMainForm.BGoClick(Sender : TObject);

begin
GBDemo.LoadURI(EURL.Text);

end;

That’s it. The form is now a fully functional browser with an address bar. When a URL
is entered and the button is clicked, the browser component will load the URL. Once it is
loaded, the links can be clicked, and the browser component will follow all the links - no
additional programming is required.

When running this program, some problems may pop up: the Gecko Runtime Environment
(GRE) should be installed in the same directory as the demo application. If this is not the
case, an error may occur. The download at the following location

http://ftp.newbielabs.com/Delphi Gecko SDK/Readme.htm

contains a complete GRE (in the file gre.zip), which can be unzipped in the directory of the
application. Downloading and unzipping this file makes it possible to start the application,
in which case the running application can look like figure figure 1 on page 3.

2



Figure 1: The running demo application

The TGeckoBrowser component has some event handlers. One of these handlers is the
OnTitleChange event, which is called when the page title of the currently displayed
HTML page changes. This can be used for instance to set the form caption to the HTML
page title, as in the following example:

procedure TMainForm.GBDemoTitleChange(Sender: TObject; const Text: WideString);
begin

Caption:=Text;
end;

The OnStatusTextChange event can be used to display status messages; These mes-
sages are sent by the Gecko Engine when downloading pages, images and other web ma-
terial. Additionally, when the mouse cursor hovers over a hyperlink in a webpage, it sends
a status message with the link information. Using this event is again straightforward: a
statusbar can be dropped on the form (call it BDemo), and the event handler can be coded
as follows:

procedure TMainForm.GBDemoStatusTextChange(Sender: TObject; aMessage: WideString);
begin

SBDemo.Panels[0].Text:=AMessage;
end;

4 A history mechanism

When the current page changes in the browser, the OnLocationChange event can
be used to implement a history mechanism. To show this, a toolbar with 2 buttons is

3



dropped on the form. The first button (TBBack) gets its style set to ’tbsDropdown’, and
a popup menu PMHistory is attached to it. The popup menu is filled with items in the
OnLocationChange event, as follows:

procedure TMainForm.GBDemoLocationChange(Sender: TObject; const uri: string);

Var
Mi : TMenuItem;

begin
Mi:=TMenuItem.Create(Self);
Mi.Caption:=URI;
MI.OnClick:=HistoryClick;
PMhistory.Items.Insert(0,MI);

end;

When the menu item is clicked, the HistoryClick event handler is called, and it simply
loads the requested page:

procedure TMainForm.HistoryClick(Sender : TOBject);

Var
MI : TMenuItem;

begin
MI:=Sender as TMenuItem;
GBDemo.LoadURI(MI.Caption);

end;

Obviously, this mechanism can be enhanced to e.g. display a short version of the webpage
location. The OnClick handler of the TBBack button itself contains the following code:

procedure TMainForm.TBBackClick(Sender: TObject);

Var
MI : TMenuItem;

begin
if PMHistory.Items.Count>0 then

begin
MI:=PMHistory.Items[0];
GBDemo.loadURI(MI.Caption);
end;

end;

Which means it jumps to the last item in the list.

The forward button is a bit more problematic, as it would require keeping the last used
position in the history list. Luckily the TGeckoBrowser component has it’s own history
list mechanism, which takes care of all these details. The following properties maintain the
history list:

HistoryEntry This is a zero-based indexed property with the list of visited pages; Each
entry is a class of type TGeckoBrowserHisoty (a typo in the implementation),
which has relevant 2 properties: Title and URI.

HistoryCount This is the number of entries in the history list.

4



HistoryPosition This is the position, in the history list, of the currently shown web page.

These 3 properties should be enough to populate a list (or menu) with recently visited
pages, and to decide whether a forward or backward navigation is possible.

The following methods can be used to navigate in the history list:

GoBack Navigate back to the previous item in the list.

GoForward Navigate forward to the next item in the list.

GotoIndex Accepts a single parameter: the index of the item in the history list that should
be jumped to.

All three combined can be used to create a history mechanism. To show this, a main menu
is dropped on the form, with a ’History’ menu item. The item contains 3 sub menuitems:
’Recent’, ’Back’ and forward’. The OnClick events of the latter two look like this:

procedure TMainForm.MIBackClick(Sender: TObject);
begin

GBDemo.GoBack;
end;

procedure TMainForm.MIForwardClick(Sender: TObject);
begin

GBDemo.GoForward;
end;

In the ’OnClick’ event of the ’History’ menu item, the ’Back’ and ’Forward’ menu items
are disabled if their action cannot be executed, and the complete history is appended to the
’Recent’ menu item:

Procedure TMainForm.MHistoryClick(Sender: TObject);

Var
P,C,I : integer;
H : TGeckoBrowserHisoty;
MI : TMenuItem;

begin
P:=GBDemo.HistoryPosition;
C:=GBDemo.HistoryCount;
MIForward.Enabled:=(P>=0) and (P<C-1);
MIBack.Enabled:=P>0;
MIRecent.Enabled:=C>0;
MIRecent.Clear;
for I:=0 to C-1 do

begin
H:=GBDemo.HistoryEntry[I];
MI:=TMenuItem.Create(Self);
MI.Caption:=H.Title+’ (’+H.URI+’)’;
MI.Checked:=(P=I);
MI.OnClick:=DoRecent;
MIRecent.Add(MI);
end;

end;

5



Figure 2: The history mechanism in action

This routine is quite straightfoward: a menu item is created for each page in the history list,
and the caption is created from the page title and URI. The menu item which represents the
current page gets a check in front of it. The DoRecent event handler is called when the
user clicks a menu item, and it executes the following code:

procedure TMainForm.DoRecent(Sender: TObject);

Var
Mi : TMenuitem;
I : Integer;

begin
MI:=Sender as TMenuItem;
I:=MIRecent.IndexOf(MI);
if I>=0 then

GBDemo.GotoIndex(I);
end;

It simply determines the position of the menu item in the history list, and jumps to this
position. The result of all this coding can be seen in figure 2 on page 6

6



5 Deployment issues

As said earlier, the GRE must be installed in the application directory for the demo to work.
This requirement is rather restrictive, but is an implementation choice of the nsXPComglue
unit. The location of the GRE is stored in the GRELocation variable in the nsXPCOMglue.
This variable is only in the implementation section, but can be moved to the interface sec-
tion of the unit it is in.

The location of the GRE can then be set in the initialization section of the main form. For
instance, if the GRE is in a subdirectory ’GRE’ of the demo application, then the following
code will load the GRE in that directory:

Initialization
GRELocation:=ExtractFilePath(Paramstr(0)+’GRE’);

end.

Because the GRE tries to load other libraries, it is necessary to add this directory to the
PATH environment variable: then Windows will search for other libraries in the GRE in-
stallation directory.

6 Conclusion

As shown in the above code examples, embedding a Gecko-based browser in a Delphi
application is suprisingly easy: The TGeckoBrowser component makes it particularly
easy to use. The only caveat found currently is the deployment: the GRE should be installed
correctly with the application.

What about Lazarus ? Since the code is fairly standard Object Pascal, it is to be expected
that the code should compile and function under Lazarus, and normally it should function
under all platforms, since XPCom is a cross-platform technology. Currently the code com-
piles, but does not function correctly: the startup for XPCom fails. The matter is currently
under investigation by the FPC team, and success will surely be reported in this magazine.

7


	Introduction
	Gecko SDK
	First steps
	A history mechanism
	Deployment issues
	Conclusion

